簡易檢索 / 詳目顯示

研究生: 陳國榮
Kuo-Jung Chen
論文名稱: 金-銀合金/鋁之反應偶與 銀-鋁-金三元系統相平衡之研究
Interfacial Reactions in the Au-xAg/Al couples and Phase Equilibria of the Ag-Al-Au Ternary System
指導教授: 顏怡文
Yee-Wen Yen
莊鑫毅
Hsin-I Chuang
口試委員: 顏怡文
Yee-Wen Yen
陳志銘
Chih-Ming Chen
蔡孟霖
Meng-Lin Tsai
莊鑫毅
Hsin-Yi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 界面反應打線反應偶銀-鋁-金相平衡擴散反應路徑
外文關鍵詞: interfacial reaction, wire bond, diffusion couple, Ag-Al-Au, phase equilibrium, diffusion reaction path
相關次數: 點閱:393下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,電子構裝中
    打線接合技術為應用範圍最廣且技術成熟的連接電路方
    式,傳統上金和鋁經常作為打線製程中材料之使用,製程上會選用純金拉成 15-50  m的細線來做為打線使用 而鋁則是作為在矽基板上的襯墊所用,但近年來
    金價不斷的飆漲,為了降低工廠成本,研究學者已投入多項研究選用不同材料之
    線材來取代純金打線的趨勢。銀因為其具有優越的物理性質且價格遠低於金的價
    格,目前廣泛的被選作替 代 材料使用。本實驗以 Arc melting方法製作出不同濃
    度的金銀合金,與鋁基材做擴散接合,形成 Au-xAg/Al層狀結構擴散 反應 偶 (x=25, 50, 75 wt.%),在 450 C下進行固 /固擴散處理,以了解在高溫熱處理下不同反應
    時間下 反應偶 界面反應之介金屬相 (intermetallic compound, IMC)的演變過程, 希
    望用以評估金銀合金取代純金系統的可行性。 而為了更加確定 Au-Ag/Al的反應
    機制,本實驗亦 建立 450 C的三元合金相平衡圖 輔以反應路徑 ,來驗證所生成的
    相。

    Au-xAg/Al層狀結構 反應偶 的結果中,當金銀合金中 銀 濃度為 25 wt.%時
    在界面會生成 AuAl2、 Au2Al和 Au4Al相,當銀濃度提升至 30、 40、 50和 75 wt.%時,在界面則會生成 Ag2Al、 AuAl2和 Au4Al相 。 介金屬相隨著時間的增加而增
    厚,但生成的介金屬相種類不會隨時間而改變,即沒有相變化的出現 。隨著銀濃
    度的提升, 中間層的 Ag2Al、 AuAl2相 逐漸以 Ag2Al相變為主要相; 且 各濃度之
    間介金屬相的厚度 藉由觀察發現有 逐漸增厚 的現象 ,意味著銀 濃度提升會促進介
    金屬相的生成。另外,由結果得知銀的濃度增加時有抑制 Au2Al相生成的效果,
    當合金中銀的含量達到 30 wt.%時, 將 不會有 Au2Al相 生成。

    Ag-Al-Au等溫 三元相平衡之實驗結果中,存在 7個單相區、 13個兩相區
    以及 6個三相區,並且沒有三元的介金屬相生成。 Au4Al相幾乎橫越了整個相圖,
    因為金和銀的性質相似皆為 FCC的結構, Au4Al相 對銀有極大的溶解度,由結
    II
    果得知銀很容易與金置換形成金
    果得知銀很容易與金置換形成金-鋁的介金屬相,在鋁的介金屬相,在EDS結果中觀察到銀在結果中觀察到銀在Au4Al中含量可高達中含量可高達60 at.%。。


    Wire bonding technology in electronic assembly is the most widely used and mature connection circuit in recent years. Traditionally, it is used as a pure gold wire for wire bonding. In the process, a thin gold wire of 15-50 m is used for the wire bonding, and aluminum is used as a bond pad on the substrate. Recent studies have found that the intermetallic compounds formed by the gold-aluminum interface are hard and brittle, and it is easy to form Kirkendall voids in the interface. A more important reason, the price of gold has continued to soar in recent years. In order to reduce costs, scholars have invested in several studies to select different materials wires to replace pure gold. Silver is widely used as a substitute material because of its excellent physical properties such as excellent thermal conductivity, electrical conductivity, and good ductility, and also its price is far below the price of gold.
    In this experiment, different concentrations of gold and silver alloys were prepared by arc melting method, and diffusion bonding was performed with aluminum substrates to form Au-xAg/Al layered structure diffusion couples. Solid/solid diffusion treatment at 450°C to understand the interfacial reaction between diffusion couples under high-temperature heat treatment. In order to further determine the reaction mechanism of Ag, Al, and Au, this experiment will also establish a ternary alloy phase equilibrium diagram at 450°C to verify the generated IMC phase. It is hoped to evaluate the feasibility of replacing gold and silver alloys with pure gold systems. In order to determine the reaction mechanism of Ag, Al, and Au, this experiment will also establish a ternary alloy phase equilibrium diagram at 450°C to verify the generated IMC phase.
    In the results of the Au-xAg/Al layered structure diffusion couples, when the concentration of silver in the gold-silver alloy is 25 wt.%. AuAl2, Au2Al, and Au4Al phases are formed at the interface. When the concentration of silver is increased to 30,
    IV
    40, 50 and 75 wt.%. Ag2Al, AuAl2, and Au4Al phases are formed at the interface. The intermetallic phase thickens over time, but the type of intermetallic phase formed does not change over time no phase change occurs. As the concentration of silver increases, the thickness of the intermetallic phase at each concentration gradually increases, which means that the increase in silver concentration promotes the formation of the intermetallic phase. Further, it was found that the effect of suppressing the formation of the Au2Al phase was observed when the concentration of silver was increased. When the content of silver in the alloy reached 30 wt.%, no Au2Al phase was formed.
    In the experimental results of the ternary phase equilibrium of Ag-Al-Au, there are 7 single-phase regions, 13 two-phase regions, and 6 three-phase regions, and no ternary metal phase is formed, and the Au4Al phase is almost traversed. In addition, because the properties of gold and silver are similar, they are all FCC structures. It is known that silver is easily replaced with gold to form a gold-aluminum intermetallic phase. Taking Au4Al as an example, it is observed in the EDS results that the content of silver in Au4Al can be as high as 60 at.%, but it is still Au4Al structure by XRD alignment.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章、前言 1 第二章、文獻回顧 3 2-1電子構裝技術 3 2-1.1電子構裝簡介 3 2-1.2打線接合製成 4 2-2打線材料 6 2-2.1純金打線 6 2-2.2銅打線 7 2-2.3銀合金打線 7 2-2.4鋁墊 7 2-3界面反應與擴散動力學 9 2-3.1界面反應 9 2-3.2擴散理論 10 2-4界面反應相關文獻 13 2-4.1 Au/Al 界面反應 13 2-4.2 Ag/Al 界面反應 16 2-4.3 Au-xAg/Al 界面反應 17 2-4.4 經界面反應形成IMC相之體積收縮 19 2-5相平衡 21 2-5.1 Ag-Au 二元系統相平衡圖 23 2-5.2 Al-Au 二元系統相平衡圖 24 2-5.3 Ag-Al 二元系統相平衡圖 27 2-5.4 Ag-Al-Au 三元系統 29 2-6反應路徑 30 第三章、實驗方法 32 3-1金銀合金與鋁界面反應 32 3-1.1金銀合金配置 32 3-1.2均質化熱處理 33 3-1.3 Au-xAg/Al反應偶製作 33 3-1.4高溫時效 35 3-1.5試片金相處理 35 3-1.6界面觀察與分析 36 3.2銀-鋁-金相平衡 38 3-2.1合金配置 38 3-2.2合金均質化 39 3-2.3相平衡實驗 39 3-2.4界面觀察與分析 40 第四章、結果與討論 41 4-1 Au-25Ag/Al反應偶 41 4-2 Au-50Ag/Al反應偶 43 4-3 Au-75Ag/Al反應偶 45 4-4 Au-30Ag/Al反應偶 47 4-5 Au-40Ag/Al反應偶 48 4-6 不同濃度Au-xAg反應偶對IMC生成之影響 49 4-7 Ag-Al-Au三元合金相平衡反應 52 4-8 Au-xAg/Al反應路徑 84 第五章、結論 91 參考文獻 93

    陳信文, 陳立軒, 林永森, 陳志銘, 電子構裝技術與材料, 高立, 台北縣五股鄉, 2005.
    [2] J. S. Cho, H. S. Jeong, J. T. Moon, S. J. Yoo, J. S. Seo, S. M. Lee, S. W. Ha, E. K. Her, S. H. Kang, K. H. Oh, Thermal reliability & IMC behavior of low cost alternative Au-Ag-Pd wire bonds to Al metallization, 59th IEEE Electronic Components and Technology Conference. (2009) 1569-1573.
    [3] M. Kajihara, Kinetics of Solid-State Reactive Diffusion between Au and Al, Materials transactions. 52 (2011) 677-684.
    [4] Y. Tian, I. Lum, S. Won, S. Park, J. Jung, M. Mayer, Y. Zhou, Experimental study of ultrasonic wedge bonding with copper wire, 6th IEEE Electronic Packaging Technology International Conference. (2005) 389-393.
    [5] H. Kim, J. Lee, K.W. Paik, K. Koh, J. Won, S. Choi, J. Lee, J. Moon, Y. Park, Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability, IEEE Electronic Materials and Packaging. (2001) 44-51.
    [6] C. M. Chan, Microstructure analysis and failure mechanism of Cu wire bond and Inner Lead Bond. (2010) 119-124.
    [7] C. Lu, Review on silver wire bonding, Microsystems, Packaging, Assembly and Circuits Technology Conference. (2013) 226-229.
    [8] H. Okamoto, T. Massalski, The Ag-Au (Silver-Gold) system, Bulletin of Alloy Phase Diagrams. 4 (1983) 30.
    [9] D. P. Seraphim, R.C. Lasky, C.Y. Li, Principles of electronic packaging. McGraw-Hill College, New York, 1989.
    [10] J. E. Morris, The Design and Processing Technology of Electronic Packaging, Workshop (1997).
    [11] 林定皓, 電子構裝技術概論, 台灣電路板協會, 新北市土城區, 2010.
    [12] 陳建良, 發光二極體中打線接合構裝技術之研究, 國立臺灣科技大學, 材料科學與工程研究所, 2011.
    [13] I. Qun, Wire bonding tutorial, Advanced Packaging 7 (2005).
    [14] S. L. Khoury, D. J. Burkhard, D. P. Galloway, T. A. Scharr, A comparison of copper and gold wire bonding on integrated circuit devices, IEEE transactions on components, hybrids, and manufacturing technology. 13 (1990) 673-681.
    [15] K. W. Lam, H. M. Ho, S. Stoukatch, M. Van De Peer, P. Ratchev, C. Vath, A. Schervan, E. Beyne, Fine pitch copper wire bonding on copper bond pad process optimization, 4th IEEE Electronic Materials and Packaging. (2002) 63-68.
    [16] F. W. Wulff, C. Breach, D. Stephan, K. Dittmer, Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization, 6th IEEE Electronics Packaging Technology Conference. (2004) 348-353.
    [17] C. Cheng, H. Hsiao, S. Chu, Y. Shieh, C. Sun, C. Peng, Low cost silver alloy wire bonding with excellent reliability performance, 63rd IEEE Electronic Components and Technology Conference. (2013) 1569-1573.
    [18] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. Huang, Y. P. Wang, Silver alloy wire bonding, 62nd IEEE Electronic Components and Technology Conference. (2012) 1163-1168.
    [19] J. S. Cho, K. A. Yoo, S. J. Hong, J. T. Moon, Y. J. Lee, W. Han, H. Park, S. W. Ha, S. B. Son, S. H. Kang, Pd effects on the reliability in the low cost Ag bonding wire, 60th IEEE Electronic Components and Technology Conference. (2010) 1541-1546.
    [20] P. Ratchev, S. Stoukatch, B. Swinnen, Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads, Microelectronics Reliability 46 (2006) 1315-1325.
    [21] P. S. Chauhan, A. Choubey, Z. Zhong, M. G. Pecht, Copper wire bonding, Copper Wire Bonding, Springer, (2014) 1-9.
    [22] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, J. T. Moon, Reliability study of low cost alternative Ag bonding wire with various bond pad materials, 11th IEEE Electronics Packaging Technology Conference. (2009) 851-857.
    [23] Y. C. Jang, S. Y. Park, H. D. Kim, Y. C. Ko, K. W. Koo, M. R. Choi, H. G. Kim, N. K. Cho, I. T. Kang, J. H. Yee, Study of intermetallic compound growth and failure mechanisms in long term reliability of silver bonding wire, 16th IEEE Electronics Packaging Technology Conference. (2014) 704-708.
    [24] 徐祥禎, 銲線基本理論, 義守大學, 機械與自動化工程學系, 2012.
    [25] C. Xu, T. Sritharan, S. Mhaisalkar, Interface transformations in thin film aluminum-gold diffusion couples, Thin Solid Films. 515 (2007) 5454-5461.
    [26] H. Xu, C. Liu, V. V. Silberschmidt, S. Pramana, T. J. White, Z. Chen, M. Sivakumar, V. Acoff, A micromechanism study of thermosonic gold wire bonding on aluminum pad, Journal of applied physics. 108 (2010) 113517.
    [27] G. Majni, C. Nobili, G. Ottaviani, M. Costato, E. Galli, Gold‐aluminum thin‐film interactions and compound formation, Journal of Applied Physics. 52 (1981) 4047-4054.
    [28] C. Xu, T. Sritharan, S. Mhaisalkar, Thin film aluminum-gold interface interactions, Scripta materialia. 56 (2007) 549-552.
    [29] J. Murray, H. Okamoto, T. Massalski, The Al-Au (Aluminum-gold) system, Bulletin of Alloy Phase Diagrams. 8 (1987) 20-30.
    [30] T. Muller, L. Schrapler, F. Altmann, H. Knoll, M. Petzold, Influence of intermetallic phases on reliability in thermosonic Au-Al wire bonding, 1st IEEE Electronics Systemintegration Technology Conference. (2006) 1266-1273.
    [31] E. Philofsky, Intermetallic formation in gold-aluminum systems, Solid-State Electronics. 13 (1970) 1391-1394.
    [32] X. Zhang, T. Y. Tee, Numerical and experimental correlation of high temperature reliability of gold wire bonding to intermetallics (Au/Al) uniformity, Thin solid films. 504 (2006) 355-361.
    [33] J. Tsai, A. Lan, D. Jiang, L.W. Wu, J. Huang, J. Hong, Ag alloy wire characteristic and benefits, 64th IEEE Electronic Components and Technology Conference. (2014) 1533-1538.
    [34] Y. L. Seng, Characterization of intermetallic growth for gold bonding and copper bonding on aluminum metallization in power transistors, 9th, IEEE Electronics Packaging Technology Conference, 2007, , (2007) 731-736.
    [35] H. S. Chang, J. Pon, K. C. Hsieh, C. Chen, Intermetallic growth of wire-bond at 175°C high temperature aging, Journal of electronic materials. 30 (2001) 1171-1177.
    [36] S. W. Fu, C. C. Lee, A study on intermetallic compound formation in Ag-Al system and evaluation of its mechanical properties by micro-indentation, Journal of Materials Science: Materials in Electronics. 29 (2018) 3985-3991.
    [37] S. W. Fu, C. C. Lee, A corrosion study of Ag-Al intermetallic compounds in chlorine-containing epoxy molding compounds, Journal of Materials Science: Materials in Electronics. 28 (2017) 15739-15747.
    [38] S. W. Fu, C. C. Lee, Solid-State Reactions of Silver and Aluminum Associated with Silver Wire Bonds, 66th IEEE Electronic Components and Technology Conference, 2016. (2016) 648-653.
    [39] T. H. Chuang, C. C. Chang, C. H. Chuang, J. D. Lee, H. H. Tsai, Formation and growth of intermetallics in an annealing-twinned Ag-8Au-3Pd wire bonding package during reliability tests, IEEE Transactions on Components, Packaging and Manufacturing Technology. 3 (2013) 3-9.
    [40] H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, C. R. Kao, M. Reliability, Critical concerns in soldering reactions arising from space confinement in 3D IC packages. 12 (2012) 233-240.
    [41] R. Guo, T. Hang, D. Mao, M. Li, K. Qian, Z. Lv, H. Chiu, Compounds, Behavior of intermetallics formation and evolution in Ag-8Au-3Pd alloy wire bonds. 588 (2014) 622-627.
    [42] J. Wu, Y. Huo, C.C. Lee, Complete elimination of Ag3Al in Ag wire bonds on Al by alloying In into Ag, Materialia 2 (2018)82-97.
    [43] N. J. Noolu, N. M. Murdeshwar, K. J. Ely, J. C. Lippold, W. A. Baeslack, M. T. A, Partial diffusion reactions and the associated volume changes in thermally exposed Au-Al ball bonds. 35 (2004) 1273-1280.
    [44] F. C. Campbell, Phase diagrams: understanding the basics, ASM International, Ohio, 2012.
    [45] 石漢偉, 錫-鉍-金和錫-鉍-銅三元系統之相平衡, 國立台北科技大學, 化學工程研究所, 2008.
    [46] J. LI, The Ag-Rich Side of the Binary Phase Diagrams Ag/Au and Ag/Cu as Studied by Zone Refining, Acta Chemica Scandinavica. 15 (1961) 31-35.
    [47] H. Baker, H. Okamoto, ASM handbook: alloy phase diagrams Vol. 3 Alloy Phase Diagrams., ASM international Materials Park, USA, 1992.
    [48] M. Li, C. Li, F. Wang, D. Luo, W. Zhang, Thermodynamic assessment of the Al-Au system, Journal of alloys and compounds. 385 (2004) 199-206.
    [49] H. Liu, J. Wang, Y. Du, Z. Jin, Thermodynamic description of the Au-Al system, Zeitschrift für Metallkunde. 95 (2004) 45-49.
    [50] H. Okamoto, Al-Au (aluminum-gold), Journal of Phase Equilibria and Diffusion. 26 (2005) 391-393.
    [51] M. Hillert, B. Averbach, M. Cohen, Thermodynamic properties of solid aluminum-silver alloys, Acta Metallurgica. 4 (1956) 31-36.
    [52] A. McAlister, The Ag-Al (Silver-Aluminum) system, Bulletin of Alloy Phase Diagrams. 8 (1987) 526-533.
    [53] P. Villars, Handbook of ternary alloy phase diagram volume 2, ASM International, The Material Information Society 4, 1995.
    [54] J. S. Kirkaldy, L. Brown, Diffusion behaviour in ternary, multiphase systems, Canadian Metallurgical Quarterly. 2 (1963) 89-115.
    [55] J. B. Clark, Conventions for Plotting Diffusion Paths In Multiphase Ternary Diffusion Couples on Isothermal Section of A Ternary Phase Diagram. (1963) 1250.
    [56] 廖啓民, 鋁合金的腐蝕與防治, 防蝕工程 5 (1991) 29-40.
    [57] H. Yang, K. Cao, X. Zhao, W. Liu, J. Lu, Y. J. Lu, Brittle-to-ductile transition of Au2Al and AuAl2 intermetallic compounds in wire bonding. 30 (2019) 862-866.
    [58] Y. Huo, S.W. Fu, Y.L. Chen, C.C. Lee, A reaction study of sulfur vapor with silver and silver-indium solid solution as a tarnishing test method, Journal of Materials Science: Materials in Electronics 27 (2016) 10382-10392.

    QR CODE