簡易檢索 / 詳目顯示

研究生: 蕭建中
CHIEN-CHUNG HSIAO
論文名稱: 合成含苯並咪唑之聚醯亞胺質子傳導膜及其性質研究
Synthesis and Characterization of Polyimides Containing Benzimidazoles Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 華沐怡
Mu-Yi Hua
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 苯並咪唑聚醯亞胺質子傳導度質子交換膜
外文關鍵詞: Benzimidazole, Polyimide, Proton conductivity, Proton exchange membrane
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成功合成主鏈含苯並咪唑之新型二胺單體3-(2-(5-amino-benzimidazolyl))aniline (m/IM/NH2),並與六環酸酐Naphthalenetetra-carboxylic dianhydride (NTDA)進行高溫聚縮合形成一系列的PI共聚物;其固有黏度範圍在1.01~1.59 dL/g之間,均可塗佈成具有韌性之薄膜;這些共聚物有好的熱安定性,於氮氣下10 %重量損失溫度皆有530℃以上,而氮氣下的裂解溫度也在500℃以上;這些PI共聚物乾膜的抗張強度介於92~135 MPa,但是當摻雜磷酸後,薄膜受到磷酸的膨潤,機械強度會明顯下降。因此藉由甲基側基進行交聯反應,形成交聯PI共聚物,交聯後PI共聚物因受交聯鍵結,使高分子鏈緊密堆積,導致磷酸摻雜量減少,但仍能有足夠高的質子傳導度,並能維持好的機械性質。所合成PI共聚物的質子傳導度在磷酸摻雜率大於240%的時候,幾乎都比m-PBI高,例如交聯前後之m6BPBI2PF1.5DMB0.5在160℃時之質子傳導度都高於m-PBI (54.1 mS/cm),分別為65.6 mS/cm與61.0 mS/cm,非常有潛力應用於高溫型燃料電池的質子傳導膜。


    A Novel diamine 3-(2-(5-aminobenzimidazolyl))aniline(m/IM/NH2), containing benzimidazole backbone was synthesized. The polyimides (PIs) were prepared by polycondensation of the diamines and Naphtha-lenetetracarboxylic dianhydride(NTDA). They had inherent viscosities in the range of 1.01~1.59 dL/g, and they could form tough and flexible films. The PIs exhibited high thermal stability with 10% decomposition temper-ature more than 530℃ in nitrogen, and their onset temperature was more than 500℃ in nitrogen. These films exhibited good mechanical properties with tensile stress around 92~135 MPa. However, the mechanical proper-ties of PIs significantly decreased when phosphoric acid doping level in-creased. This situation could be improved via crosslinking reaction of methyl group, cross-linked PIs would form close packing, and it led to decrease of phosphoric acid doping level, but it could still maintain high proton conductivity. The PIs when phosphoric acid doping level exceeded 240%, exhibited higher proton conductivity than m-PBI. For example, the proton conductivities of m6BPBI2PF1.5DMB0.5 and C5-m6BPBI2PF1.5DMB0.5 were 65.6 and 61.0 mS/cm at 160℃, respec-tively. Thus, these PIs could be the promising materials alternative to m-PBI membrane for high-temperature fuel cells applications because of their high proton conductivity and good oxidative stability.

    中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 燃料電池發展簡介 3 1.3 燃料電池的特色 5 1.4 燃料電池的種類與應用 7 1.5 質子傳導膜燃料電池工作原理 11 1.6 質子傳導膜之瓶頸與發展方向 13 1.7 高溫型質子傳導膜種類與介紹 16 1.7.1 全氟磺酸改質薄膜系列 16 1.7.2 替代磺化聚合物及其複合膜系列 16 1.7.3 酸鹼聚合物膜系列 17 1.8 研究動機與內容 19 第二章 文獻回顧 21 2.1 聚苯並咪唑(Polybenzimidazole,PBI) 21 2.2 PBI傳導機制 24 2.3 聚醯亞胺(Polyimide,PI) 27 2.4 交聯劑 30 第三章 實驗 33 3.1 實驗藥品 33 3.2 實驗程序 35 3.2.1 單體合成 36 3.2.2 聚醯亞胺共聚物(PIs)合成 38 3.3 聚合物之化性與物性分析 40 第四章 結果與討論 44 4.1 單體與PIs的合成 44 4.2 固有黏度 50 4.3 溶解度測試 52 4.4 確認交聯反應 53 4.5 熱性質分析 56 4.6 PBI共聚物組成對磷酸摻雜量的效應 60 4.7 膨潤度測試 63 4.8 質子傳導度分析 65 4.8.1 溫度對質子傳導度的效應 65 4.8.2 化學構造對質子傳導度的效應 72 4.9 機械性質量測 74 4.9.1 未摻雜磷酸薄膜機械性質量測 74 4.9.2 摻雜磷酸薄膜機械性質量測 76 4.10 甲基交聯對機械性質影響 78 4.11 氧化安定性測試 79 第五章 結論 80 第六章 參考文獻 82

    1. P. Grimes, Historical pathways for fuel cells. The new electric century. Fifteenth Annual Battery Conference on Applications and Advances. 2000, 41-45.
    2. A. Dicks, D. A. Rand, Fuel cell systems explained. Wiley Online Library. 2018.
    3. D. Stauffer, J. Hirschenhofer, M. Klett, R. Engleman, Fuel Cell Handbook. Federal Energy Technology Center (FETC), Morgantown, WV, and Pittsburgh, PA 1998.
    4. S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy. 2010, 35 (17), 9349-9384.
    5. B. Smitha, S. Sridhar, A. J. Khan, Chitosan–sodium alginate polyion complexes as fuel cell membranes. European Polymer Journal. 2005, 41 (8), 1859-1866.
    6. B. Smitha, S. Sridhar, A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review. Journal of Membrane Science. 2005, 259 (1-2), 10-26.
    7. Q. Li, R. He, J. Jensen, N. J. Bjerrum, PBI‐based polymer membranes for high temperature fuel cells–preparation, characterization and fuel cell demonstration. Fuel Cells. 2004, 4 (3), 147-159.
    8. Q. Li, R. He, J. A. Gao, J. O. Jensen, N. J. Bjerrum, The CO poisoning effect in PEMFCs operational at temperatures up to 200 oC. Journal of The Electrochemical Society. 2003, 150 (12), A1599-A1605.
    9. L. C. Chen, T. L. Yu, H. L. Lin, S. H. Yeh, Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells. Journal of Membrane Science. 2008, 307 (1), 10-20.
    10. S. P. Kusumocahyo, M. J. Sudoh, Dehydration of acetic acid by pervaporation with charged membranes. Journal of Membrane Science. 1999, 161 (1-2), 77-83.
    11. C. Schmidt, T. Glück, G. Schmidt‐Naake, Modification of Nafion membranes by impregnation with ionic liquids. Chemical Engineering Technology. 2008, 31 (1), 13-22.
    12. U. Sen, S. Ü. Çelik, A. Ata, A. Bozkurt, Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. International Journal of Hydrogen Energy. 2008, 33 (11), 2808-2815.
    13. J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes. The Electrochemical Society. 1995, 1995, 193-201.
    14. H. Pu, L. Liu, Z. Chang, J. Yuan, Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta. 2009, 54 (28), 7536-7541.
    15. C. C. Ke, X. J. Li, S. G. Qu, Z. G. Shao, B. L. Yi, Preparation and properties of Nafion/SiO2 composite membrane derived via in situ sol–gel reaction: size controlling and size effects of SiO2 nano‐particles. Polymers Advanced Technologies. 2012, 23 (1), 92-98.
    16. Q. Deng, R. Moore, K. Mauritz, Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol–gel reactions: characterization of fundamental properties. Applied Polymer. 1998, 68 (5), 747-763.
    17. E. Unnikrishnan, S. D. Kumar, B. Maiti, Permeation of inorganic anions through Nafion ionomer membrane. Journal of Membrane Science. 1997, 137 (1-2), 133-137.
    18. G. J. Schlichting, J. L. Horan, J. D. Jessop, S. E. Nelson, S. n. Seifert, Y. Yang, A. M. Herring, A hybrid organic/inorganic ionomer from the copolymerization of vinylphosphonic acid and zirconium vinylphosphonate. Macromolecules. 2012, 45 (9), 3874-3882.
    19. K. T. Park, U. H. Jung, D. W. Choi, K. Chun, H. M. Lee, S. H. Kim, ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. Journal of Membrane Science. 2008, 177 (2), 247-253.
    20. K. Adjemian, S. Lee, S. Srinivasan, J. Benziger, A. Bocarsly, Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140 oC. Journal of The Electrochemical. Society 2002, 149 (3), A256-A261.
    21. S. J. Zaidi, S. D. Mikhailenko, G. Robertson, M. Guiver, S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science. 2000, 173 (1), 17-34.
    22. P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, J. Sanchez, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. Journal of Membrane Science. 2001, 185 (1), 59-71.
    23. L. Li, J. Zhang, Y. Wang, Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. Journal of Membrane Science. 2003, 226 (1-2), 159-167.
    24. M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Fuel Cells Compendium. 2000, 25 (10), 1463-1502.
    25. S. Wu, Z. Qiu, S. Zhang, X. Yang, F. Yang, Z. Li, The direct synthesis of wholly aromatic poly (p-phenylene) s bearing sulfobenzoyl side groups as proton exchange membranes. Polymer. 2006, 47 (20), 6993-7000.
    26. H. Nakajima, I. Honma, Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells. Solid State Ionics. 2002, 148 (3-4), 607-610.
    27. S. Petty-Weeks, J. Zupancic, J. Swedo, Proton conducting interpenetrating polymer networks. Solid State Ionics. 1988, 31 (2), 117-125.
    28. D. Rodriguez, C. Jegat, O. Trinquet, J. Grondin, J. Lassegues, Proton conduction in poly (acrylamide)-acid blends. Solid State Ionics. 1993, 61 (1-3), 195-202.
    29. R. Tanaka, H. Yamamoto, A. Shono, K. Kubo, M. Sakurai, Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid. Electrochimica Acta. 2000, 45 (8-9), 1385-1389.
    30. Y. Devrim, H. Devrim, I. Eroglu, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2016, 41 (23), 10044-10052.
    31. J. Wainright, J. T. Wang, D. Weng, R. Savinell, M. Litt, Acid‐doped polybenzimidazoles: a new polymer electrolyte. Journal of The Electrochemical Society. 1995, 142 (7), L121-L123.
    32. 陳泰安, 合成新型含苯咪唑側基之聚醯亞胺與含苯並唖唑側基之聚苯咪唑及其性質研究. 2014.
    33. J. A. Asensio, E. M. Sánchez, P. Gómez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews. 2010, 39 (8), 3210-3239.
    34. S. M. Aharoni, M. H. Litt, Syhthesis and some properties of poly-(2,5-trimethylene benzimidazole) and poly-(2,5-trimethylene benzimidazole hydrocloride). Jouurnal of Polymer Science. 1974, 12 (3), 639-650.
    35. D. Hoel, E. Grunwald, High protonic conduction of polybenzimidazole films. The Journal of Physical Chemistry. 1977, 81 (22), 2135-2136.
    36. R. He, Q. Li, G. Xiao, N. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science. 2003, 226 (1-2), 169-184.
    37. D. Weng, J. Wainright, U. Landau, R. Savinell, Electro‐osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. Journal of The Electrochemical Society. 1996, 143 (4), 1260-1263.
    38. S. K. Kim, T. H. Kim, J. W. Jung, J. Lee, Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications. Polymer. 2009, 50 (15), 3495-3502.
    39. Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, Z. Yang, Stability, Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells. Polymer Degradation and Stability. 2009, 94 (8), 1206-1212.
    40. K. D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chemical Reviews. 2004, 104 (10), 4637-4678.
    41. K. D. Kreuer, A. Rabenau, W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. A Journal of the German Chemical Society. 1982, 21 (3), 208-209.
    42. H. Pu, Q. Liu, G. Liu, Methanol permeation and proton conductivity of acid-doped poly (N-ethylbenzimidazole) and poly (N-methylbenzimidazole). Journal of Membrane Science. 2004, 241 (2), 169-175.
    43. R. Bouchet, S. Miller, M. Duclot, J. Souquet, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics. 2001, 145 (1-4), 69-78.
    44. Y. L. Ma, J. Wainright, M. Litt, R. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. Journal of The Electrochemical Society. 2004, 151 (1), A8-A16.
    45. Y. Woo, S. Y. Oh, Y. S. Kang, B. J. Jung, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. Journal of Membrane Science. 2003, 220 (1-2), 31-45.
    46. J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4’-diaminodiphenyl ether-2, 2’-disulfonic acid. Macromolecules. 2002, 35 (24), 9022-9028.
    47. X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9, 9-bis (4-aminophenyl) fluorene-2, 7-disulfonic acid. Macromolecules. 2002, 35 (17), 6707-6713.
    48. B. R. Einsla, Y. S. Kim, M. A. Hickner, Y. T. Hong, M. L. Hill, B. S. Pivovar, J. E. McGrath, Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance. Journal of Membrane Science. 2005, 255 (1-2), 141-148.
    49. Y. Yin, O. Yamada, K. Tanaka, K. Okamoto, On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications. Polymer Journal. 2006, 38 (3), 197.
    50. S. Yuan, X. Guo, D. Aili, C. Pan, Q. Li, J. Fang, Poly (imide benzimidazole)s for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science. 2014, 454, 351-358.
    51. Q. Li, C. Pan, J. O. Jensen, P. Noyé, N. J. Bjerrum, Cross-linked polybenzimidazole membranes for fuel cells. Chemistry of Materials. 2007, 19 (3), 350-352.
    52. J. C. Chen, J. A. Wu, C. Y. Lee, M. C. Tsai, K. H. Chen, Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. Journal of Membrane Science. 2015, 483, 144-154.
    53. C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer. 2001, 42 (12), 5097-5105.
    54. S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2011, 36 (14), 8412-8421.
    55. Z. Yue, Y. B. Cai, S. Xu, Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications. Journal of Membrane Science. 2016, 501, 220-227.
    56. J. A. Mader, B. C. Benicewicz, Sulfonated polybenzimidazoles for high temperature PEM fuel cells. Macromolecules. 2010, 43, 6706–6715

    無法下載圖示 全文公開日期 2024/08/01 (校內網路)
    全文公開日期 2024/08/01 (校外網路)
    全文公開日期 2024/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE