簡易檢索 / 詳目顯示

研究生: 謝明翰
Ming-Han Hsieh
論文名稱: 摻混含苯並咪唑側基聚醯亞胺及聚苯並咪唑質子傳導膜及其性質研究
Synthesis and Characterization of Blend Polyimides Containing Pendant Benzimidazole and Polybenzimidazole for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 朱義旭
Yi-Hsu Ju
華沐怡
Mu-Yi Hua
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 摻混薄膜聚苯並咪唑聚醯亞胺質子傳導度
外文關鍵詞: Blend membrane, Polybenzimidazole, Polyimide, Proton conductivity
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由2,2-bis(4-(2-(5-aminobenzimidazoly))phenyl)propane
    (Bis/IM/NH2)、1-(4-aminophenoxy)-4-(4-aminophenyl)-2,6-di-tert-butyl-benzene
    (p/DTBP/NH2)、m-tolidine (DMB)二胺單體與六環酸酐1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTDA)合成含Benzimidazole側基之聚醯亞胺共聚物(PI),其固有黏度範圍介於1.13〜1.40 dL/g之間。再將isophthalic acid (m-COOH)與3,3'-diaminobenzidine (DAB)合成聚苯並咪唑(m-PBI),其固有黏度為1.25 dL/g。再將聚醯亞胺共聚物及聚苯並咪唑摻混作為質子傳導膜,這些摻混物均能塗佈成具有韌性的薄膜。這些膜具有良好的熱安定性,在氮氣及空氣的條件下10 %裂解的溫度都高於450 °C。未摻雜磷酸前它們的抗張強度皆大於97 MPa;然而,在摻雜磷酸之後,因膨潤使分子間作用力降低,因而抗張強度大幅下降。本研究藉由側甲基進行交聯反應,交聯後摻混薄膜因受交聯鍵結,造成分子鏈較緊密堆積,導致磷酸摻雜量減少,但仍能有足夠高的質子傳導度,並能維持好的機械性質,例如交聯後C15-PI6(Bis6DTBP2.5DMB1.5)PBI4濕膜的抗張強度由原本的10.3 MPa增加至13.9 MPa。 在質子傳導度方面,摻混薄膜PI4PBI6、PI5PBI5與PI6PBI4,在160°C時,它們的質子傳導度皆比m-PBI大,例如PI6PBI4及PI5PBI5,摻混薄膜在160°C時的質子傳導度分別為61.8 mS/cm與54 mS/cm,皆大於m-PBI的質子傳導度(43.1 mS/cm)。這結果顯示摻混含有Benzimidazole側基之PI的摻混薄膜,比起只有主鏈含Benzimidazole之m-PBI更容易傳導質子。這些結果顯示摻混薄膜有潛力應用於中溫型質子傳導薄膜。


    A series of polyimides(PIs) were synthesized from 2,2-bis(4-(2-(5-aminobenzimidazoly))phenyl)propane (Bis/IM/NH2), 1-(4-aminophenoxy)-4-(4-aminophenyl)-2,6-di-tert-butyl-benzene (p/DTBP/NH2), m-tolidine (DMB) diamine and 1,4,5,8-Naphthalenetetracarboxylic dianhydride( NTDA). The PIs had inherent viscosities of 1.13〜1.40 dL/g. The blended polymers were prepared from the PIs and m-PBI. The blended polymers formed tough and transparent films. The blended polymers exhibited high thermal stability with 10%decomposition temperature more than 450°C. These films exhibited good mechanical properties with tensile stress exceeded 97 MPa. However, the mechanical properties of the blended polymers significantly decreased when phosphoric acid doping level increased. The mechancial properties of phosphoric acid doped blended polymers could be improved via crosslinking reaction of methyl group, crosslinked blended polymers would form close packing, and it led to decrease of phophoric acid doping level, but it could still maintain high mechanical properties. For example, the tensile strength of cross-linked C15-PI6(Bis6DTBP2.5DMB1.5)PBI4 in wet state enhanced from 10.3 to 13.9 MPa after crosslinking reaction. The blended polymers of PI4PBI6, PI5PBI5, and PI6PBI4 exhibited higher on proton conductivites at 160°C than m-PBI(43.1mS/cm). For example, the proton conductivities of PI6PBI4 and PI5PBI5 were 61.8 and 54 mS/cm, respectively. Thus, these blended polymers containing benzimidazole on main chain and on pendant could be the promising materials alternative to m-PBI membrane for medium temperature fuel cells applications because of their high proton conductivity and good oxidative stability

    摘要 I Abstract III 目錄 V 圖索引 VIII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2燃料電池的介紹 3 1.2.1燃料電池的簡介1 3 1.2.2燃料電池特性 3 1.2.3燃料電池種類2 6 1.2.4燃料電池發電原理4 11 1.3 PEMFC介紹 13 1.3.1質子交換燃料電池(PEMFC) 13 1.3.2低溫型質子交換燃料電池 13 1.3.3中高溫型質子交換電池1 17 1.3.3.1摻雜磷酸聚苯并咪唑薄膜之質子傳導機制 20 1.4交聯劑的介紹 22 1.5質子交換膜材料文獻回顧 26 1.6研究動機 37 第二章 實驗 40 2.1實驗藥品 40 2.2摻混聚醯亞胺共聚物及聚苯並咪唑實驗程序 42 2.2.1單體合成 43 2.2.2合成聚醯亞胺共聚物 44 2.2.3合成聚苯並咪唑(m-PBI) 46 2.2.4摻混聚醯亞胺共聚物及聚苯並咪唑 47 2.3摻混聚醯亞胺共聚物及聚苯並咪唑之物性與化性分析 48 第三章 結果與討論 53 3.1聚合物的合成(m-PBI及PIs)及摻混薄膜 53 3.2固有黏度 55 3.3溶解度測試 57 3.4交聯反應分析 59 3.5熱性質分析 61 3.6聚醯亞胺及聚苯並咪唑摻混組成對磷酸摻雜的效應 65 3.7膨潤度測試 70 3.8質子傳導度分析 72 3.8.1溫度對質子傳導度的影響 72 3.8.2化學構造對質子傳導度的影響 77 3.9機械性質量測 78 3.9.1摻混膜機械性質量測 78 3.9.2摻雜磷酸摻混膜機械性質量測 80 3.10氧化安定性測試 82 第四章 結論 84 第五章 參考文獻 86

    1. 肖鋼,燃料電池技術,全華圖書股份有限公司,2010,15-17,155-156。
    2. 黄鎮江,燃料電池,全華科技圖書股份有限公司,2005,12-17。
    3. A. Kraytsberg, Y. Ein-Eli, Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 2014, 28(12), 7303-7330.
    4. D. Garraín, Y. Lechón, C. De la Rùa, Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage. Smart Grid and Renewable Energy, 2011, 2, 68.
    5. J. A. Asensio, E. M. Sánchez, P. J. Gómez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Review, 2010, 39, 3210-3239.
    6. J. Yang, Q. Li, L. N. Cleemann, C. Xu, J. O. Jensen, C. Pan, N. J. Bjerrum, R. J. He, Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes. Journal of Materials Chemistry, 2012, 22, 11185.
    7. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. Journal of The Electrochemical Society, 2004, 151, 8.
    8. H. J. Davis, N. W. Thomas , Chemical modification of polybenzimidazole semipermeable. US Patents, 1977.
    9. B. S. Jorgensen, J. S. Young, B. F. Espinoza, Cross-linked polybenzimidazole membrane for gas separation.US Patents, 2005.
    10. K. Y. Wang, Y. Xiao, T. S. Chung, Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin. Chemical Engineering Science, 2006, 61(17), 5807-5817.
    11. H. Xu, K. Chen, X. Guo, J. Fang, J. Yin, Synthesis of hyperbranched polybenzimidazoles and their membrane formation. Journal of Membrane Science, 2007 288(1-2), 255-260.
    12. M. B. Sheratte, Linear and cross-linked polybenzimidazoles. US Patents, 1979.
    13. M. J. Sansone, Crosslinking of polybenzimidazole polymer with divinyl sulfone. US Patents, 1987.
    14. P. Sun, Z. Li, S. Wang, X. Yin, Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline. Journal of Membrane Science, 2018, 549, 660-669.
    15. M. H. D. A. Farahani, T. S. Chung, A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2019, 209, 182-192.
    16. S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. J. Liu, Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Joural of Hydrogen Energy, 2011, 36(14), 8412-8421.
    17. J. Wainright, J. T. Wang, D. Weng, R. Savinell, M. J. Litt, Acid‐doped polybenzimidazoles: a new polymer electrolyte. Journal of The Electrochemical Society, 1995, 142(7), L121-L123.
    18. K. Teranishi, K. Kawata, S. Tsushima, S. Hirai, Degradation mechanism of PEMFC under open circuit operation. Electrochemical and Solid-State Letters, 2006, 9(10), A475-A477.
    19. A. Panchenko, H. Dilger, E. Möller, T. Sixt, E. Roduner, In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. Journal of Power Sources, 2004, 127(1-2), 325-330.
    20. Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, Z. Yang, Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells. Joural of Power Sources, 2009, 94(8), 1206-1212.
    21. J. C. Chen, J. A. Wu, C. Y. Lee, M. C. Tsai, K. H. Chen, Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. Journal of Membrane Science, 2015, 483, 144-154.
    22. N. Li, Z. Cui, S. Zhang, W. Xing, Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes. Polymer, 2007, 48(25), 7255-7263.
    23. C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer, 2001, 42(12), 5097-5105.
    24. Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 2009, 34(5), 449-477.
    25. J. Kerres, A. Ullrich, F. Meier, T. Häring, Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics, 1999, 125(1-4), 243-249.
    26. P. Ngamsantivongsa, H. L. Lin, T. L. Yu, Properties and fuel cell applications of polybenzimidazole and ethyl phosphoric acid grafted polybenzimidazole blend membranes. Journal of Membrane Science, 2015, 491, 10-21.
    27. Z. Taherkhani, M. Abdollahi, A. Sharif, Proton conducting porous membranes based on poly (benzimidazole) and poly (acrylic acid) blends for high temperature proton exchange membranes. Solid State Ionics, 2019, 337, 122-131.
    28. N. N. Krishnan, S. Lee, R. V. Ghorpade, A. Konovalova, J. H. Jang, H. J. Kim, J. Han, D. Henkensmeier, H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell. Journal of Membrane Science, 2018, 560, 11-20.
    29. 王鉫允,合成含苯並咪唑側基之聚醯亞胺質子交換膜及其性質研究,台灣科技大學化工系碩士論文,2019。
    30. Y. T. Chern, J. Y. Tsai, J. J. Wang, High Tg and high organosolubility of novel unsymmetric polyimides. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(9), 2443-2452.
    31. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, J. E. McGrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. Journal of Membrane Science, 2002, 197(1-2), 231-242.
    32. J. A. Mader, B. C. Benicewicz, Sulfonated polybenzimidazoles for high temperature PEM fuel cells. Macromolecules, 2010, 43(16), 6706-6715.

    無法下載圖示 全文公開日期 2024/08/01 (校內網路)
    全文公開日期 2024/08/01 (校外網路)
    全文公開日期 2024/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE