簡易檢索 / 詳目顯示

研究生: 吳長諭
Chang-Yu Wu
論文名稱: 白色填料應用於三元乙丙烯橡膠影響效應之研究
The performance and application of white filler for EPDM
指導教授: 邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
YOU,JIN-YANG
吳昌謀
WU,CHANG-MOU
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 70
中文關鍵詞: 三元乙丙烯橡膠填料效應高嶺土滑石粉碳酸鈣電線電纜
外文關鍵詞: Ethlyene Propylene Diene Monomer, White Filler, Kaolin Clay, Talc, CaCO3, Cable
相關次數: 點閱:372下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今橡膠工業技術發展迅速並廣泛應用,而原料為區別橡膠工業之主要分水嶺,主要分為天然橡膠及合成橡膠。基於天然橡膠的生產地區受到限制、產量不足及彌補天然橡膠缺少的特性,合成橡膠便隨著不同性質的需求而產生。
    合成橡膠中常見的三元乙丙烯橡膠(EPDM,Ethlyene Propylene Diene Monomer),因其具有良好的電氣絕緣性、耐候性、耐臭氧及耐高溫性,故廣泛應用於講求安全性之材料,例如電線電纜、密封材、車用配件、建築防水材、接縫材及保護材等。在電線電纜中,多以線材顏色區分電壓高低、電氣絕緣性、防潮耐水性等特性,得以應用於適用之環境,故填充料大多使用易與色母共混及上色的白色填料,而研究白色填料性質及其份量之差異為本實驗主要探討之目標。
    實驗部分首先以微型混煉機依配方製作出橡膠試片,透過硫化曲線及木尼黏度測試,分析不同填料份量及種類之硫化膠性質,再透過物理機械性質分析比較配方間差異,如比重、硬度、拉伸強度、熱老化、吸水率以及永久壓縮變形率,最後比較其電氣性質,如體積電阻率以及絕緣破壞強度,並由上述性質歸納出填料份量對於三元乙丙烯橡膠之影響效應以及填料種類之最佳應用,並比較高嶺土表面改性前後之差異。
    由實驗得知填料份量之增加對硬度、比重、抗壓性、耐吸水性呈正相關效應;對伸長率、硫化加工特性、電氣絕緣性質方面呈現負相關效應。高嶺土填料鍵結能力強,在電氣絕緣特性及抗壓性方面有最佳效果;滑石粉分子量大、型態為片狀,應用於機械性質上如抗拉伸長有較良好效果;填料選用碳酸鈣在耐水性及硫化加工特性方面有最佳效果;添加Silane表面改性之高嶺土改善了混煉之分散均勻性及疏水性;伸長率、電氣絕緣效果下降。


    Nowadays, rubber industry technology has developed quickly and widely used, and the natural rubber and synthetic rubber are the main raw meterials that distinguish the rubber industry. Due to limited produced areas of natural rubber, insufficient production and the lack of some characteristics, synthetic rubber is produced for the needs of different properties.
    EPDM (Ethlyene Propylene Diene Monomer) is a common synthetic rubber which has good electrical insulation, weather resistance, ozone resistance and high temperature resistance, is widely used in safety-oriented materials, such as cables, sealing materials, automotive parts, building waterproofing materials, joint materials and protective materials. The color of the cable is used to distinguish the voltage level, electrical insulation, moisture resistance and water resistance, so that it can be applied to the applicable environment. Therefore, most of the fillers are used in white color that are easy to blend with the color particles. Analysis different type of the white fillers and filler content are the main purpose of this experiment.
    At the first part of the experiment, we used 2HP bench kneader mixing with the rubber to prepare test samples according to the formulas. Through the vulcanization curve and the Mooney viscosity test, we can analysis the vulcanization properties of different fillers content and types. Then, analysis the mechanical properties through the tests of specific gravity, hardness, tensile strength, heat aging, water absorption and the permanent compression set. Finally, analysis the electrical properties through the tests of volume resistivity and dielectric breakdown strength. According to the test results, we can get the conclusions of the effect of filler content and the filler types, also compare the differences between the silane modification of kaolin clays.
    It is known from experiments that the increase of filler content has a positive correlation effect on hardness, specific gravity, pressure resistance and water absorption resistance; it has a negative correlation effect on elongation, vulcanization processing characteristics and electrical insulation properties. The kaolin filler has strong bonding ability and has the best effect on electrical insulation properties and pressure resistance. The talc has a large molecular weight and a sheet shape, and is applied to mechanical properties such as tensile strength. The filler is selected from calcium carbonate. It has the best effect in water resistance and vulcanization processing characteristics; the addition of Silane surface modified kaolin improves the dispersion uniformity and hydrophobicity of the kneading; the elongation and electrical insulation effect are degraded.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 2 2.1 三元乙丙烯橡膠 2 2.2 高嶺土 4 2.3 滑石粉 5 2.4 碳酸鈣 6 2.4.1 碳酸鈣在橡膠中的應用 6 2.5 橡膠硫化歷史[15] 7 2.5.1 橡膠硫化歷史 7 2.5.2 橡膠硫化體系 8 第三章 實驗部分 12 3.1 實驗架構 12 3.2 材料及配方 13 3.2.1 使用材料及配方 13 3.3 試驗方法與步驟 16 3.3.1 硫化膠製備 16 3.3.2 硫化性質測試 18 3.3.2.1 木尼黏度試驗(Mooney Viscosity)[17] 18 3.3.2.2 硫化試驗(Vulcanization) 19 3.3.3 機械性質測試 20 3.3.3.1 比重試驗(Specific Gravity) 20 3.3.3.2 硬度試驗(Hardness) 21 3.3.3.3 拉伸強度及伸長率試驗(Stress and Starin) 22 3.3.3.4 熱老化試驗(Aging Test)[18] 23 3.3.3.5 吸水率試驗(Water Absorption Test) 24 3.3.3.6 永久壓縮變形試驗(Compression Set) 26 3.3.4 電氣性質測試 28 3.3.4.1 體積電阻率(Volume Resistivity) 28 3.3.4.2 絕緣破壞強度(Dielectric Breakdown Strength) 30 第四章 結果與討論 32 4.1 硫化性質分析 32 4.1.1 木尼黏度試驗(Mooney Viscosity) 32 4.1.2 硫化曲線(Vulcanization Curve) 35 4.2 機械性質分析 38 4.2.1 比重試驗(Specific Gravity) 38 4.2.2 硬度試驗(Hardness) 40 4.2.3 拉伸強度及伸長率試驗(Stress and Starin) 42 4.2.4 熱老化試驗(Aging Test) 45 4.2.5 吸水率試驗(Water Absorption Test) 47 4.2.6 永久壓縮變形試驗(Compression Set) 50 4.3 電氣性質分析 52 4.3.1 體積電阻率(Volume Resistivity) 52 4.3.2 絕緣破壞強度(Dielectric Breakdown Strength) 54 第五章 結論 56 第六章 參考文獻 57 圖目錄 圖3- 1 2HP桌上型微型混煉機 17 圖3- 2 熱壓成型機 17 圖3- 3 木尼黏度機 18 圖3- 4 無轉子流變儀 19 圖3- 5 比重計 20 圖3- 6 啞鈴狀2型試片 21 圖3- 7 硬度計-Shore A 21 圖3- 8 萬能拉力試驗機 22 圖3- 9 熱風循環烘箱 23 圖3- 10 吸水率試片 25 圖3- 11 真空烘箱 25 圖3- 12 永久壓縮變形試片 26 圖3- 13 混合流變儀 27 圖3- 14 體積電阻率試片 28 圖3- 15 絕緣電阻計 29 圖3- 16 絕緣破壞強度試片 30 圖3- 17 耐壓試驗機 31 圖4- 1 不同填料份量之木尼黏度曲線圖 33 圖4- 2 不同填料種類之木尼黏度曲線圖 34 圖4- 3 不同填料份量之硫化曲線圖 36 圖4- 4 不同填料種類之硫化曲線圖 37 圖4- 5 不同填料份量之比重圖 38 圖4- 6 不同填料種類之比重圖 39 圖4- 7 不同填料份量之硬度圖 40 圖4- 8 不同填料種類之硬度圖 41 圖4- 9 不同填料份量之應力應變圖 43 圖4- 10 不同填料種類之應力應變圖 44 圖4- 11 不同填料份量之熱老化應力應變圖 45 圖4- 12 不同填料種類之熱老化應力應變圖 46 圖4- 13 不同填料份量之吸水率圖 48 圖4- 14 不同填料種類之吸水率圖 49 圖4- 15 不同填料份量之永久壓縮變形率圖 50 圖4- 16 不同填料種類之永久壓縮變形率圖 51 圖4- 17 不同填料份量之體積電阻圖 52 圖4- 18 不同填料種類之體積電阻圖 53 圖4- 19 不同填料份量之絕緣破壞強度圖 54 圖4- 20 不同填料種類之絕緣破壞強度圖 55   表目錄 表2- 1 CV、semi-EV和EV體系的配方與硫化膠性能比較 9 表3- 1 填料份量實驗配方表 14 表3- 2 填料種類實驗配方表 15 表4- 1 不同填料份量之木尼黏度參數表 33 表4- 2 不同填料種類之木尼黏度參數表 34 表4- 3 不同填料份量之硫化參數表 36 表4- 4 不同填料種類之硫化參數表 37 表4- 5 不同填料份量之比重參數表 38 表4- 6 不同填料種類之比重參數表 39 表4- 7 不同填料份量之硬度參數 40 表4- 8 不同填料種類之硬度參數表 41 表4- 9 不同填料份量之應力應變參數表 43 表4- 10 不同填料種類之應力應變參數表 44 表4- 11 不同填料份量之熱老化應力應變變化率參數表 45 表4- 12 不同填料種類之熱老化應力應變變化率參數表 46 表4- 13 不同填料份量之吸水率參數表 48 表4- 14 不同填料種類之吸水率參數表 49 表4- 15 不同填料份量之永久壓縮變形率參數表 50 表4- 16 不同填料種類之永久壓縮變形率參數表 51 表4- 17 不同填料份量之體積電阻參數表 52 表4- 18 不同填料種類之體積電阻參數表 53 表4- 19 不同填料份量之絕緣破壞強度參數表 54 表4- 20 不同填料種類之絕緣破壞強度參數表 55

    [1] S. Çavdar, T. Özdemir, A. Usanmaz, Comparative study on mechanical, thermal, viscoelastic and rheological properties of vulcanised EPDM rubber, Plastics, Rubber and Composites 39(6) (2010) 277-282.
    [2] C. Canaud, L.L.Y. Visconte, M.A. Sens, R.C.R. Nunes, Dielectric properties of flame resistant EPDM composites, Polymer degradation and Stability 70(2) (2000) 259-262.
    [3] J.K. Lee, S.J. Hong, X. Liu, S.H. Yoon, Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules, Macromolecular Research 12(5) (2004) 478-483.
    [4] Q. Liu, Y. Zhang, H. Xu, Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica, Applied Clay Science 42(1-2) (2008) 232-237.
    [5] W. Wu, L. Tian, Formulation and morphology of kaolin-filled rubber composites, Applied Clay Science 80 (2013) 93-97.
    [6] J.C. Dai, J.T. Huang, Surface modification of clays and clay–rubber composite, Applied Clay Science 15(1-2) (1999) 51-65.
    [7] S. Manjhi, G. Sarkhel, Effect of maleic anhydride grafted ethylene propylene diene monomer (MAH‐g‐EPDM) on the properties of kaolin reinforced EPDM rubber, Journal of Applied Polymer Science 119(4) (2011) 2268-2274.
    [8] J. Stamhuis, Mechanical properties and morphology of polypropylene composites. Talc‐filled, elastomer‐modified polypropylene, Polymer composites 5(3) (1984) 202-207.
    [9] M. Sarrionandia, A. Lopez‐Arraiza, J. Aurrekoetxea, A. Arostegui, Structure and mechanical properties of a talc‐filled polypropylene/ethylene‐propylene‐diene composite after reprocessing in the melt state, Journal of applied polymer science 114(2) (2009) 1195-1201.
    [10] M. Öksüz, M. Eroglu, H. Yıldırım, Effect of talc on the properties of polypropylene/ethylene/propylene/diene terpolymer blends, Journal of applied polymer science 101(5) (2006) 3033-3039.
    [11] 邹德荣, 纳米 CaCO3 对三元乙丙橡胶 (EPDM) 材料力学性能影响研究, 江苏化工 30(4) (2002) 35-37.
    [12] X. Jiannan, C. Xiaodong, Studies on PP/EPDM Blend and the Blend Filled with CaCO3 and Talc, PLASTICS (4) (1997) 5.
    [13] Q.-y. SHE, H.-c. TIAN, J.-b. HAN, S.-m. WU, L.-q. ZHANG, Effect of Nano-CaCO3 on Properties of EPDM/Polypropylene Thermoplastic Vulcanizate [J], Special Purpose Rubber Products 6 (2007).
    [14] Y. Zhou, S. Wang, Y. Zhang, Y. Zhang, Reinforcement effect of MAA on nano‐CaCO3‐filled EPDM vulcanizates and possible mechanism, Journal of Polymer Science Part B: Polymer Physics 44(8) (2006) 1226-1236.
    [15] R.N. Datta, Rubber curing systems, iSmithers Rapra Publishing2002.
    [16] H. Ismail, H. Chia, The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds, European polymer journal 34(12) (1998) 1857-1863.
    [17] J. Maláč, Mooney viscosity, mooney elasticity and procesability of raw natural rubber, Journal of Materials Science and Engineering with Advanced Technology 3(1) (2011) 67-87.
    [18] Q. Zhao, X. Li, J. Gao, Aging of ethylene–propylene–diene monomer (EPDM) in artificial weathering environment, Polymer degradation and stability 92(10) (2007) 1841-1846.
    [19] Y. Minoura, S. Yamashita, H. Okamoto, T. Matsuo, M. Izawa, S.I. Kohmoto, Y. Minoura, S. Yamashita, H. Okamoto, T. Matsuo, Crosslinking and mechanical property of liquid rubber. I. Curative effect of aliphatic diols, Journal of Applied Polymer Science 22(7) (1978) 1817-1844.
    [20] L. Yahaya, K. Adebowale, B. Olu-Owolabi, Cure characteristics and rheological properties of modified kaolin-natural rubber composites, American Chemical Science Journal 4(4) (2014) 472-480.

    無法下載圖示 全文公開日期 2024/08/07 (校內網路)
    全文公開日期 2024/08/07 (校外網路)
    全文公開日期 2024/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE