簡易檢索 / 詳目顯示

研究生: 王筑萱
Chu-Hsuan Wang
論文名稱: 以高通量計算方法預測鋁-鈷-鐵-鎳-鈦五元系統之高熵合金形成之點以及其顯微結構、硬度與腐蝕之研究
Prediction of the High-Entropy Alloys Formation Points for the Al-Co-Fe-Ni-Ti Quinary System by the High-Throughput Computational (HTC) Method
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 蕭憲明
Hsien-Ming Hsiao
蔡哲瑋
Che-Wei Tsai
鄭偉鈞
Wei-Chun Cheng
顏怡文
Yee-Wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 158
中文關鍵詞: 高熵合金高通量Pandat軟體相圖計算FCC結構
外文關鍵詞: High-entropy alloys, High-throughput calculation, Pandat software, CALPHAD, FCC structure
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金通常由五元或五元以上的元素,以5 at.%到35 at.%近等莫耳比的方式形成具有單一固溶相的多元合金。因為結構簡單,所以易於分析、加工、合成、應用,同時擁有優異的物理化學以及機械性質。在高溫時,高熵合金的機械性質可與超合金比擬,有耐熱、耐磨的特性,可用於核工業、交通工具和能源工業等等的所需材料,此外,其生產不需要任何特殊技術,並且可以容易地使用現有設備和技術進行大規模製造,以上原因使其在許多研究領域變得更具吸引力,為開發高性能合金提供新的策略。為了快速開發高熵合金,利用CALPHAD (Calculation of Phase Diagram) 方法搭配高通量計算可算是其中最有效率的做法。本研究利用Pandat軟體並採用PanHEA資料庫,首先計算出17個在可能在Al、Co、Fe、Ni、Ti五元系統中形成高熵合金的點,並從中挑選出六個組成進行實驗,希望形成以FCC固溶相為主的高熵合金。本研究皆使用純度為99.9 wt.%的金屬,再利用電弧熔煉爐來製備合金,之後分別在1000°C下進行72小時的熱處理。最後,分別用場發掃描式電子顯微鏡 (FE-SEM) 及能量分散能譜儀 (EDS) 、X射線繞射儀 (XRD)、穿透式電子顯微鏡 (TEM) 分析其顯微結構及組成。
    從各項結果分析可以得知,本研究中六個合金都是以FCC相為主,並同時含有少量的、一至三種其他結構,實驗得到的結果與計算預測相當吻合。本研究還更進一步的做了合金密度、硬度、腐蝕的實驗分析,並以不鏽鋼304以及其他九種合金做為對照組。本研究製作的合金硬度偏高,且擁有比許多常見合金還要低的密度,但較易腐蝕。


    High-entropy alloys are defined by alloys those containing five or more random principal major elements with each element atomic concentration is about 5% and less than 35% mixed in equiatomic or near-equiatomic composition. Because of its simple structure, high-entropy alloys are easy to analyze, process, synthesize, and apply. They have excellent physical and chemical properties, especially electrical and magnetic properties, and are also heat-resistant and wear-resistant. At high temperatures, the mechanical properties of high-entropy alloys are comparable to those of superalloys. They can be used in the nuclear industry, materials required for transportation and energy industries. In addition, their production does not require any special technology, and can be easily fabricated on a large scale using existing equipment and technology, which makes it more attractive in many research fields. In order to rapidly develop high-entropy alloys, using CALPHAD method with high-throughput computational method is one of the most efficient practices. The Pandat software with the PanHEA database was used for simulation. First, 17 points which may form a high-entropy alloy in this systems were calculated, and six of them were selected for experiments. It is hoped that a high-entropy alloy mainly composed of FCC structure is formed. In this study, metals having a purity of 99.9 wt.% were used, and the alloys were prepared by an arc melting furnace, followed by heat treatment at 1000°C for 72 hours. Finally, the microstructure and composition of them were analyzed by the field-emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD) and transmission electron microscope (TEM). The experimental result indicated that the six alloys were mainly composed of FCC structure. However, some other structures such as FCC_L12, B2_BCC and H_L21 structures were also formed. The calculation result was mostly consistent with experimental results. Meanwhile, all alloys prepared in this study all had relatively high hardness. Compare to various common alloys, they also had lower densities, but were less susceptible to corrosion.

    摘要 I Abstract II 致謝 III 圖目錄 X 表目錄 XIII 第一章 簡介 1 第二章 文獻回顧 3 2.1 高熵合金 3 2.1.1高熵合金發展 3 2.1.2 高熵合金 4 2.1.3 高熵合金的四大核心效應 6 2.1.3-1 高熵效應 6 2.1.3-2 嚴重晶格扭曲效應 8 2.1.3-3 遲緩擴散效應 9 2.1.3-4 雞尾酒效應 9 2.1.4 高熵合金中的各項參數 10 2.1.5 固溶相之熵與焓 16 2.2 相圖計算軟體 18 2.2.1 CALPHAD方法 (CALculation of PHAse Diagram method) 18 2.2.2 Pandat軟體 20 2.2.3 高通量計算 (High-Throughput Computational Method) 22 2.3 高熵合金的電化學性質 23 2.3.1 腐蝕型態 23 2.3.2 電化學測試 23 2.3.3 極化與鈍化 25 第三章 實驗方法 27 3.1 實驗流程 27 3.2 使用Pandat軟體進行高通量計算 28 3.3 合金組成 30 3.4 合金製備 32 3.5 熱處理 33 3.6 X-ray繞射分析 33 3.7 掃描式電子顯微鏡 34 3.8 合金密度 34 3.6 硬度分析 35 3.9 腐蝕電化學 36 3.10 浸泡試驗 37 第四章 結果與討論 38 4.1 計算結果 38 4.1.1 高通量計算結果─元素組成趨勢 38 4.1.2 高通量計算結果─合金篩選 42 4.1.3 所得高熵合金之各項參數 43 4.2 合金組成及微結構 44 4.2.1 合金1之組成及微結構 (Al11Co26Fe28Ni29Ti6) 44 4.2.2 合金2之組成及微結構 (Al6Co31Fe33Ni24Ti6) 47 4.2.3 合金3之組成及微結構 (Al11Co11Fe33Ni34Ti11) 50 4.2.4 合金4之組成及微結構 (Al6Co31Fe23Ni34Ti6) 53 4.2.5 合金5之組成及微結構 (Al11Co31Fe18Ni34Ti6) 57 4.2.6 合金6之組成及微結構 (Al11Co31Fe33Ni19Ti6) 62 4.3 合金密度分析 65 4.4 合金硬度分析 68 4.5 合金腐蝕性質分析 70 4.5.1 電化學分析 70 4.5.2 經極化試驗後之合金表面分析(SEI) 72 4.5.3 經極化試驗後之合金微結構分析(BEI) 76 4.5.4 浸泡試驗分析 78 第五章 結論 80 Reference 81 附件 87 高通量計算結果列表 87 高通量計算結果之篩選(一) 120 高通量計算結果之篩選(二) 142

    1. K. Zhang, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering: A, 508 (2009) 214-219.
    2. J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, 65 (2013) 1759-1771.
    3. J.W. Yeh, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (2004) 299-303.
    4. J.W. Yeh, High-entropy alloys–a new era of exploitation, Materials Science Forum, Trans. Tech. Publ., (2007).
    5. C.Y. Hsu, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268 (2010) 653-659.
    6. J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim-Sci. Mat., 31 (2006) 633-648.
    7. M.H. Tsai, Three strategies for the design of advanced high-entropy alloys, Entropy, 18 (2016) 252.
    8. C. Ng, Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172.
    9. M.H. Tsai, A second criterion for sigma phase formation in high-entropy alloys, Materials Research Letters, 4 (2016) 90-95.
    10. F. Zhang, An understanding of high entropy alloys from phase diagram calculations, Calphad, 45 (2014) 1-10.
    11. J. Van Laar, Melting or solidification curves in binary system, Z Phys Chem, 63 (1908) 216.
    12. L. Kaufman, H. Bernstein, Computer calculation of phase diagrams, Academic Press, (1970).
    13. A. Pelton, C. Bale, Computational techniques for the treatment of thermodynamic data in multicomponent systems and the calculation of phase equilibria, Calphad, 1 (1977) 253-273.
    14. H. Lukas, J. Weiss, E.T. Henig, Straegies for the calculation of phase diagrams, Calphad, 6 (1982) 229-251.
    15. A. Turnbull, A general computer program for the calculation of chemical equilibria and heat balances, Calphad, 7 (1983) 137-147.
    16. M.G. Jo, Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi, Metals and Materials International, 24 (2018) 73-83.
    17. A. Manzoni, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy, Ultramicroscopy, 132 (2013) 212-215.
    18. C. Zhang, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
    19. F. Otto, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755.
    20. B. Schuh, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Materialia, 96 (2015) 258-268.
    21. R. Feng, Design of light-weight high-entropy alloys, Entropy, 18 (2016) 333.
    22. N. Stepanov, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Materials Letters, 142 (2015) 153-155.
    23. O. Senkov, S. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Materialia, 68 (2014) 214-228.
    24. O. Senkov, C. Woodward, D. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys, Jom, 66 (2014) 2030-2042.
    25. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132 (2012) 233-238.
    26. B. Cantor, Multicomponent and high entropy alloys, Entropy-Switz 16 (2014) 4749-4768.
    27. Z.W. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y.R. Wen, T. Fujita, A. Hirata, M.W. Chen, G. Chen, B.A. Chin, A nanoscale co-precipitation approach for property enhancement of Fe-base alloys, SCI. REP-UK., 3 (2013) 1327.
    28. B. Cantor, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218.
    29. A. Inoue, Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems, Journal of Non-Crystalline Solids, 250 (1999) 552-559.
    30. C.Y. Hsu, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metallurgical and Materials Transactions A, 35 (2004) 1465-1469.
    31. T.K. Chen, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surface and Coatings Technology, 188 (2004) 193-200.
    32. B. Cantor, K. Kim, P.J. Warren, Novel multicomponent amorphous alloys, Materials Science Forum, Trans. Tech. Publi., (2002).
    33. J. Dąbrowa, Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x= 0; 0.5; 1), Intermetallics, 84 (2017) 52-61.
    34. M.H. Tsai, J. W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123.
    35. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511.
    36. C.J. Tong, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 1263-1271.
    37. C.J. Tong, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 881-893.
    38. L. Anmin, X. Zhang, Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements, 金属学报英文版, 22 (2009) 219-224.
    39. O. Senkov, Refractory high-entropy alloys, Intermetallics, 18 (2010) 1758-1765.
    40. M.F. del Grosso, G. Bozzolo, H.O. Mosca, Determination of the transition to the high entropy regime for alloys of refractory elements, Journal of Alloys and Compounds, 534 (2012) 25-31.
    41. M. Lucas, Absence of long-range chemical ordering in equimolar FeCoCrNi, Applied Physics Letters, 100 (2012) 251907.
    42. K. Zhang, Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics, 22 (2012) 24-32.
    43. F. Otto, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia, 61 (2013) 2628-2638.
    44. S. Guo, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics, 41 (2013) 96-103.
    45. K.Y. Tsai, M. H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897.
    46. K.H. Cheng, Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets, Annales de chimie, (2006).
    47. B.S. Murty, High-entropy alloys, Elsevier, (2019).
    48. D.J. Fisher, High-Entropy Alloys-Microstructures and Properties, Foundations of Materials Science and Engineering, 86 (2015) 1.
    49. G. Sheng, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International, 21 (2011) 433-446.
    50. J.W. Yeh, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions A, 35 (2004) 2533-2536.
    51. A. Takeuchi, A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Materials Science and Engineering: A, 304 (2001) 446-451.
    52. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions, 46 (2005) 2817-2829.
    53. Y. Zhang, Solid‐solution phase formation rules for multi‐component alloys, Advanced Engineering Materials, 10 (2008) 534-538.
    54. H. Sheng, M. Gong, L. Peng, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Materials Science and Engineering: A, 567 (2013) 14-20.
    55. J. Zhu, P. Liaw, C. Liu, Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys, Materials Science and Engineering: A, 239 (1997) 260-264.
    56. S. Guo, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of applied physics, 109 (2011) 103505.
    57. A. Takeuchi, A. Inoue, Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18 (2010) 1779–1789.
    58. F. De Boer, Cohesion in Metals: Transition Metal Alloys, 1 (1988) 758.
    59. O. Senkov, Accelerated exploration of multi-principal element alloys for structural applications, Calphad, 50 (2015) 32-48.
    60. H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method, 131 (2007).
    61. S.L. Chen, The PANDAT software package and its applications, Calphad, 26 (2002) 175-188.
    62. S. Chen, On the calculation of multicomponent stable phase diagrams, Journal of phase equilibria, 22 (2001) 373-378.
    63. L.J. Santodonato, Predictive multiphase evolution in Al-containing high-entropy alloys, Nature communications, 9 (2018) 4520.
    64. W. Cao, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad, 33 (2009) 328-342.
    65. C. Huang, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surface and Coatings Technology, 206 (2011) 1389-1395.
    66. R.M. Martin, Electronic structure: basic theory and practical methods, (2004).
    67. S. Curtarolo, Predicting crystal structures with data mining of quantum calculations, Physical review letters, 91 (2003) 135503.
    68. D. Morgan, G. Ceder, S. Curtarolo, High-throughput and data mining with ab initio methods, Measurement Science and Technology, 16 (2004) 296.
    69. S. Curtarolo, The high-throughput highway to computational materials design, Nature materials, 12 (2013) 191-201.
    70. M.L. Green, I. Takeuchi, J.R. Hattrick-Simpers, Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials, Journal of Applied Physics, 113 (2013) 231101.
    71. R. Potyrailo, Combinatorial and high-throughput screening of materials libraries: review of state of the art, ACS Combinatorial Science, 13 (2011) 579-633.
    72. R.A. Potyrailo, I. Takeuchi, Role of high-throughput characterization tools in combinatorial materials science, Measurement Science and Technology, 16 (2004) 1-4.
    73. K. Rajan, Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery, Annual Review of Materials Research, 38 (2008) 299-322.
    74. D. Miracle, New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scripta Materialia, 127 (2017) 195-200.
    75. D.B. Miracle, Exploration and development of high entropy alloys for structural applications, 16 (2014) 494-525.
    76. D.B. Miracle, Critical Assessment 14: High entropy alloys and their development as structural materials, Materials Science and Technology, 31 (2015) 1142-1147.
    77. R. Akid, Corrosion of engineering materials, Handbook of Advanced Materials, (2004) 487.
    78. D.G. Enos, L.L. Scribner, The potentiodynamic polarization scan, Solartron Instruments, Hampshire, UK, Technical Report, (1997).
    79. Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: A review, Metals, 7 (2017) 43.
    80. R. Ovarfort, Critical pitting temperature measurements of stainless steels with an improved electrochemical method, Corrosion Science, 29 (1989) 987-993.
    81. U.K. Mudali, B. Rai, Corrosion science and technology: mechanism, mitigation and monitoring, (2008).
    82. F.R. De Boer, Cohesion in metals, (1988).
    83. A. Standard, E92, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, PA (2003).
    84. Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Materials Chemistry and Physics, 92 (2005) 112-117.
    85. C.M. Lin, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, Journal of Alloys and Compounds, 624 (2015) 100-107.
    86. J. Westbrook, R. Fleischer, Intermetallic Compounds, Structural Applications of, Wiley, (2000).
    87. Z. Tang, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems, Jom, 65 (2013) 1848-1858.
    88. G. Ghosh, A. Van de Walle, M. Asta, First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM= Ti, Zr and Hf) systems: a comparison of cluster expansion and supercell methods, Acta Materialia, 56 (2008) 3202-3221.
    89. G. Ghosh, M. Asta, First-principles calculation of structural energetics of Al–TM (TM= Ti, Zr, Hf) intermetallics, Acta Materialia, 53 (2005) 3225-3252.
    90. C. Li, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, Journal of Alloys and Compounds, 475 (2009) 752-757.
    91. U. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, Journal of Applied Physics, 74 (1993) 1692-1696.
    92. C.M. Lin, H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19 (2011) 288-294.
    93. C. Kwok, F. Cheng, H. Man, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution, Materials Science and Engineering: A, 290(2000) 145-154.
    94. M. Oyaidzu, Effects of tritiated water on corrosion behavior of SUS304, Fusion Science and Technology, 60 (2011) 1515-1518.
    95. C.C. Tung, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Materials letters, 61 (2007) 1-5.
    96. T. Courtney, Mechanical behavior of materials, Waveland Press (2005) 80-136.
    97. R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, Boston: PWS Publishing Company, (1994).
    98. G. Dieter, Mechanical Metallurgy, SI Metric Edition. London, McGrawhill Book Company, (1988).

    QR CODE