簡易檢索 / 詳目顯示

研究生: 湯勝評
Sheng-Ping Tang
論文名稱: 十二烷基硫酸鈉水溶液液滴撞擊木板之行為研究
A Study on the Drop Impingement for SDS Solutions on Wood Surface
指導教授: 林析右
Shi-Yow Lin
口試委員: 蔡瑞瑩
Ruey-Yug Tsay
陳立仁
Li-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 十二烷基硫酸鈉液滴撞擊木板非洲黑檀
外文關鍵詞: SDS, Drop Impingement, Wood Surface, Diospyros crassiflora
相關次數: 點閱:151下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,液滴撞擊固體平板後的潤濕行為已成為許多人討論的焦點,在日常生活與工業界中都有其應用實例,例如高分子 3D列印、噴墨印表機的噴墨行為及工業上的噴塗程序等;然而,因液滴撞擊平板的過程極為快速,人眼難以分辨,故需仰賴高速攝影機來觀察其細微變化。木頭廣泛被運用在建築和家具上的材料中,故本研究挑選多種木頭來當我們的撞擊基材。另使用不同的水砂紙研磨出固定粗糙度的木頭平板,並使用高速攝影機 (6770 ~ 90k fps) 來記錄室溫下界劑水溶液液滴撞擊木材平板後的液滴潤濕行為。
    本研究的第一部分探討純水液滴 (D0 = 2.39 mm) 於不同撞擊高度下 (H = 1~40 cm),撞擊非洲黑檀平板表面 (Rq = 0.60 m )的潤濕行為。實驗發現在慣性力大 (H = 10 ~ 40 cm)的情況下,液膜的擴張速度快;撞擊液滴之潤濕直徑達到最大之瞬間的時,撞擊液滴展現出如釘栓般的pinning 行為;在慣性力小 (H = 1 ~ 5 cm)時,液膜的擴張速度慢,撞擊液滴在中心位置持續震盪,潤濕直徑呈震盪變化。
    第二部分觀察不同濃度的十二烷基硫酸鈉 (SDS)水溶液液滴於同撞擊高度 (H = 40公分)下撞擊非洲黑檀平板 (Rq = 0.60 m) 之飛濺與潤濕現象。於不同濃度 (40 < γ = 72 mNm) 下,SDS(aq) 均在其達到最大潤濕半徑後,產生pinning的行為。此外,SDS(aq)的tmaxi 隨著表面張力的上升而下降,同時,我們也發現當濃度達到臨界微胞濃度後,其tmaxi 是相同的;於純水及SDS溶液中,純水的最大潤濕直徑擴散因子 (Dmax/D0)遠小於SDS水溶液。最後,SDS(aq)之飛濺液滴數目(N) 隨撞擊高度增加而遞增。
    第三部分探討純水撞擊五種不同粗糙度之木材平板的臨界撞擊高度 (Hc),並研究木材的親疏水性與pinning行為。首先,我們觀察到Hc會隨著粗糙度的增加而下降;再者,使用固著液滴接觸角量測儀,在恆溫、恆濕 (飽和濕度)與撞擊高度 (H) = 0 cm的情況下,測得非洲黑檀的前進接觸角 (adv = 66.3)與柳桉木 (adv = 143.5)。最後,使用軟體分析純水撞擊柳桉木於 H = 30公分下的潤濕現象,並探討液膜、指狀液柱 (finger)與飛濺液滴的關聯性。


    近年來,液滴撞擊固體平板後的潤濕行為已成為許多人討論的焦點,在日常生活與工業界中都有其應用實例,例如高分子 3D列印、噴墨印表機的噴墨行為及工業上的噴塗程序等;然而,因液滴撞擊平板的過程極為快速,人眼難以分辨,故需仰賴高速攝影機來觀察其細微變化。木頭廣泛被運用在建築和家具上的材料中,故本研究挑選多種木頭來當我們的撞擊基材。另使用不同的水砂紙研磨出固定粗糙度的木頭平板,並使用高速攝影機 (6770 ~ 90k fps) 來記錄室溫下界劑水溶液液滴撞擊木材平板後的液滴潤濕行為。
    本研究的第一部分探討純水液滴 (D0 = 2.39 mm) 於不同撞擊高度下 (H = 1~40 cm),撞擊非洲黑檀平板表面 (Rq = 0.60 m )的潤濕行為。實驗發現在慣性力大 (H = 10 ~ 40 cm)的情況下,液膜的擴張速度快;撞擊液滴之潤濕直徑達到最大之瞬間的時,撞擊液滴展現出如釘栓般的pinning 行為;在慣性力小 (H = 1 ~ 5 cm)時,液膜的擴張速度慢,撞擊液滴在中心位置持續震盪,潤濕直徑呈震盪變化。
    第二部分觀察不同濃度的十二烷基硫酸鈉 (SDS)水溶液液滴於同撞擊高度 (H = 40公分)下撞擊非洲黑檀平板 (Rq = 0.60 m) 之飛濺與潤濕現象。於不同濃度 (40 < γ = 72 mNm) 下,SDS(aq) 均在其達到最大潤濕半徑後,產生pinning的行為。此外,SDS(aq)的tmaxi 隨著表面張力的上升而下降,同時,我們也發現當濃度達到臨界微胞濃度後,其tmaxi 是相同的;於純水及SDS溶液中,純水的最大潤濕直徑擴散因子 (Dmax/D0)遠小於SDS水溶液。最後,SDS(aq)之飛濺液滴數目(N) 隨撞擊高度增加而遞增。
    第三部分探討純水撞擊五種不同粗糙度之木材平板的臨界撞擊高度 (Hc),並研究木材的親疏水性與pinning行為。首先,我們觀察到Hc會隨著粗糙度的增加而下降;再者,使用固著液滴接觸角量測儀,在恆溫、恆濕 (飽和濕度)與撞擊高度 (H) = 0 cm的情況下,測得非洲黑檀的前進接觸角 (adv = 66.3)與柳桉木 (adv = 143.5)。最後,使用軟體分析純水撞擊柳桉木於 H = 30公分下的潤濕現象,並探討液膜、指狀液柱 (finger)與飛濺液滴的關聯性。

    中文摘要 i 目錄 ii 表目錄 iii 圖目錄 iv 符號表 vi 第一章、簡介 1 1.1 液滴撞擊 1 1.2 界面活性劑 2 第二章、文獻回顧 4 2.1 液滴撞擊的控制參數 4 2.2 液滴撞擊的形態的變化 5 2.3 液滴撞擊後之液滴飛濺行為 7 2.4 飛濺液滴物理量之研究 8 2.5 懸垂液滴法 9 第三章、實驗設備 10 3.1 主要儀器設備 10 3.2其它儀器設備 12 3.3實驗藥品與耗材 12 3.4 儀器校正 13 3.5 液滴大小測量 14 3.6 不同粗糙度之木頭平板製程及量測 14 3.7 液滴撞擊影像拍攝及飛濺液滴計算 15 3.8 實驗條件選定 16 第四章、實驗結果 18 4.1純水液滴撞擊非洲黑檀木頭平板表面後的行為探討 18 4.2不同表張水溶液液滴撞擊非洲黑檀木頭平板表面後的現象探討 22 4.3 純水液滴撞擊不同木材的現象探討 33 第五章、結論與建議 38 第六章、參考文獻 39

    1. M.Rein, “Phenomena of liquid drop impact on solid and liquid surfaces,” Fluid Dyn. Res.,12,61-93 (1993)
    2. D.B. van Dam, C.L. Clerc, “Experimental study of the impact of an ink-jet printed droplet on a solid substrate,” Phys. Fluids, 16, 3403 (2004)
    3. D.B. Smith, S.D. Askew, W.H. Morris, D.R. Shaw, M. Boyette, “Droplet size and leaf morphology effects on pesticide spray deposition, “ASAE 2000, 43,255-259 (2001)
    4. X. Huang, P. Chen, M. Lan, X. Wang, G. Liao, “Experimental study of water drops with additive impact on wood surfaces,” Procedia Engineering, 62, 852-858 (2013)
    5. T.Sasaki, H.Wada and T.Morikawa,” Suppression of micro-bubbles in photoresist coating by step Dynamic Coating” IEEE,329-332 (2001)
    6. M. Morcillo, J. Simanacas, J. Bastidas, S. Feliu, C . Blanco and F. Camón “Comparison of laboratory tests and outdoor tests of paint coatings for atmospheric exposure.” In polymeric materials for corrosion control, american chemical society (1986)
    7. D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York (1999).bj
    8. B.J. Palla, D.O. Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 21, 491. (2000)
    9. E. Dickinson, “Hydrocolloids at interfaces and the influence on the properties of dispersed system”, Food Hydrocolloids, 17 (2003)
    10. T.M. Pan, T.F. Lei, C.C. Chen, “Reliability models of data retention and read-disturb in 2-Bit Nitride storage flash memory cells,” IEEE Electron Device Letters, 21, 338. (2000)
    11. G.E. Cossali, A. Coghe, M. Marengo, “The impact of a single drop on a wetted solid surface,” Exp. Fluids, 22, 463 (1997)
    12. R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids, 33, 112 (2002)
    13. L. Brian. Scheller and D.W. Bousfield, “Newtonian drop impact with a solid surface” AIChE J. 41, 1357 (1995)
    14. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, 8, 650 (1996)
    15. K.P. Gatne, M.A. Jog, R.M. Manglik, “Surfactant-induced modification of low weber number droplet impact dynamics,” Langmuir, 25, 8122 (2009)
    16. M. Aytouna, D. Bartolo, G. Wegdam, D. Bonn, S. Rafai, “Impact dynamics of surfactant laden drops: Dynamic surface tension effects,” Exp. Fluids, 48, 49 (2010)
    17. J.J. Cooper-White, R.C. Crooks, K. Chockalingam, D.V. Boger, “Dynamics of polymer - surfactant complexes: Elongational properties and drop impact behavior,” Ind. Eng. Chem. Res., 41, 6443 (2002)
    18. S.D. Aziz, S. Chandra, “Impact, recoil and splashing of molten metal droplets,” Int. J. Heat Mass Tran., 43, 2841 (2000)
    19. D.A. Gorham, “Anomalous behaviour of high velocity oblique liquid impact,” Wear, 41, 2 (1977)
    20. D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, “Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett., 74, 299 (2006)
    21. B.S. Kang, D.H. Lee, “ On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface,” Exp. Fluids., 29, 380 (2000)
    22. K. Range, F. Feuillebois, “Influence of surface roughness on liquid drop impact” J. Colloid Interface Sci., 203, 16-30 (1998)
    23. S. Deivandren, K. Katagiri, T. Sato, H. Nishiyama, “Spreading behavior of an impacting drop on a structured rough surface, ” Phys. Fluids, 17, 100680 (2005)
    24. R. Rioboo, M. Voué, A. Vaillant, J. De Coninck, “ Drop impact on porous superhydrophobic polymer surfaces,”Langmuir, 24, 14074 (2008)
    25. R.E. Pepper, L. Courbin, “Splashing on elastic membranes: The importance of early-time dynamics,” Phys. Fluids, 20, 8 (2008)
    26. R. Rioboo, M. Voué, H. Adão, J. Conti, A. Vaillant, D. Eveno, D. Coninck, “Drop impact on soft surfaces: Beyond the static contact angles,” Langmuir, 26, 4873 (2010)
    27. R. Rioboo, C. Tropea, “Outcomes from a drop impact on solid surfaces,” Atom. Sprays, 11, 155 (2001)
    28. F.T. Dodge, “The spreading of liquid droplets on solid surfaces,” J. Colloid Interface Sci., 121, 154 (1988)
    29. H. Park, W.W. Carr, J. Zhu, J.F. Morris, “Single drop impaction on a solid surface,” AIChE J., 49, 2461 (2003)
    30. S. Vafaeia, M.Z. Podowskia, “Analysis of the relationship between liquid droplet size and contact angle,” Adv. Colloid Interface Sci., 113, 133 (2005)
    31. C. Ukiwe, D.Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces,” Langmuir, 21, 666 (2005)
    32. Z. Levin, P.V. Hobbs, “Splashing of water drops on solid and wetted surfaces, Hydrodynamics and charge separation,” Phil Trans Roy Soc London Ser A. Math Phys Sci, 269, 555-585 (1971)
    33. L. Xu, W.W. Zhang, S. R. Nagel, “Drop splashing on a dry smooth surface,” Phys. Rev. Lett., 94, 184505 (2005)
    34. A.M. Worthington, “A study of splashes,” London: Longmans, Green., 129 (1908)
    35. D.G.K. Aboud, A.M. Kietzig, “Splashing threshold of oblique droplet impacts on surfaces of various wettability,” Langmuir, 31, 10100-10111 (2015)
    36. P.P. Chen, X.S. Wang, “Experimental study of water drop impact on wood surfaces,” J. Heat and Mass Transf.,54, 4143-4147 (2011)
    37. C.D. Stow, M.G. Hadfield, “An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface,” Proc. R. Soc. London A, 373, 419-441 (1981)
    38. C. Mundo, M. Sommerfeld, C. Tropea, “Droplet-wall collisions: experimental studies of the deformation and breakup process,” Int. J. Multipb. Flow, 21, 151-173 (1995)
    39. A. Gupta, R. Kumar, ” Droplet impingement and breakup on a dry surface,” Comput. Fluids, 39, 1696-1703 (2010)
    40. R.F. Allen, “The role of surface tension in splashing,” J. Colloid Interface Sci., 51, 350-351 (1975)
    41. A. Georgescu, “Hydrodynamic stability theory”; Martinus Nijhoff Publishers:ROMANIA (1985)
    42. C. Motzkus, E. Ge´hin, F. Gensdarmes, “Study of airborne particles produced by normal impact of millimetric droplets onto a liquid film,” Exp. Fluids, 45, 797-812 (2008)
    43. K.F. Löehr[, ‘‘Etalement et e´clatement de gouttes.’’ Ph.D. Thesis, Universite´Pierre et Marie Curie, Paris, France, (1990).
    44. A.L. Yarin, “Drop impact dynamics: splashing, spreading, receding, bouncing…,” Annu. Rev. Fluid Mech., 38, 159-912 (2006)
    45. L. Hulse-Smith, M. Illes, “Blind trial evaluation of a crime scene methodology for deducing impact velocity and droplet size from circular bloodstains,” J. Forensic Sci., 52, 65-69 (2007)
    46. C.D. Stow, R.D. Stainer, “The physical products of a splashing water drop,” J. Meteorological Soc. of Japan, 55, 518-532 (1977)
    47. L. Xu, L. Barcos, S. R. Nagel, “Splashing of liquids: Interplay of surface roughness with surrounding gas,” Phys. Rev. E, 76, 066311 (2007)
    48. G.E. Cossali, M. Marengo, A. Coghe, S. Zhdanov, “The role of time in single drop splash on thin film,” Exp. Fluids, 36, 888-900 (2004)
    49. X. Zhou, “Experimental study of the impingement process of a liquid droplet upon a corrugated cardboard surface,” Wit. Trans. eng. Sci.,79, 235-247 (2013)
    50. S.Y. Lin, K. Mckeigue, C. Maldarelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 36, 1785-1795 (1990)
    51. A. Casandra, M. C. Chung, B. A. Noskov, S. Y. Lin*, “Adsorption kinetics of sodium dodecyl sulfate on perturbed air-water interfaces,” Colloid. Surf. A., 518, 241-248 (2017)

    QR CODE