簡易檢索 / 詳目顯示

研究生: 邱上峰
Shang-Fong Chiu
論文名稱: 富勒烯複合拋光液應用於電致動力輔助銅化學機械拋光研究
Analysis on Compound Slurry with Inclusion Complex of Beta-Cyclodextrin/C60 for Electro-Kinetic Force Assisted Copper Chemical Mechanical Planarization
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 蔡志成
Jhy-Cherng Tsai
劉顯光
Hsien-Kuang Liu
朱瑾
Jinn Chu
郭俞麟
Yu-Lin Kuo
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 137
中文關鍵詞: 電致動力輔助化學機械拋光富勒烯環糊精銅導線圖案化晶圓
外文關鍵詞: EKF-CMP, Fullerene, Cyclodextrin, Copper wire, Patterned wafer
相關次數: 點閱:350下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積體電路(Integrated Circuit, IC)迅速發展演進,晶圓上金屬導線之線寬隨科技發展越來越小,在微型化發展過程中,為達金屬導線線寬微小化之目的,則需進行高解析度之微影製程,晶圓表面必須為極平坦的表面,因此化學機械化拋光(Chemical Mechanical Polishing/ Planarization, CMP)被廣泛應用於平坦化製程。本研究主要對磷酸基底之銅化學機械拋光液進行改良,並以水溶性之富勒烯/環糊精絡合物為磨粒與傳統奈米二氧化矽進行化學機械平坦化之研究。以弱酸性(pH 5)之拋光液配方延伸探討其中性(pH 7)及鹼性(pH 9)環境下的拋光表現,並對拋光液中的成分濃度進行調整,最後加入富勒烯水溶液完成拋光液備製。以動電位極化曲線分析不同濃度配方拋光液之腐蝕電位,探討與表面品質及移除率之間關係。最後,透過本實驗室所開發之電制動力輔助化學機械平坦化製程(Electro Kinetic Force Assisted CMP, EKF-CMP)對比傳統CMP製程之成效。實驗結果顯示,此改良後拋光液於中性拋光液拋光後,銅膜晶圓表面粗糙度降低50%,平均粗糙度(Sa) 約達 2 nm,並提升30%材料移除率達到230 nm/min。在圖案化晶圓方面,可以降低Ma.1(100 m/100m)及Ma.3(10 m/90m)之導線段差(dishing)至0,在Ma.2(50 m/50m)僅有2.85 nm之介電層腐蝕。


    With the Integrated Circuit(IC) developed rapidly, the line width of the metal wire on the wafer became smaller in the miniaturization process. In order to the high-resolution lithography process, depth of focus (DOF) continues to be narrowed. To avoid defect on metallization process, the extremely flat wafer surface is necessary. Therefore, chemical mechanical polishing/ planarization (CMP) is widely used. This study mainly improves the copper chemical mechanical polishing solution of phosphoric acid base and chemical mechanical planarization of water-soluble fullerene/cyclodextrin complex with conventional SiO2 (Chemical Mechanical Polishing/Planarization, CMP). It is based on weakly acidic (pH 5) slurry formulation to adjust the polishing performance in the neutral (pH 7) and alkaline (pH 9) environments, and finally add the Beta-Cyclodextrin/C60 solution in the slurry composition. The corrosion potential of different concentrations of the formulation was analyzed by the potentiodynamic polarization curve to investigate the correlation between surface quality and material removal rate. Finally, the effectiveness of the traditional CMP process was compared with the Electro Kinetic Force Assisted CMP (EKF-CMP) process, developed by the laboratory. The experimental results show that the surface roughness of the copper wafer in the neutral slurry is improved 50% to surface roughness(Sa) 2 nm; The removal rate of the material is up 30% to 230 nm/min. In the patterned wafers, the wire gap differences between Ma.1 (100 m/100m) and Ma.3 (10 m/90m) can be reduced to zero, and the erosions of Ma.2 (50 m/50m) can be achieved to 2.85 nm.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表附錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 6 1.3 論文架構 7 第二章 文獻回顧 9 2.1 銅膜晶圓拋光相關文獻 9 2.2 銅圖案晶圓化學機械平坦化相關文獻 17 2.3 富勒烯相關應用 23 2.4 電致動力輔助化學機械平坦化製程(EKF-CMP) 26 第三章 複合式拋光液製程介紹 32 3.1 富勒烯拋光液 32 3.1.1. 富勒烯及環糊精介紹 32 3.1.2. 富勒烯拋光液製備 34 3.1.3. 富勒烯溶液於不同pH之環境之粒徑大小 36 3.2 SPA拋光液 38 3.2.1 氧化劑濃度分析 40 3.2.2 抑制劑濃度分析 44 3.2.3 錯合劑濃度分析 48 3.2.4 富勒烯溶液濃度分析 52 3.2.5 拋光液極化曲線小結 55 第四章 實驗規劃與設備 56 4.1 實驗設備 56 4.1.1 拋光機 56 4.1.2 EKF-CMP實驗系統 57 4.1.3 恆電位儀 60 4.2 實驗耗材 60 4.2.1 拋光墊 60 4.2.2 鑽石修整器 61 4.2.3 測試晶圓 62 4.3 量測設備 66 4.4 實驗規劃 67 第五章 實驗結果與討論 71 5.1 拋光液電化學分析結果於討論(實驗A) 72 5.1.1 氧化劑濃度探討 73 5.1.2 抑制劑濃度探討 75 5.1.3 錯合劑濃度探討 76 5.1.4 SPA改良探討 77 5.1.5 銅膜晶圓浸泡後接觸角量測 78 5.2 銅膜晶圓及鉭膜晶圓 CMP/EKF-CMP (實驗B) 79 5.2.1 化學機械拋光參數設置 79 5.2.2 外在偏壓對銅薄膜晶圓EKF-CMP的影響 81 5.2.3 40mm*40mm銅膜及鉭膜晶圓CMP/EKF-CMP 84 5.3 銅圖案晶圓化學機械拋光分析(實驗C) 90 5.3.1 化學機械拋光參數設置 90 5.3.2 銅圖案晶圓拋光時間影響結果 94 5.3.3 銅圖案化晶圓CMP後Dishing結果 97 5.3.4 銅圖案化晶圓CMP後Erosion結果 98 5.3.5 銅圖案化晶圓CMP/EKF-CMP 綜合討論 99 第六章 結論與建議 102 6.1 結論 102 6.2 建議 103 參考文獻 104 附錄A. 量測設備 108 附錄B. 拋光液分析 113 附錄C. 銅膜晶圓AFM量測結果 114 附錄D. 圖案化晶圓 116

    [1] Xiao, H., "Introduction to semiconductor manufacturing technology, Pearson", 2002.
    [2] Lee, W. G., "Smartly connected world based on low threshold Ge on Si laser.” Celtic-Plus, 2016.
    [3] 賴仁德,"砷化鎵高速元件積體電路之金屬鑲嵌銅製程." 國立交通大學, 工學院產業安全與防災學系碩士論文, 2005.
    [4] Banerjee, G., Rhoades, R.L., "Chemical Mechanical Planarization Historical Review and Future Direction,” ECS Transactions, Vol. 13, pp. 1-19, 2008.
    [5] Tanwar, K., Canaperi, D., Lofaro, M., Tseng, W., Patlolla, R., Penny, C., Waskiewiczb C. "BEOL Cu CMP Process Evaluation for Advanced Technology Nodes."
    [6] Niu, X., Wang, C., Wang, J., Lu G., Liu, Yuling, "Achievement of non-selectivity barrier slurry by adding H3PO4 and Its application in patterned wafers CMP." IEEE, 2012.
    [7] Choi, S., Doyle, F. M., Dornfeld, D., "A model of material removal and post process surface topography for copper CMP." Procedia Engineering, vol. 19, pp. 73 – 80, 2011.
    [8] Li, Jing. Liu, Y., Pan, Y., Lu X., "Chemical roles on Cu-slurry interface during copper chemicalmechanical planarization." Applied Surface Science, vol. 293, pp. 287– 292, 2014.
    [9] 戴佩瑜,"1,2,4-Triazole 抑制劑之拋光液於銅膜晶圓化學機械拋光後清洗製程影響研究." 國立臺灣科技大學, 機械工程學系碩士論文, 2015.
    [10] Zhang, Z., Cui, J., Zhang, J., Liu, D., Yu, Z., & Guo, D.,"Environment friendly chemical mechanical polishing of copper". Applied Surface Science, 467: 5-11, 2019.
    [11] Joo, S., Liang, H., "Tribo-electrochemical characterization of copper with patterned geometry." Microelectronic Engineering, vol. 98, pp. 12–18, 2012.
    [12] Kanki, T., Kimura, T., & Nakamura, T., "Chemical and mechanical properties of Cu surface reaction layers in Cu-CMP to improve planarization". ECS Journal of Solid State Science and Technology, 2(9), P375-P379, 2013.
    [13] Ihnfeldt, R., "Chemically impregnated abrasives provide high planarization efficiency copper CMP slurry". ECS Transactions, 61(17), 1-13, 2014.
    [14] Luan, X., Liu, Y., Wang, C., Niu, X., Wang, J., Zhang, W., "A study on exploring the alkaline copper CMP slurry without inhibitors to achieve high planarization efficiency." Microelectronic Engineering, vol. 160, pp. 5–11, 2016.
    [15] Cheng, J., Wang, B., Wang, T., Li, C., Lu, X., "Chemical Mechanical Polishing of Inlaid Copper Structures with Ru/Ta/TaN as Barrier/Liner Layer." ECS Journal of Solid State Science and Technology, vol. 7, pp. 634–639, 2018.
    [16] Takaya, Y., Tachika, H., Hayashi, T., Kokubo, K., Suzuki, K., "Performance of water-soluble fullerenol as novel functional molecular abrasive grain for polishing nanosurfaces". CIRP annals, 58(1), 495-498, 2009.
    [17] Takaya, Y., Kishida, H., Hayashi, T., Michihata, M., Kokubo, K., "Chemical mechanical polishing of patterned copper wafer surface using water-soluble fullerenol slurry". CIRP annals, 60(1), 567-570, 2011.
    [18] Takaya, Y., Michihata, M., Hayashi, T., Murai, R., Kano, K., "Surface analysis of the chemical polishing process using a fullerenol slurry by Raman spectroscopy under surface plasmon excitation". CIRP Annals, 62(1), 571-574, 2013.
    [19] Hsieh, C. H., "Development of an Electrical Assisted Chemical Mechanical Polishing (EACMP) for Cu Film Planarization," Mechanical Engineering, National Taiwan University of Science and Technology, 2011.
    [20] Yang, L. C., "Development of an Electrical Kinetic-Force Assisted Chemical Mechanical Planarization (EKF-CMP) for Functional Wafer Planarization," Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
    [21] Xue, M. Y., "Development of Modularized Conductive Plate in Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Silicon-Via Wafer Planarization," Mechanical Engineering, National Taiwan University of Science and Technology, 2015.
    [22] Tasi, Y. H., "Effect of Electro-Kinetic Force on Cu-Chemical Mechanical Polishing for Planarization Efficiency," Mechanical Engineering, National Taiwan University of Science and Technology, 2015.
    [23] Chen, C. C. A., Ku, S. J., "Development of an Electrical-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Glass-Via Wafers," National Taiwan University of Science and Technology, 2016.
    [24] Lin, Y. M. "Development of Bidirectional Electrode in Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Silicon-Via Wafer Planarization" National Taiwan University of Science and Technology, 2018.
    [25] Srdjenovic, D. A., Seke B., M., Petrovic, D., Injac, R., & Mrdjanovic, J. "Review of synthesis and antioxidant potential of fullerenol nanoparticles". Journal of Nanomaterials, 16(1), 280, 2015.
    [26] Subramanian, T. I., Huang, W., Raghavan, S., Small, R., "Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper", Journal of The Electrochemical Society, Vol.149, No.12, G638-G642, 2002.

    QR CODE