簡易檢索 / 詳目顯示

研究生: 林逸展
Yi-Chan Lin
論文名稱: 製備超奈米晶鑽石電極/氮化物 發光二極體與其特性研究
Growth and characterizations of ultrananocrystalline diamond electrode/ gallium nitride-based light-emitting diode
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 郭東昊
Dong-Hau Kuo
陳衛國
Wei-Kuo Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 鑽石薄膜微波電漿化學氣相沉積系統LED導電層
外文關鍵詞: Diamond thin film, Microwave plasma chemical vapor deposition system, LED conducting layer
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了促使LED元件達到更高的發光強度與使用壽命,同時避免電流堆積造成的高溫與光電性質劣化,多年來研究團體持續找尋適當的LED導電層。本研究欲在氮化鎵LED基板上製備具備熱穩定性的n型超奈米晶鑽石薄膜,並分析其光電特性。但在成長鑽石薄膜時普遍遇到成核密度不良導致的薄膜品質問題,為解決成核困難,透過圖案化奈米孔洞製程增加基板表面能與成核密度。
    研究結果中,沉積五分鐘後的2×109、6×109及1×1010 cm-2孔洞密度藍寶石基板,分別具有2.6×109、2.06×1010及7×1010 cm-2的成核密度,此一數據呈高度正相關;而在改變製程時間系列中,也可以明顯觀察到越高孔洞密度的NPSS基板,越有能力在短的時間內沉積出平整的鑽石薄膜,且厚度僅約100奈米,在四點探針量測過後可發現越緻密的薄膜擁有越低的表面電阻,UV量測中則得知越短的成長時間可以得到越高的可見光穿透率,於此系列中我們再次證實高孔洞密度的基板具有最佳優勢製備出高品質的鑽石博膜。
    接著,本研究將NPSS所獲得的結果應用在奈米孔洞的氮化鎵LED上,先以拉曼光譜與SEM確認薄膜品質後,以XRD對LED進行結晶分析確認量子井發光層並未遭受製程破壞,接著在基板的孔洞邊緣以TEM、EDX、結晶繞射等方式分析,推測UNCD已確實填入孔洞內部;最後我們對n-UNCD LED進行光電特性量測,並比較裸片LED與ITO LED,將發光強度、半高寬變化、波長位移等系列交叉比對後,我們合理推論n-UNCD仍因過高的電阻值影響其分散高電流的效果,同時升溫造成波峰偏移,而孔洞化過程中受損的p-GaN及接觸面應力所造成的壓電效應,可能會造成Vf值的下降;但在變溫電流電壓測試中的n-UNCD LED曲線幾乎不隨溫度變動,顯示其卓越的熱穩定性。


    To achieve higher luminescence intensity and longer service life of LED , while avoiding the raising temperature and degradation of photoelectric properties caused by current accumulation, many research groups are dedicated to find proper materials for LED conductor layer for decades. In this study, we intend to deposit n-type ultra-nanocrystalline diamond (n-UNCD) thin film on GaN-based LED and analyze the optoelectronic properties of it. However, when depositing diamond thin film, it usually suffers from the lack of quality caused by poor nucleation density. In order to solve the nucleation problem, the surface energy and nucleation density of the substrate are increased through nano-patterned process.
    In the results, NPSS with 2×10 9, 6×10 9 and 0×10 0 1cm-2 hole density in five minutes of deposition were 2.6×0 9, 2. 6×0 0 and 7×0 0 1cm-2 in nucleation density, respectively, which is highly positively correlated with data; while the time variation series, it can be clearly observed that higher concave density of NPSS could be deposited flat diamond thin film in a shorter time, with only 100 nm thickness. After measuring with four-point probe system, thin films are found that denser film leads to a lower sheet resistance, and the UV measurement shows that shorter the growth time can get a better visible light transmittance. In this series, we further confirmed that the substrate with high concave density has the best advantage to be deposited high quality diamond film.
    In next stage, the results obtained by NPSS series were applied to nano-concave GaN-based LED. After confirming the film quality by Raman spectroscopy and SEM, the crystalline of LED were scanned by XRD to confirm that multi-quantum wells light-emitting layer was not damaged by the process, following the concave was analyzed by
    III
    TEM, EDX and diffraction pattern, we reasonably speculated that n-UNCD has indeed fill into the concave. At last part, we measured the photoelectric characteristics of n-UNCD LED, and compared it with bare-LED and ITO LED, after cross-comparison of luminous intensity, FWHM variation, wavelength shift, we reasonably conjectured that n-UNCD film reduce its effect of dispersing high current due to excessive resistance value, meanwhile, the peak shift is caused by raising temperature. The piezoelectric effect due to interlayer stress and damaged p-GaN during the pattern process may cause the decrease of Vf value; however, the IV curves of n-UNCD LED are nearly motionless with variable temperature, which proves the thermal stability of n-UNCD thin film is significant.

    第一章 緒論.................................................................................................................. 1 1.1 前言................................................................................................................ 1 1.2 研究動機........................................................................................................ 2 第二章 文獻回顧.......................................................................................................... 3 2.1 鑽石基本性質:............................................................................................ 3 2.2 人造鑽石的發展............................................................................................ 6 2.2.1 化學氣相沉積法簡介................................................................................ 6 2.2.2 熱燈絲化學氣相沉積................................................................................ 9 2.2.3 微波電漿化學氣相沉積.......................................................................... 10 2.2.4 化學氣相沉積法的比較.......................................................................... 11 2.3 MPCVD電漿系統比較 .............................................................................. 12 2.3.1 氫氣電漿系統介紹.................................................................................. 12 2.3.2 氬氣電漿系統介紹.................................................................................. 13 2.4 鑽石薄膜晶粒尺寸分析比較...................................................................... 14 2.4.1 CVD鑽石薄膜種類 ................................................................................ 15 2.4.2 碳類薄膜的其他分類.............................................................................. 16 2.5 鑽石薄膜的成核與成長機制...................................................................... 17 2.5.1 成長機制分類.......................................................................................... 19 2.5.2 強化鑽石成核技術.................................................................................. 21 2.6 鑽石薄膜導電特性 ........................................................................................... 25 VI 2.6.1 P-doped鑽石薄膜 ................................................................................... 25 2.6.2 N-doped 鑽石薄膜.................................................................................. 26 2.6.3 鑽石薄膜應用於LED電極 .................................................................... 27 2.7 近年鑽石薄膜元件應用研究 ........................................................................... 28 第三章 實驗方法........................................................................................................ 29 3.1 實驗步驟...................................................................................................... 29 3.1.1 基板表面奈米圖案化處理...................................................................... 29 3.1.2 超音波震盪基板前處理.......................................................................... 30 3.1.3 CH4/Ar/N2電漿系統沉積UNCD薄膜 .................................................. 31 3.2 微波電漿化學氣相沉積系統 (MPCVD) ................................................... 32 3.3 分析儀器...................................................................................................... 38 3.3.1 拉曼光譜儀 (Raman Spectroscopy) ....................................................... 38 3.3.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ................. 39 3.3.3 四點探針量測系統(Four point probe meter) .......................................... 40 3.3.4 紫外光-可見光/近紅外光分析儀 ........................................................... 40 3.3.5 電致發光光譜儀(Electroluminescene spectroscopy, EL)....................... 41 第四章 結果與討論.................................................................................................... 42 4.1 在圖案化藍寶石基板上成長n-UNCD薄膜 ............................................. 42 4.1.1 CH4/Ar/N2電漿OES光譜圖 .................................................................. 43 4.1.2 n-UNCD成核密度優化系列 .................................................................. 44 4.1.3 n-UNCD成核密度與基板密度之關係 .................................................. 48 VII 4.2 n-UNCD成長時間與電阻優化系列 .......................................................... 50 4.2.1 n-UNCD薄膜成長速率 .......................................................................... 50 4.2.2 n-UNCD薄膜電阻優化 .......................................................................... 64 4.2.3 n-UNCD薄膜光穿透率分析 .................................................................. 66 4.3 於圖案化LED基板上成長n-UNCD薄膜 ............................................... 68 4.3.1 薄膜型態分析.......................................................................................... 68 4.3.2 薄膜結晶與元素分析.............................................................................. 73 4.3.3 n-UNCD LED光電特性分析與比較 ..................................................... 77 第五章 結論................................................................................................................ 81 參考文獻...................................................................................................................... 83

    [1]. Meneghini,1Matteo,1et1al.1"Reversible1degradation1of1ohmic1contacts1on1p-GaN1for1application1in1high-brightness1LEDs." IEEE Transactions on Electron Devices 54.021(2 7):13245-3250. [2]. Meneghini,1Matteo,1et1al.1"A1review1on1the1reliability1of1GaN-based1LEDs." IEEE Transactions on Device and Materials Reliability 8.21(2 8):1323-330.
    [3]. Y.Tanaka,1K.Miyake,1andA.Saito,1“Diamond-like Carbon Film for Bearing Parts and1Its1Mass1Production1Technology,”1no.1881(2 09):1040–145. [4]. Sussmann,1R.1S.,1et1al.1"Laser1damage1testing1of1CVD-grown1diamond1windows." Diamond and Related Materials 3.91(0994):10073-0077. [5]. Koidl,1P.,1and1C-P.1Klages.1"Optical1applications1of1polycrystalline1diamond." Diamond and Related Materials 0.0 -001(0992):10 65-0 74. [6]. Chardonnet,1Ch,1et1al.1"Polarization1properties1of1thin1films1of1diamond." Applied optics 35.341(0996):16692-6697. [7]. Graebner,1J.1E.,1et1al.1"The1thermal1conductivity1of1chemical‐vapor‐deposited1diamond1films1on1silicon." Journal of applied physics 70.71(0992):13043-3046. [8]. Graebner,1J.1E.,1et1al.1"Large1anisotropic1thermal1conductivity1in1synthetic1diamond1films." Nature 359.63941(0992):14 0. [9]. Gicquel,1Alix,1et1al.1"CVD1diamond1films:1from1growth1to1applications." Current Applied Physics 0.61(2 0):1479-496. [10]. Plamann,1K.,1et1al.1"Photothermal1examination1of1the1heat1diffusion1inhomogeneity1in1diamond1films1of1sub-micron1thickness." Diamond and Related Materials 3.4-61(0994):1752-756. [11]. Kiyota,1Hideo,1et1al.1"Electrical1properties1of1Schottky1barrier1formed1on1as‐grown1and1oxidized1surface1of1homoepitaxially1grown1diamond1( 0)1
    84
    film." Applied physics letters 67.241(0995):13596-3598. [12]. Kania,1D.1R.,1et1al.1"Diamond1radiation1detectors." Diamond and Related Materials 2.5-71(0993):10 02-0 09.
    [13]. W.D. Fan, K. Jagannaham, J. Narayan, in: A. Feldman, Y. Tzeng, W.A. Yarbrough, M. Yoshikawa, M. Murakawa (Eds.), Applications of Diamond Films and Related Materials: Third international Conference, Gaithersburg, (1995), pp. 533–536. [14]. Perret,1A.,1et1al.1"Electrochemical1behavior1of1synthetic1diamond1thin1film1electrodes." Diamond and related materials 8.2-51(0999):182 -823. [15]. Kang,1W.1P.,1et1al.1"Recent1development1of1diamond1microtip1field1emitter1cathodes1and1devices." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 09.31(2 0):1936-940. [16]. Lundblad,1Erik1G.1"High1pressure1synthesis1of1diamond1in1Sweden1in10953." AIP Conference Proceedings.1Vol.13 9.1No.10.1AIP,10994. [17]. Bundy,1F.1P.,1et1al.1"Man-made1diamonds." nature 076.44701(0955):150-55. [18]. Srikanth,1V.1V.1S.1S.1"Review1of1advances1in1diamond1thin1film1synthesis." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226.21(2 02):13 3-308. [19]. Angus,1John1C.,1Herbert1A.1Will,1and1Wayne1S.1Stanko.1"Growth1of1diamond1seed1crystals1by1vapor1deposition." Journal of Applied Physics 39.61(0968):12905-2922. [20]. Derjaguin,1B.1V.,1et1al.1"Filamentary1diamond1crystals." Journal of Crystal Growth 2.61(0968):138 -384. [21]. Liu,1Huimin,1and1David1S.1Dandy.1"Studies1on1nucleation1process1in1diamond1CVD:1an1overview1of1recent1developments." Diamond and related Materials 4.0 1(0995):10073-0088.
    85
    [22]. Rennick,1C.1J.,1et1al.1"Improved1characterisation1of1C21and1CH1radical1number1density1distributions1in1a1DC1arc1jet1used1for1diamond1chemical1vapour1deposition." Diamond and related materials 03.4-81(2 4):1560-568. [23]. Redfern,1Paul1C.,1et1al.1"Theoretical1studies1of1growth1of1diamond1(00 )1from1dicarbon." The Journal of Physical Chemistry 0 .281(0996):100654-00663. [24]. Rabeau,1J.1R.,1et1al.1"The1role1of1C121in1nanocrystalline1diamond1growth." Journal of Applied Physics 96.001(2 4):16724-6732. [25]. Gruen,1Dieter1M.,1et1al.1"Fullerenes1as1precursors1for1diamond1film1growth1without1hydrogen1or1oxygen1additions." Applied Physics Letters 64.021(0994):105 2-05 4. [26]. Zhou,1D.,1et1al.1"Synthesis1of1nanocrystalline1diamond1thin1films1from1an1Ar–CH141microwave1plasma." Journal of applied physics 83.01(0998):154 -543. [27]. GLombardi,1G.,1et1al.1"Spectroscopic1diagnostics1and1modeling1of1Ar∕1H12∕1CH141microwave1discharges1used1for1nanocrystalline1diamond1deposition." Journal of applied physics 96.001(2 4):16739-6750. [28]. Wang,1Chuan-Sheng,1et1al.1"Effect1of1H2/Ar1plasma1on1growth1behavior1of1ultra-nanocrystalline1diamond1films:1the1TEM1study." Diamond and Related Materials 09.2-31(2 0 ):1038-042. [29]. Oura,1K.,1et1al.1"Surface1Science:1An1Introduction.12 3." Berlin: Springer. [30]. Frank,1F.1C.,1and1Jan1H.1van1der1Merwe.1"One-dimensional1dislocations.1I.1Static1theory." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 098.0 531(0949):12 5-206. [31]. Volmer,1Martin,1and1Α.1Weber.1"Keimbildung1in1übersättigten1Gebilden." Zeitschrift für physikalische Chemie 009.01(0926):1277-3 0. [32]. Stranski,1I.1N.,1and1L.1Krastanov.1"Theory1of1orientation1separation1of1ionic1crystals." Sitzber Akad Wiss Wien, Math-naturw Klasse Abt IIb 0461(0938):1797-
    86
    80 . [33]. Velasco-Davalos,1Ivan1Alejandro. Hydrothermal epitaxy of functional perovskite thin films.1Diss.1Université1du1Québec,1Institut1national1de1la1recherche1scientifique,12 06. [34]. Misra,1Abha,1et1al.1"Hexagonal1diamond1synthesis1on1h-Ga1N1strained1films." Applied physics letters 89.71(2 6):1 70900. [35]. Oba,1Masato,1and1Takashi1Sugino.1"Oriented1growth1of1diamond1on1( 0)1surface1of1hexagonal1GaN." Diamond and related materials 0 .3-71(2 0):10343-0346. [36]. Chen,1Y.1C.,1et1al.1"Synthesis1and1characterization1of1smooth1ultrananocrystalline1diamond1films1via1low1pressure1bias-enhanced1nucleation1and1growth." Applied Physics Letters 92.031(2 8):1033003. [37]. Lee,1Yen-Chih,1et1al.1"Improvement1on1the1growth1of1ultrananocrystalline1diamond1by1using1pre-nucleation1technique." Diamond and related materials 05.2-31(2 6):1353-356. [38]. Yarbrough,1Walter1A.1"Vapor‐Phase‐Deposited1Diamond—Problems1and1Potential." Journal of the American Ceramic Society 75.021(0992):13079-32 . [39]. Monteiro,1Othon1R.,1and1Hongbing1Liu.1"Nucleation1and1growth1of1CVD1diamond1films1on1patterned1substrates." Diamond and related materials 02.81(2 3):10357-0360. [40]. Chen,1Li-Ju,1et1al.1"Effects1of1pretreatment1processes1on1improving1the1formation1of1ultrananocrystalline1diamond." Journal of applied physics 0 0.61(2 7):1 643 8. [41]. Buijnsters,1Josephus1Gerardus,1et1al.1"Enhancement1of1the1nucleation1of1smooth1and1dense1nanocrystalline1diamond1films1by1using1molybdenum1seed1layers." Journal of Applied Physics 0 8.0 1(2 0 ):10 3504. [42]. Naguib,1Nevin1N.,1et1al.1"Enhanced1nucleation,1smoothness1and1conformality1of1
    87
    ultrananocrystalline1diamond1(UNCD)1ultrathin1films1via1tungsten1interlayers." Chemical Physics Letters 43 .4-61(2 6):1345-35 . [43]. Pradhan,1Debabrata,1and1I.1Nan1Lin.1"Effect1of1titanium1powder1assisted1surface1pretreatment1process1on1the1nucleation1enhancement1and1surface1roughness1of1ultrananocrystalline1diamond1thin1films." Applied Surface Science 255.051(2 9):169 7-6903. [44]. Chakk,1Y.,1R.1Brener,1and1A.1Hoffman.1"Enhancement1of1diamond1nucleation1by1ultrasonic1substrate1abrasion1with1a1mixture1of1metal1and1diamond1particles." Applied physics letters 66.201(0995):12809-2820. [45]. Buijnsters,1Josephus1Gerardus,1Luis1Vázquez,1and1J.1J.1Ter1Meulen.1"Substrate1pre-treatment1by1ultrasonication1with1diamond1powder1mixtures1for1nucleation1enhancement1in1diamond1film1growth." Diamond and related materials 08.0 1(2 9):10239-0246. [46]. Zhang,1W.1J.,1et1al.1"Diamond1nucleation1enhancement1by1direct1low-energy1ion-beam1deposition." Physical Review B 60.81(2 ):15579. [47]. Wort,1Chris1JH,1and1Richard1S.1Balmer.1"Diamond1as1an1electronic1material." Materials today 00.0-21(2 8):122-28. [48]. Knittel,1Peter,1et1al.1"Characterisation1of1thin1boron-doped1diamond1films1using1Raman1spectroscopy1and1chemometrics." Analytical methods 00.51(2 09):1582-586. [49]. Suzuki,1Akane,1et1al.1"Fabrication,1characterization,1and1application1of1boron-doped1diamond1microelectrodes1for1in1vivo1dopamine1detection." Analytical chemistry 79.221(2 7):186 8-8605. [50]. Bhattacharyya,1S.,1et1al.1"Synthesis1and1characterization1of1highly-conducting1nitrogen-doped1ultrananocrystalline1diamond1films." Applied Physics Letters 79.0 1(2 0):10440-0443.
    88
    [51]. Achatz,1P.,1et1al.1"Effect1of1nitrogen1on1the1electronic1properties1of1ultrananocrystalline1diamond1thin1films1grown1on1quartz1and1diamond1substrates." Physical Review B 74.051(2 6):1055429. [52]. Lin,1Chii-Ruey,1et1al.1"Fabrication1of1highly1transparent1ultrananocrystalline1diamond1films1from1focused1microwave1plasma1jets." Surface and Coatings Technology 2301(2 03):1594-598. [53]. Liao,1Wen-Hsiang,1Da-Hua1Wei,1and1Chii-Ruey1Lin.1"Synthesis1of1highly1transparent1ultrananocrystalline1diamond1films1from1a1low-pressure,1low-temperature1focused1microwave1plasma1jet." Nanoscale research letters 7.01(2 02):182. [54]. Zhou,1Yan,1et1al.1"Thermal1characterization1of1polycrystalline1diamond1thin1film1heat1spreaders1grown1on1GaN1HEMTs." Applied Physics Letters 000.41(2 07):1 409 0. [55]. Ferrari,1Andrea1Carlo,1and1John1Robertson.1"Raman1spectroscopy1of1amorphous,1nanostructured,1diamond–like1carbon,1and1nanodiamond." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362.08241(2 4):12477-2502. [56]. Chu,1Paul1K.,1and1Liuhe1Li.1"Characterization1of1amorphous1and1nanocrystalline1carbon1films." Materials Chemistry and Physics 96.2-31(2 6):1253-277. [57]. Kuzmany,1H.,1et1al.1"The1mystery1of1the1004 1cm−101Raman1line1in1nanocrystalline1diamond1films." Carbon 42.5-61(2 4):1900-907. [58]. Kurian,1Joji,1et1al.1"The1role1of1nanographitic1phase1on1enhancing1the1electron1field1emission1properties1of1hybrid1granular1structured1diamond1films:1the1electron1energy1loss1spectroscopic1studies." Journal of Physics D: Applied Physics 47.401(2 04):14053 3. [59]. Corrigan,1T.1D.,1et1al.1"The1effect1of1nitrogen1addition1to1Ar/CH41plasmas1on1the1
    89
    growth,1morphology1and1field1emission1of1ultrananocrystalline1diamond." Diamond and related materials 00.01(2 2):143-48. [60]. Birrell,1James,1et1al.1"Interpretation1of1the1Raman1spectra1of1ultrananocrystalline1diamond." Diamond and Related Materials 04.01(2 5):186-92. [61]. Dal1Lago,1Matteo,1et1al.1"Degradation1mechanisms1of1high-power1white1LEDs1activated1by1current1and1temperature." Microelectronics Reliability 50.9-001(2 00):10742-0746.

    無法下載圖示 全文公開日期 2025/01/08 (校內網路)
    全文公開日期 2030/01/08 (校外網路)
    全文公開日期 2030/01/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE