簡易檢索 / 詳目顯示

研究生: 劉志國
Chih-Kuo Liu
論文名稱: 鋼筋混凝土梁主筋於內柱梁柱接頭之握裹滑移研究
Study on Bond Slip Behavior of Beam Main Bars Within Reinforced Concrete of Interior Beam-Column Joints
指導教授: 林克強
Ker-Chun Lin
口試委員: 鄭敏元
Min-Yuan Cheng
李宏仁
Hung-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 200
中文關鍵詞: 內柱梁柱接頭握裹滑移錨定細節
外文關鍵詞: Interior Beam-Column Joints, Bond Slip, Anchored Details
相關次數: 點閱:142下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CNS 560於2018年版新增訂SD 550W之高強度耐震構材用可銲鋼筋,此有助於提升鋼筋混凝土構件之強度,或減少鋼筋用量以改善鋼筋壅塞所造成不利的施工品質,而現行國內混凝土設計規範之耐震設計規定仍不允許使用。本文之目的在提出採用SD 550W之梁主筋於內柱梁柱接頭內符合耐震需求的直線握裹長度,與相關設計細節。所提出之是以採用竹節鋼筋在反覆載重作用下直線握裹模型(廖柏州)為基礎。
    本試驗共進行八組實尺寸RC內部梁柱接頭試體進行反覆載重試驗,本次採用梁主筋為SD 420W、SD 550W及SD 600W,研究變數包括柱深(梁主筋之握裹長度)、梁主筋壓力鋼筋發揮比例(值)、混凝土強度、鋼筋形式及擴頭於交會區之配置,以了解各項因子對握裹行為表現之影響。本次試驗結果顯示,採用SD 420W與SD 550W竹節鋼筋作為梁主筋之六組試體,由試體破壞模式與試體握裹勁度可以看出以梁極限狀態下預估之梁主筋壓力鋼筋發揮比例(值)代入廖柏州建議之直線握裹模型所得到之握裹容量進行設計的三組試體(JI4、JI5及JI6),表現之耐震行為比以ACI 318建議之直線握裹長度進行設計的三組試體(JI1、JI2及JI3)來得更好;採用SD 600W螺紋節鋼筋作為梁主筋之兩組試體,由試體破壞模式與強度折減率可以看出梁主筋採用擴頭旋入錨定之試體JI8表現之耐震行為來得更好。因此,在有效的預估梁主筋壓力鋼筋發揮比例與有效的錨定細節,所提供之握裹容量才能使內部梁柱接頭構件滿足嚴峻之握裹需求,使梁構件有效發揮撓曲塑鉸,消散地震橫力之能量。


    CNS 560 has added SD 550W high-strength anti-vibration members with weldable steel bars in the 2018 edition, which helps to increase the strength of reinforced concrete members or reduce the amount of steel bars to improve the unfavorable construction quality caused by reinforced concrete. The seismic design rules for concrete design codes are still not allowed. The purpose of this paper is to propose a linear grip length that meets the seismic requirements of the main ribs of the SD 550W in the inner column beam-column joints, and related design details. The proposed method is based on the straight-line gripping model (Liao Baizhou) under the effect of the reverse load.
    In this test, a total of eight sets of real-size RC internal beam-column joint specimens were subjected to repeated load tests. The main tendons of the beam were SD 420W, SD 550W and SD 600W. The research variables included the column depth (the length of the main ribs of the beam) and the beam. The main rib pressure steel is proportional (depreciation), concrete strength, steel form and expansion configuration in the intersection area to understand the influence of various factors on the behavior of the wrap. The results of this test show that the SD 420W and SD 550W bamboo steel bars are used as the six groups of the main ribs of the beam. From the failure mode of the test body and the stiffness of the test body, it can be seen that the beam main rib pressure bar is estimated under the limit state of the beam. Three sets of specimens (JI4, JI5, and JI6) designed to fit the grip capacity obtained by the linear grip model recommended by Liao Baizhou, and the performance of the shock resistance is better than the straight grip length recommended by ACI 318. The three sets of test specimens (JI1, JI2 and JI3) were designed to be better. The SD 600W threaded steel bars were used as the two main specimens of the main beam of the beam. From the failure mode and strength reduction rate of the test body, it can be seen that the main reinforcement of the beam is expanded. It is better to screw in the anchored test body JI8 to exhibit the seismic behavior. Therefore, in the effective estimation of the beam main reinforcement pressure steel proportion and effective anchoring details, the provided grip capacity can make the internal beam-colum joint components meet the severe grip requirements, so that the beam members can effectively flex the plastic hinges. Dissipate the energy of the horizontal force of the earthquake.

    目錄 I 表索引 IV 圖索引 V 照片索引 IX 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 2 1.4研究架構 3 第二章 文獻回顧 4 2.1梁柱接頭耐震設計壓力鋼筋強度需求 4 2.2直通鋼筋之握裹與端部錨定 5 2.2.1直線鋼筋之握裹相關研究 5 2.2.2擴頭鋼筋應用於梁柱接頭之相關試驗研究成果 7 2.3內柱梁柱接頭之最小柱深 9 2.3.1 ACI 318-14規範 9 2.3.2 ACI 352R-02 委員會 9 2.3.3 NZS 3101-2006規範 10 2.3.4 Brooke與Ingham 11 2.3.5台灣高強度鋼筋混凝土結構設計手冊(2017) 12 2.4耐震梁柱接頭之試驗合格標準 12 2.4.1 ACI 374.1-05梁柱接頭性能評估準則 12 2.4.2梁柱接頭採用擴頭鋼筋之耐震性能評估準則建議 13 第三章 試驗計畫 14 3.1試驗參數 14 3.1.1試體設計參數 14 3.1.2試體參數之決定 15 3.1.3試體斷面尺寸與配筋設計 17 3.2試驗裝置 18 3.3試驗程序 19 3.4試驗量測 19 3.5材料實際強度 20 3.6實驗過程 21 第四章 試驗結果討論 29 4.1強度與變形之探討 29 4.2試體勁度 31 4.3鋼筋應變與裂縫生成 31 4.4梁主筋之滑動 32 4.5破壞模式探討 33 4.6強度折減率之探討 36 4.7梁柱接頭試驗之ACI 374.1-05結果評估 37 4.8梁柱接頭試驗之耐震性能準則建議結果評估 38 4.9梁柱接頭區梁受壓鋼筋應力探討 39 第五章 結論與建議 41 5.1結論 41 5.2建議 42 參考文獻 43

    [1] 內政部營建署(2017),「混凝土結構設計規範」,臺灣,民國一百零六年。
    [2] ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary.”, American Concrete Institute, Farmington Hills, 2014.
    [3] ASTM, 2009, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, ASTM A706/A706M, ASTM International, West Conshohocken, Pennsylvania.
    [4] 中華民國國家標準(CNS) (2018),CNS 560鋼筋混凝土用鋼筋,台灣,民國一百零七年。
    [5] 廖柏州,「鋼筋與混凝土在反覆載重下之直線拉力握裹行為研究」,國立台灣科技大學營建工程系所碩士論文,台北,2017。
    [6] Architectural Institute of Japan (AIJ). (2016). “AIJ Standard for Lateral Load-carrying Capacity Calculation of reinforced Concrete Structures, Tokyo (in Japanese).”
    [7] NZS 3101:1995, “The Design of Concrete Structures,” Standards New Zealand, Wellington, New Zealand.
    [8] Nicholas J. Brooke and Jason M. Ingham, “Seismic Design Criteria for Reinforcement Anchorages at Interior RC Beam-Column Joints.”, ASCE, Journal of Structural Engineering, Vol. 139, Issue 11, November, 2013, pp. 1985-1905.
    [9] European Committee for Standardization (CEN). (2004). “Design of structures for earthquake resistance, part 1: General rules, seismic actions and rules for buildings.” Eurocode 8, EN 1992-1, BSI British Standards, London.

    [10] 林克強,紀凱甯,劉志國,「SD 550W鋼筋應用於RC外部梁柱接頭之耐震性能」,中華民國第十四屆結構工程研討會,台中,2018年11月。
    [11] ACI-ASCE Committee 352, “Recommendations for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures.”, ACI Journal, Proceedings, 2002
    [12] Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, New York, 1992, 744 pp.
    [13] .林克強等人,「台灣高強度鋼筋混凝土結構設計手冊」,科技圖書,2017年
    [14] ACI Committee 374.1-05,”Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary.”,2005

    QR CODE