簡易檢索 / 詳目顯示

研究生: 陳資文
Tz-Wen Chen
論文名稱: 回收乾電池氧化錳用於化學迴路燃燒程序鐵錳複合載氧體之可行性評估
Feasibility Evaluation of Manganese Oxide from Waste Dry Battery as Fe-Mn Oxygen Carrier for Chemical Looping Combustion
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 化學迴路燃燒程序鐵錳氧化物載氧體回收乾電池
外文關鍵詞: Chemical Looping Combustion, Fe-Mn Oxide, Waste Dry Cell Battery, Oxygen Carrier
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴路燃燒程序為一種低成本、高能源效率、環境友善又有高二氧化碳捕獲率的新穎燃燒技術,其關鍵就在名為「載氧體」的一種金屬氧化物陶瓷粉末觸媒上。其中錳系載氧體價格低廉且反應性優良,其選擇亦可為易取得之天然礦石或是工業廢棄物,為目前最具潛力之載氧體選擇,而生活中,廢棄乾電池裡就蘊含了大量的錳元素,將可以作為載氧體的最佳材料。
    因此本研究以乾電池之廢棄氧化錳與氧化鐵載氧體進行整合,使其作為新穎載氧體原料並應用化學迴路燃燒程序,以複合型載氧體之形式改良目前最廣被應用的鐵系觸媒,搭配XRD、TGA、SEM、實驗及半套式流體化床等實驗儀器,先評估回收乾電池氧化錳之材料組成以及熱學性質,再以氧化錳模擬乾電池粉末混合氧化鐵載氧體進行調配分析以及操作測試,最後再以實際乾電池粉末與氧化鐵進行複合型載氧體之合成,評估回收乾電池氧化錳用於化學迴路燃燒程序中之可行性。
    本研究最終測得回收乾電池氧化錳與Mn3O4有著相似性質,是可以做為鐵錳複合載氧體之材料之一,並得出氧化鐵/氧化錳複合型載氧體以有兩相互存的F7M3之鐵錳比例參數有著最優異的反應性性能以及抗團聚能力,但當以此比例實際以乾電池氧化錳取代純錳金屬氧化物時卻出現了鋅鐵氧化物之問題,導致反應性降低以及不耐磨耗等現象,即使如此,仍在其中發現鋅的存在使錳可以大量的固溶進氧化鐵,使原本不具釋氧能力之赤鐵礦結構亦出現釋氧之現象。


    The chemical loop combustion process is a novel combustion technology with low cost, high energy efficiency, environmental friendliness and high carbon dioxide capture rate. The key is the catalyst metal oxide ceramic powder called "oxygen carrier". However, manganese-based oxygen carriers are inexpensive and have good reactivity. They can also be selected as natural ores or industrial wastes, which are the most potential oxygen carriers. In our life, waste batteries also include a large amount of manganese will be used as the best material for the oxygen carrier.
    Therefore, in this study, the iron oxide and manganese oxide of the dry cell battery were integrated into a novel oxygen carrier material for chemical looping combustion program was applied to improve the most widely used iron system oxygen carrier. Use XRD, TGA, SEM, lab-scaled semi-fluidized bed reactor and other experimental instruments will first evaluate the material composition and thermal properties of the dry cell battery manganese oxide, and then mix the manganese oxide simulated dry battery powder with iron oxide as oxygen carrier to doing analysis and operation test. Finally, the synthesis of composite oxygen carrier by actual dry cell battery powder and iron oxide will be evaluate the feasibility of chemical looping combustion process.
    In this study, it was finally determined that the recovered dry battery manganese oxide has similar properties to Mn3O4, and it can be used as one of the materials of iron-manganese oxygen carrier. The F7M3 iron-manganese oxygen carrier is obtained to have two mutually existing, so this iron-manganese ratio parameter has the most excellent reactivity and anti-agglomeration ability, but when the ratio of actual manganese oxide is replaced by dry battery manganese oxide, the problem of zinc-iron oxide appears, it will result a decrease in reactivity and attrition resistance. Even so, the presence of zinc allows the manganese to be solid-dissolved into the iron oxide in a large amount, so that the hematite structure which does not have the ability to release oxygen also exhibits oxygen release.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 文獻回顧 7 2.1 化學迴路燃燒程序 7 2.2 載氧體的性能 10 2.2.1 高溫還原/氧化能力 10 2.2.2 載氧能力 13 2.2.3 抗團聚能力 14 2.2.4 機械強度 15 2.2.5 成本 16 2.2.6 環境友善 17 2.3 載氧體的選擇 18 2.3.1 鐵系(Fe2O3/ Fe3O4/ FeO/ Fe)載氧體 18 2.3.2 錳系(Mn2O3/ Mn3O4/ MnO/ Mn)載氧體 22 2.3.3 銅系(CuO/ Cu2O/ Cu)載氧體 26 2.3.4 鎳系(NiO/ Ni)載氧體 28 2.3.5 鈷系(Co3O4/ CoO/ Co)載氧體 30 2.3.6 複合型載氧體 31 2.4 燃料的種類 38 2.5 反應器的設計與種類 41 2.6 乾電池之陰極氧化錳以及其回收處理現況 44 第三章 實驗設備與程序 46 3.1 實驗藥品 47 3.2 材料製備 48 3.2.1 乾電池氧化錳之前處理 49 3.2.2 複合型載氧體之製備 49 3.3 實驗設備與分析儀器 51 3.3.1 X射線螢光光譜儀(X-ray Fluorescence Spectrometer,XRF) 51 3.3.2 X光繞射儀(X-Ray Diffractometer,XRD) 52 3.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy,FE-SEM) 53 3.3.4 熱重分析儀(Thermogravimetric Analyzer,TGA) 54 3.3.5 實驗級半套式流體化床反應器(Lab-scaled semi-fluidized bed reactor) 55 第四章 結果與討論 56 4.1 乾電池氧化錳混合物材料分析 56 4.1.1 乾電池氧化錳混合物之組成分析 56 4.1.2 乾電池氧化錳氧化/還原特性分析 59 4.2 氧化鐵/氧化錳複合型載氧體比例評估 66 4.2.1 氧化鐵/氧化錳複合型載氧體材料組成分析 69 4.2.2 氧化鐵/氧化錳複合型載氧體氧化/還原特性分析 71 4.2.3 氧化鐵/氧化錳複合型載氧體多圈氧化/還原循環特性分析 78 4.2.4 氧化鐵/氧化錳複合型載氧體於實驗級半套式流體化床多圈循環能力分析 84 4.3 回收乾電池氧化錳混合物於氧化鐵/氧化錳複合型載氧體之運用 93 4.3.1 回收乾電池氧化鐵/氧化錳複合型載氧體材料分析 93 4.3.2 回收乾電池氧化鐵/氧化錳複合型載氧體多圈氧化/還原循環特性分析 101 4.3.3 回收乾電池鐵/錳複合型載氧體於實驗級半套式流體化床多圈循環能力分析 104 第五章 結論與未來展望 107 5.1. 乾電池氧化錳混合物材料分析 107 5.2. 氧化鐵/氧化錳複合型載氧體比例評估 107 5.3. 回收乾電池氧化錳混合物於氧化鐵/氧化錳複合型載氧體之運用 108 5.4. 未來展望 109 第六章 參考文獻 110

    1. Agency, U.S.E.P., Inventory of U.S. greenhouse gas emissions and sinks: 1990-2014. 2016.
    2. 陳巾眉、蔡麗伶, 氣候變遷Q&A:溫室氣體會滯留在大氣中多久. 環境資源中心, 2012.
    3. Change, U.N.C., The Paris Agreement. 2015.
    4. Energy, B.S.R.o.W., BP Statistical Review of World Energy. BP Statistical Review of World Energy, 2018. 67th: p. 46-48.
    5. Griffin, D.P., The Carbon Majors Database. CDP Carbon Majors Report, 2017: p. 8.
    6. 國立台灣大學工程科學及海洋工程學系. 碳捕獲及封存知識網. 2018; Available from: http://www.nepii.tw/KM/CCS/index.html.
    7. 顧洋,邱炳嶔,吳鉉智, 化學迴圈程序技術及其在節能減碳領域之應用. Journal of Taiwan Energy, 2013. 1: p. 35-50.
    8. Kuo, Y.-L., W.-C. Huang, K. Young, Y.-H. Tseng, and C.-S. Tan, Method of applying electric arc furnace dust in chemical looping combustion process. 2017, Google Patents.
    9. 黃育徵, 循環經濟. 2017, 天下雜誌.
    10. Nandy, A., C. Loha, S. Gu, P. Sarkar, M.K. Karmakar, and P.K. Chatterjee, Present status and overview of Chemical Looping Combustion technology. Renewable and Sustainable Energy Reviews, 2016. 59: p. 597-619.
    11. Niu, P., Y. Ma, X. Tian, J. Ma, and H. Zhao, Chemical looping gasification of biomass: Part I. screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions. Biomass and Bioenergy, 2018. 108: p. 146-156.
    12. Frick, V., M. Rydén, and H. Leion, Investigation of Cu–Fe and Mn–Ni oxides as oxygen carriers for chemical-looping combustion. Fuel Processing Technology, 2016. 150: p. 30-40.
    13. Jiang, S., L. Shen, J. Wu, J. Yan, and T. Song, The investigations of hematite-CuO oxygen carrier in chemical looping combustion. Chemical Engineering Journal, 2017. 317: p. 132-142.
    14. Huang, Z., Z. Deng, D. Chen, F. He, S. Liu, K. Zhao, G. Wei, A. Zheng, Z. Zhao, and H. Li, Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier. Energy, 2017. 141: p. 1836-1844.
    15. 行政院環保署. 環境資源資料庫. 2018; Available from: https://erdb.epa.gov.tw/DataRepository/Other/MAT_RATE.aspx.
    16. 黃妙如、林坤讓、許明華, 我國乾電池回收現況與資源再生市場供需評估. 工業污染防治, 2003. 85: p. 42-76.
    17. Lewis, W.K. and E.R. Gilliland, Production of pure carbon dioxide. 1954, Google Patents.
    18. Ishida, M., D. Zheng, and T. Akehata, Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Energy, 1987. 12(2): p. 147-154.
    19. Richter, H.J. and K.F. Knoche. Reversibility of combustion processes. in ACS symposium series. 1983. ACS Publications.
    20. Ryu, H.-J., G.-T. Jin, and C.-K. Yi, Demonstration of inherent CO2 separation and no NOx emission in a 50kW chemical-looping combustor: continuous reduction and oxidation experiment, in Greenhouse Gas Control Technologies 7. 2005, Elsevier. p. 1907-1910.
    21. Ishida, M. and H. Jin, A novel chemical-looping combustor without NOx formation. Industrial & Engineering Chemistry Research, 1996. 35(7): p. 2469-2472.
    22. Birks, N., G.H. Meier, and F.S. Pettit, Introduction to the high temperature oxidation of metals. 2006: Cambridge University Press.
    23. Adanez, J., A. Abad, F. Garcia-Labiano, P. Gayan, and F. Luis, Progress in chemical-looping combustion and reforming technologies. Progress in energy and combustion science, 2012. 38(2): p. 215-282.
    24. Quddus, M.R., A Novel Mixed Metallic Oxygen Carrier for Chemical Looping Combustion: Preparation, Characterization and Kinetic Modeling. 2013.
    25. Jerndal, E., T. Mattisson, and A. Lyngfelt, Thermal analysis of chemical-looping combustion. Chemical Engineering Research and Design, 2006. 84(9): p. 795-806.
    26. Adánez, J.d., L.F. de Diego, F. García-Labiano, P. Gayán, A. Abad, and J. Palacios, Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels, 2004. 18(2): p. 371-377.
    27. Shen, L., J. Wu, J. Xiao, Q. Song, and R. Xiao, Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier. Energy & Fuels, 2009. 23(5): p. 2498-2505.
    28. Kang, K.-S., C.-H. Kim, K.-K. Bae, W.-C. Cho, S.-H. Kim, and C.-S. Park, Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. International Journal of Hydrogen Energy, 2010. 35(22): p. 12246-12254.
    29. Tao, S., L.-h. SHEN, X. Jun, Z.-p. GAO, H.-m. GU, and S.-w. ZHANG, Characterization of hematite oxygen carrier in chemical-looping combustion at high reduction temperature. Journal of Fuel Chemistry and Technology, 2011. 39(8): p. 567-574.
    30. Chiu, P.-C., Y. Ku, Y.-L. Wu, H.-C. Wu, Y.-L. Kuo, and Y.-H. Tseng, Characterization and evaluation of prepared Fe2O3/Al2O3 oxygen carriers for chemical looping process. Aerosol Air Qual. Res, 2014. 14: p. 981-990.
    31. Jipnang, E., P. Monheim, and H. Oterdoom. Process optimisation model for femn and simn production. in The Thirteenth International Ferroalloys Congress, Efficient Technologies in Ferroalloy Industry, Almaty, Kazakhstan. 2013.
    32. Stobbe, E.d., B. De Boer, and J. Geus, The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 1999. 47(1-4): p. 161-167.
    33. Zafar, Q., A. Abad, T. Mattisson, B. Gevert, and M. Strand, Reduction and oxidation kinetics of Mn3O4/Mg–ZrO2 oxygen carrier particles for chemical-looping combustion. Chemical Engineering Science, 2007. 62(23): p. 6556-6567.
    34. Mattisson, T., A. Lyngfelt, and H. Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels. International journal of greenhouse gas control, 2009. 3(1): p. 11-19.
    35. Adánez, J., A. Abad, T. Mendiara, P. Gayán, L. de Diego, and F. García-Labiano, Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 2018. 65: p. 6-66.
    36. Abad, A., T. Mattisson, A. Lyngfelt, and M. Rydén, Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, 2006. 85(9): p. 1174-1185.
    37. Arjmand, M., H. Leion, T. Mattisson, and A. Lyngfelt, Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Applied Energy, 2014. 113: p. 1883-1894.
    38. Johansson, M., T. Mattisson, and A. Lyngfelt, Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion. Chemical Engineering Research and Design, 2006. 84(9): p. 807-818.
    39. Costa, T., P. Gayán, A. Abad, F. García-Labiano, L. de Diego, D. Melo, and J. Adánez, Mn-based oxygen carriers prepared by impregnation for Chemical Looping Combustion with diverse fuels. Fuel processing technology, 2018. 178: p. 236-250.
    40. Wang, K., Q. Yu, Z. Zuo, L. Hou, and Q. Qin, Redox performance of Cu-based oxygen carrier used in chemical looping air separation combined oxy-fuel combustion technology. Applied Thermal Engineering, 2016. 98: p. 440-448.
    41. Wang, P., N. Means, B.H. Howard, D. Shekhawat, and D. Berry, The reactivity of CuO oxygen carrier and coal in chemical-looping with oxygen uncoupled (CLOU) and in-situ gasification chemical-looping combustion (iG-CLC). Fuel, 2018. 217: p. 642-649.
    42. Gayán, P., I. Adánez-Rubio, A. Abad, F. Luis, F. García-Labiano, and J. Adánez, Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, 2012. 96: p. 226-238.
    43. De Diego, L.F., F. Garcı́a-Labiano, J. Adánez, P. Gayán, A. Abad, B.M. Corbella, and J.M.a. Palacios, Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel, 2004. 83(13): p. 1749-1757.
    44. Svoboda, K., A. Siewiorek, D. Baxter, J. Rogut, and M. Pohořelý, Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures. Energy Conversion and Management, 2008. 49(2): p. 221-231.
    45. Shen, L., J. Wu, and J. Xiao, Experiments on chemical looping combustion of coal with a NiO based oxygen carrier. Combustion and Flame, 2009. 156(3): p. 721-728.
    46. Fan, L.-S., Chemical looping systems for fossil energy conversions. 2011: John Wiley & Sons.
    47. Fennell, P. and B. Anthony, Calcium and chemical looping technology for Power Generation and Carbon Dioxide (CO2) Capture. 2015: Elsevier.
    48. Azimi, G., H. Leion, M. Rydén, T. Mattisson, and A. Lyngfelt, Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU). Energy & Fuels, 2012. 27(1): p. 367-377.
    49. Arjmand, M., H. Leion, A. Lyngfelt, and T. Mattisson, Use of manganese ore in chemical-looping combustion (CLC)—Effect on steam gasification. International Journal of Greenhouse Gas Control, 2012. 8: p. 56-60.
    50. Azimi, G., T. Mattisson, H. Leion, M. Ryden, and A. Lyngfelt, Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 2015. 34: p. 12-24.
    51. Monazam, E.R., R.W. Breault, H. Tian, and R. Siriwardane, Reaction kinetics of mixed CuO–Fe2O3 with methane as oxygen carriers for chemical looping combustion. Industrial & Engineering Chemistry Research, 2015. 54(48): p. 11966-11974.
    52. Yang, W., H. Zhao, K. Wang, and C. Zheng, Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion. Proceedings of the Combustion Institute, 2015. 35(3): p. 2811-2818.
    53. Wang, B., Y. Cao, J. Li, W. Wang, H. Zhao, and C. Zheng, Migration and redistribution of sulfur species during chemical looping combustion of coal with CuFe2O4 combined oxygen carrier. Energy & Fuels, 2016. 30(10): p. 8499-8510.
    54. Xu, L., H. Sun, Z. Li, and N. Cai, Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied energy, 2016. 162: p. 940-947.
    55. Adánez-Rubio, I., M.T. Izquierdo, A. Abad, P. Gayán, F. Luis, and J. Adánez, Spray granulated Cu-Mn oxygen carrier for chemical looping with oxygen uncoupling (CLOU) process. International Journal of Greenhouse Gas Control, 2017. 65: p. 76-85.
    56. Wei, P., M. Bieringer, L.M. Cranswick, and A. Petric, In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases. Journal of materials science, 2010. 45(4): p. 1056.
    57. Azad, A.M., A. Hedayati, M. Rydén, H. Leion, and T. Mattisson, Examining the Cu–Mn–O spinel system as an oxygen carrier in chemical looping combustion. Energy Technology, 2013. 1(1): p. 59-69.
    58. Adánez-Rubio, I., A. Abad, P. Gayán, F. García-Labiano, F. Luis, and J. Adánez, Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process. Applied energy, 2017. 208: p. 561-570.
    59. Rydén, M., Chemical looping combustion of liquid fuels, in Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture. 2015, Elsevier. p. 287-298.
    60. Serrano, A., F. García-Labiano, L. de Diego, P. Gayan, A. Abad, and J. Adanez, Chemical Looping Combustion of liquid fossil fuels in a 1 kWth unit using a Fe-based oxygen carrier. Fuel Processing Technology, 2017. 160: p. 47-54.
    61. Chiu, P.-C., Y. Ku, H.-C. Wu, Y.-L. Kuo, and Y.-H. Tseng, Spent isopropanol solution as possible liquid fuel for moving bed reactor in chemical looping combustion. Energy & Fuels, 2013. 28(1): p. 657-665.
    62. Cao, Y., B. Li, H.-Y. Zhao, C.-W. Lin, S.P. Sit, and W.-P. Pan, Investigation of asphalt (Bitumen)-fuelled chemical looping combustion using durable copper-based oxygen carrier. Energy Procedia, 2011. 4: p. 457-464.
    63. Chiu, P.-C. and Y. Ku, Chemical looping process-a novel technology for inherent CO2 capture. Aerosol Air Qual. Res, 2012. 12: p. 1421-1432.
    64. 朱敬平, 化學迴圈燃燒技術發展概況簡介. 中興工程季刊, 2011年11月. 110期: p. 63-72.
    65. Kolbitsch, P., J. Bolhar-Nordenkampf, T. Pröll, and H. Hofbauer, Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation. Industrial & engineering chemistry research, 2009. 48(11): p. 5542-5547.
    66. Markström, P., C. Linderholm, and A. Lyngfelt, Chemical-looping combustion of solid fuels–design and operation of a 100 kW unit with bituminous coal. International Journal of Greenhouse Gas Control, 2013. 15: p. 150-162.
    67. Markström, P., C. Linderholm, and A. Lyngfelt, Operation of a 100 kW chemical-looping combustor with Mexican petroleum coke and Cerrejón coal. Applied energy, 2014. 113: p. 1830-1835.
    68. Fan, L., F. Li, and S. Ramkumar, Utilization of chemical looping strategy in coal gasification processes. Particuology, 2008. 6(3): p. 131-142.
    69. Tong, A., S. Bayham, M.V. Kathe, L. Zeng, S. Luo, and L.-S. Fan, Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University. Applied energy, 2014. 113: p. 1836-1845.
    70. Wu, H.-C., Y. Ku, H.-H. Tsai, Y.-L. Kuo, and Y.-H. Tseng, Rice husk as solid fuel for chemical looping combustion in an annular dual-tube moving bed reactor. Chemical Engineering Journal, 2015. 280: p. 82-89.
    71. Li, F. and L.-S. Fan, Clean coal conversion processes–progress and challenges. Energy & Environmental Science, 2008. 1(2): p. 248-267.
    72. Panasonic. Panasonic全球官方網站. 2019; Available from: http://www.panasonicbattery.com.tw/primary_batteries/whats/index.html.
    73. 涂耀仁、游鎮烽, 科學突破如何重置未來生活?廢電池變身環保幫手, in NCKU Magazine. p. 66-71.
    74. Huang, W.-C., Y.-L. Kuo, P.-C. Su, Y.-H. Tseng, H.-Y. Lee, and Y. Ku, Redox performance of Na-modified Fe2O3/Al2O3 with syngas as reducing agent in chemical looping combustion process. Chemical Engineering Journal, 2018. 334: p. 2079-2087.
    75. 黃薇臻, 電弧爐收集之集塵灰運用於化學迴圈燃燒程序的可行性評估, in 機械工程系. 2013, 國立臺灣科技大學: 台北市. p. 129.
    76. 徐凡, 錳-鐵氧化物系統運用於化學迴路燃燒程序之研究, in 機械工程系. 2018, 國立臺灣科技大學: 台北市. p. 125.
    77. Kjellqvist, L. and M. Selleby, Thermodynamic assessment of the Fe-Mn-O system. Journal of phase equilibria and diffusion, 2010. 31(2): p. 113-134.
    78. Wen, C. and Y. Yu, A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 1966. 12(3): p. 610-612.
    79. Raghavan, V., Fe-O-Zn (iron-oxygen-zinc). Journal of phase equilibria and diffusion, 2010. 31(4): p. 373-376.

    無法下載圖示 全文公開日期 2024/06/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE