簡易檢索 / 詳目顯示

研究生: 施友恩
Yu-En Shih
論文名稱: 奈米金屬粒子/石墨烯混成材料在染料敏化太陽能電池對電極之研究
Study of Metal Nanoparticles/Graphene Nanohybrids as Counter Electrode for Dye-sensitized Solar Cells
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 陳良益
Liang-Yih Chen
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 奈米金屬粒子染料敏化太陽能電池石墨烯對電極奈米混成
外文關鍵詞: Metal Nanoparticles, Dye-sensitized solar cell, Graphene, counter electrode, Nanohybrids
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的探討高分子分散劑協助石墨烯材料的分散,並研究微米/奈米混成材料在染料敏化電池上的應用。結果討論分成四個部份探討,首先合成高分子型分散劑來幫助石墨烯達到良好的分散程度應用於後面的研究;其次,探討不同製程的石墨烯產品的特性,為隨後的研究奠定材料的基礎;第三部分使用不同含氧量的石墨烯製成取代白金材料的染敏電池對電極,在此光陽極以二氧化鈦為主,染料以N719進行吸附,電解質以I-/I3- 體系為主,經由電性分析在含氧量20%的石墨烯展現出最好的效率5.8% 相較於白金7%的效率(在100 mW cm2 AM1.5G下),此外少量鍍上10 nm白金後效率可以達到6.8%的轉換效率,超過10 nm白金的轉換效率(3.4%)。結果指出石墨烯在電性良好的條件之外還需要足夠的含氧量成為催化碘離子的活性點;第四部份使用微米/奈米石墨烯混成奈米金粒子作為取代白金及透明導電玻璃的無導電玻璃染敏電池的對電極材料,並以二氧化鈦漿料製作光陽極,研究其影響,結果指出,石墨烯薄膜電阻(10.3 Ω/sq)可以超過導電玻璃之電阻(12 Ω/sq),並在石墨烯與奈米金粒子重量比為20/1時擁有最好的轉換效率在無FTO的對電極時達到3.66% 的光電轉換效率,對比於白金/FTO 3.81% 的轉換效率,超過白金無FTO的3.11% 轉換效率,本研究提供一個染敏電池在降低製作成本的可行方向。


    In this study, we investigated the dispersibility of graphene-based material by a simple solution dispersion processing with the polyamide surfactant; utilization of nanocomposites in the counter electrode of DSSC was discussed in the same time. In the beginning, surfactant was synthesized and analysis by FT-IR, GPC, solubility. By efficiently assisting reduced graphene oxide(rGO), polyamide surfactant was used in the further experiment. Secondly, to elaborate mechanism of dispersion, different rGO were analyzed by Raman spectrum, FT-IR and element analysis. Thirdly, dye-sensitized solar cell with different oxygen-containing rGO-based counter electrode were studied. TiO2, N719, and I-/I3- were used to compose the DSSCs. The DSSC with the GO20(20% oxygen-containing) counter electrode exhibited a power conversion efficiency(η) of 5.8 %, which was comparable with DSSC with Pt electrode (7 %) under AM 1.5 illumination of 100mW cm-2. With sputter 10 nm platinum on GO20 counter electrode, the efficiency achieved 6.8 % which superior to 10 nm Pt counter electrode (3.4%). The result indicated rGO-based counter electrode need sufficient active site to catalyze tri-iodide. Finally, DSSC of FTO-free rGO/gold nanoparticles(AuNPs) were studied, replacing FTO and platinum by rGO/AuNPs film. The film with rGO/AuNPs exhibited low sheet resistance 10.3 Ω/sq, which is lower than FTO 12 Ω/sq sheet resistance. The different weight ratio of rGO/AuNPs were measured at 200/1, 20/1, 2/1. FTO-free DSSC with rGO/AuNPs 20/1 display highest efficiency at 3.66%, surpass the efficiency of FTO-free Pt electrode with 3.11% efficiency. The result provided an achievable way to enhance efficiency and cost-reduction of DSSCs.

    中文摘要 I Abstract II 表目錄 VII 圖目錄 VIII 第 一 章 前言與研究動機 1 1.1 前言 1 1.2 研究動機 2 第 二 章 文獻回顧 3 2.1 石墨烯介紹 3 2.1.1 石墨烯 3 2.1.2 還原氧化石墨烯 4 2.1.3 石墨烯的分散 6 2.2 染料敏化太陽能電池之結構組成 8 2.2.1 光陽極電極(Photoanode) 9 2.2.2 敏化材料(Sensitized material) 12 2.2.3 電解液(Electrolyte) 15 2.2.4 對電極電極 16 2.2.5 染料敏化太陽能電池之工作原理 17 2.3 以碳材為基礎的染料敏化電池對電極 18 2.2.1 石墨烯對電極 19 2.3.2石墨烯複合材料之對電極 20 2.3.3奈米金粒子(AuNPs)混摻碳材之對電極 22 2.4 染料敏化電池的發展 23 第 三 章 、實驗方法 26 3.1 實驗流程圖 26 3.2 實驗藥品與儀器 27 3.2.1 藥品/耗材名稱 27 3.2.2 實驗設備 30 3.2.3 分析儀器 32 3.3 實驗步驟 41 3.3.1 基板清洗 41 3.3.2 二氧化鈦層製備 41 3.3.3 光敏化染料吸附 42 3.3.4 製備石墨烯/奈米金粒子混摻粉體 42 3.3.5 製備石墨烯及石墨烯/奈米金粒子分散液 43 3.3.6 對電極之置備 44 3.3.7 封裝染料敏化太陽能電池 44 4.1 有機分散劑 46 4.1.1 以FT-IR鑑定有機分散劑的合成 47 4.1.2 以GPC鑑定有機分散劑的合成結果 49 4.1.3 分散劑於不同有機溶劑的溶解度測試 50 4.2 石墨烯的選擇 52 4.2.1 以Raman鑑定石墨烯 52 4.2.2 以元素分析儀鑑定石墨烯 55 4.2.3 以傅立葉轉換紅外光譜儀鑑定石墨烯 56 4.3 含氧量不同的石墨烯進行染敏太陽能電池之研究 57 4.3.1 石墨烯之分散 57 4.3.2 石墨烯對電極微結構之分析 60 4.3.3 以循環伏安法分析石墨烯對電極 62 4.3.4 以電阻抗頻譜分析石墨烯對電極 64 4.3.5 含氧量不同的石墨烯對電極所構成之染敏太陽能電池效能分析 65 4.4 無導電玻璃石墨烯摻雜奈米金粒子之對電極 68 4.4.1 石墨烯/奈米金粒子之分散 69 4.4.2 石墨烯/奈米金粒子對電極微結構之分析 70 4.4.3 以循環伏安法分析石墨烯摻雜奈米金屬之對電極 72 4.4.4 以電阻抗頻譜分析石墨烯/奈米金粒子對電極 75 4.4.5 無導電玻璃摻雜奈米金屬之石墨烯對電極所構成之染敏太陽能電池效能分析 78 第 四 章 結論 81 第 五 章 參考文獻 82

    1. IEA, world energy oulook. 2017.
    2. UNEP, Global Trends In Renewable Energy Investment. 2017.
    3. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696) p. 666-669.
    4. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3) p. 183-191.
    5. Novoselov, K.S., et al., A roadmap for graphene. Nature, 2012. 490(7419) p. 192-200.
    6. Compton, O.C. and S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 2010. 6(6) p. 711-723.
    7. Hummers Jr, W.S., Offeman, R. E. , Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6) p. 1339-1339.
    8. Laura J. Cote, J.K., Vincent C. Tung, Jiayan Luo, and a.J.H. Franklin Kim, Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 2010. 83(1) p. 95-110.
    9. Dreyer, D.R.P.S.B.C.W.R.R.S., The chemistry of graphene oxide. Chemical Society Reviews, 2010. 39(1) p. 228-240.
    10. Paredes, J.I., et al., Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19) p. 10560-10564.
    11. Konios, D., et al., Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014. 430 p. 108-112.
    12. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459) p. 419-425.
    13. Chiu, C.W. and G.B. Ou, Facile preparation of highly electrically conductive films of silver nanoparticles finely dispersed in polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene triblock copolymers and graphene oxide hybrid surfactants. Rsc Advances, 2015. 5(124) p. 102462-102468.
    14. Chiu, C.W., et al., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science, 2014. 39(3) p. 443-485.
    15. Ahmad, M.S., A.K. Pandey, and N. Abd Rahima, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable & Sustainable Energy Reviews, 2017. 77 p. 89-108.
    16. Reyes-Coronado, D., et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(145605) p. 10.
    17. NREL, Reference Solar Spectral Irradiance: Air Mass 1.5.
    18. Mozaffari, S., M.R. Nateghi, and M.B. Zarandi, An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable & Sustainable Energy Reviews, 2017. 71 p. 675-686.
    19. Kong, F.-T., S.-Y. Dai, and Kong-JiaWang, Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2007(75384) p. 13.
    20. Kawano, R., et al., High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 164(1-3) p. 87-92.
    21. Wang, P., et al., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003. 125(5) p. 1166-1167.
    22. Wang, P., et al., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications, 2002(24) p. 2972-2973.
    23. Sapp, S.A., et al., Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society, 2002. 124(37) p. 11215-11222.
    24. Sonmezoglu, S., C. Akyurek, and S. Akin, High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. Journal of Physics D-Applied Physics, 2012. 45(42) p. 7.
    25. Clifford, J.N., et al., Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: Evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate. Journal of Physical Chemistry C, 2007. 111(17) p. 6561-6567.
    26. Iqbal, M.Z. and S. Khan, Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes. Solar Energy, 2018. 160 p. 130-152.
    27. Carbonaceous Materials and Their Advances as a Counter Electrode in Dye-Sensitized Solar Cells: Challenges and Prospects. Chemsuschem, 2015. 8(9) p. 1510-1533.
    28. Lee, J.S., et al., Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Physical Chemistry Chemical Physics, 2012. 14(22) p. 7938-7943.
    29. Roy-Mayhew, J.D., et al., Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. Acs Nano, 2010. 4(10) p. 6203-6211.
    30. Miao, X.H., et al., Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells. Electrochimica Acta, 2013. 96 p. 155-163.
    31. Chang, Q.H., et al., Graphene nanosheets inserted by silver nanoparticles as zero-dimensional nanospacers for dye sensitized solar cells. Nanoscale, 2014. 6(10) p. 5410-5415.
    32. Yue, G.T., et al., Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2013. 92 p. 64-70.
    33. Ramalingam, K., et al., Free-Standing Graphene/Conducting Polymer Hybrid Cathodes as FTO and Pt-Free Electrode for Quasi-State Dye Sensitized Solar Cells. Chemistryselect, 2016. 1(15) p. 4814-4822.
    34. Shakir, S., et al., Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified counter electrode in dye sensitized solar cells. Journal of Materials Science-Materials in Electronics, 2018. 29(6) p. 4602-4611.
    35. Kim, H.Y., et al., Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells. Journal of Applied Physics, 2017. 121(24) p. 7.
    36. Gratzel, M., Dye-sensitized solar cells. Photochemistry and Photobiology, 2003. 4 p. 145-153.
    37. Singh, E. and H.S. Nalwa, Graphene-Based Dye-Sensitized Solar Cells: A Review. Science of Advanced Materials, 2015. 7(10) p. 1863-1912.
    38. Martinson, A.B.F., et al., Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. Journal of Physical Chemistry A, 2009. 113(16) p. 4015-4021.
    39. A. C. Ferrari, * J. C. Meyer,2 V. Scardaci,1 C. Casiraghi,1 M. Lazzeri,3 F. Mauri,3 S. Piscanec,1 D. Jiang,4 and S.R. K. S. Novoselov, 2 and A. K. Geim4, Raman Spectrum of Graphene and Graphene Layers. Physical Review letters, 2006 p. 5.
    40. King, A.A.K., et al., A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Scientific Reports, 2016. 6 p. 6.
    41. Bruna, M., et al., Doping Dependence of the Raman Spectrum of Defected Graphene. Acs Nano, 2014. 8(7) p. 7432-7441.
    42. Claramunt, S., et al., The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. Journal of Physical Chemistry C, 2015. 119(18) p. 10123-10129.

    無法下載圖示 全文公開日期 2024/11/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE