簡易檢索 / 詳目顯示

研究生: 蔣易達
Yi-Ta Chiang
論文名稱: 乙二胺四乙酸溶液輔助複線式鑽石線鋸加工製程於鉭酸鋰晶圓之研究
Effect of EDTA solution on Multi-Wire Diamond Wire Sawing Process of Lithium Tantalate Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Choung-Lii Chao
顧逸霞
Yi-Sha Ku
周振嘉
Chen-Chia Chou
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 總頁數140
中文關鍵詞: 鑽石線鋸切片加工鉭酸鋰晶圓乙二胺四乙酸微量式潤滑
外文關鍵詞: Multi-Wire Diamond Wire Sawing, Lithium Tantalate Wafer, EDTA, Minimum Quantity Lubrication
相關次數: 點閱:258下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉭酸鋰晶圓(Lithium Tantalate, LT)於材料上具有獨特優異的焦電(Pyroelectric)、壓電(Piezoelectricity)和電光(Electro-optic)等特性,此材料具有良好的機械和化學穩定性,第五代通訊行動技術(5G)之高射頻元件、無線通訊頻段等高頻濾波元件市場規模快速成長,因目前產線以游離磨料切片為主,造成環境汙染與切片後漿料無法有效回收。故本研究添加乙二胺四乙酸(EDTA)於冷卻液中輔助複線式鑽石切片製程,藉由乙二胺四乙酸反應溶液使鉭酸鋰材料表面產生反應,利用拉曼元素和維克氏硬度等驗證鍵結反應型態,以及推算比切削能,進行參數之設置。本研究先行利用單線式線鋸切割機(SWSM),以此機台驗證鉭酸鋰表面產生化學反應之效率,由結果可以得知,透過乙二胺四乙酸(EDTA)加氫氧化鈉(NaOH)輔助線鋸製程可以有效改善鉭酸鋰表面之粗糙度Sa約為39.1%、Ra約為38.8%、Rz約為33.2%,微量式輔助反應溶液也有效改善約為Sa約為9.2%、Ra約為12.4%、Rz約為10.6%,並且於電子顯微鏡觀察到加入反應溶液之切屑為長條狀,藉由反應溶液輔助機制使得脆性破壞轉變成延性破壞,然後應用實際複線切片機台DWS-150進行結果比較,加入反應溶液之材料移除率增加10.7%左右,以及有效改善晶圓非均勻度(N.U.)約42.6%左右,也成功減少次表層深度約12.1%,本研究結果可以應用於鉭酸鋰切片製程量產製程配方。


    Lithium Tantalate (LT) has unique properties such as pyroelectric, piezoelectricity and Electro-optic, therefore has good mechanical and chemical stability. The market of high-frequency filter components, fifth-generation(5G) communication mobile technology, high-frequency components, and wireless communication frequency bands have strong demands. The current production line is mainly based on free abrasive slicing which is not environment friendly and slurry cannot be recycled easily. Thus, this study aims to develop a compound coolant to improve LT wafer’s surface topography by multi-wire diamond wire slicing (MWDWS) process with EDTA solution. The bonding reaction of EDTA with LT is verified by Raman element and Vickers hardness testing. This study uses a single wire sawing machine (SWSM) to experimentally verify the efficiency of chemical reaction on the surface of lithium tantalate. Results of this study show that the surface roughness of as-cut lithium tantalate wafer surface can be effectively improved by the EDTA assisted wire slicing process with Sa 39.1%, Ra 38.8%, and Rz 33.2%. Furthermore, result shows can improve Sa 9.2%, Ra 12.4%, and Rz 10.6% by MQL with EDTA solution. Results of SEM show that the shape of chips changed from granular to strip type. With commercial multi-wire slicing machine DWS-150, the material removal rate (MRR) with EDTA solution is increased by 10.7%, wafer non-uniformity (N.U.) decreased to 42.6%, and sub-surface damage reduces to 52%. Results of this study can be applied to the production process of lithium tantalate slicing process.

    摘要 II Abstract III 致謝 IV 目錄 VI 圖目錄 X 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 3 1.3 論文架構 4 第二章 文獻回顧 6 2.1 鉭酸鋰材料介紹 6 2.1.1 鉭酸鋰材料特性文獻回顧 9 2.1.2 鉭酸鋰材料加工文獻回顧 11 2.2 複線式線鋸切片製程 13 2.2.1 游離磨料線鋸製程 15 2.2.2 固定鑽石磨料線鋸製程 16 2.3 鉭酸鋰基板化學機械拋光相關文獻 18 2.4 微量潤滑(MQL)於切削上的加工幫助 21 2.5 文獻回顧總結 23 第三章 EDTA溶液輔助鑽石線鋸加工原理與介紹 24 3.1 EDTA(乙二胺四乙酸) 24 3.1.1 EDTA(乙二胺四乙酸)簡介 24 3.1.2 EDTA(乙二胺四乙酸)特性 25 3.2 EDTA (乙二胺四乙酸)反應溶液輔助鑽石線鋸製程 25 3.2.1 反應分析和測試-鉭酸鋰晶圓 26 3.2.2 不同溫度下之拉曼分析和測試-鉭酸鋰晶圓 29 3.2.3 反應分析與測試-鑽石鋸線 30 3.3 鑽石線鋸加工製程介紹 32 3.3.1 比切削能 33 3.3.2 理論材料移除率 36 3.3.3 耗線量估算 38 3.3.4 鑽石磨料切削之材料移除機制 40 3.3.5 壓印破壞材料移除率 47 3.3.6 磨損磨耗材料移除率 47 第四章 單線式反應線鋸加工實驗 49 4.1 實驗規劃 49 4.2 實驗耗材 50 4.2.1 鉭酸鋰晶錠 51 4.2.2 乙二胺四乙酸反應磨料 52 4.2.3 氫氧化鈉 53 4.2.4 鑽石切割鋸線 54 4.2.5 鉭酸鋰晶棒 56 4.2.6 切削冷卻液 56 4.2.7 混合型之環氧化物接著劑 58 4.2.8 精密微量潤滑冷卻切削泵 59 4.3 量測儀器 60 4.4 反應冷卻溶液之性質量測與分析 66 4.4.1 反應溶液調配於不同濃度之沉降影響 67 4.4.2 反應溶液調配之不同濃度之黏度與酸鹼度影響 69 4.5 20x10x10mm鉭酸鋰晶錠加工實驗 70 4.5.1 切口損失(Kerf Loss) 72 4.5.2 表面粗糙度(Surface Roughness) 74 4.5.3 表面形貌與線痕(Surface Topography & Saw mark) 80 4.5.4 次表層破壞(Sub-surface Damage) 84 4.5.5 鋸切後線材耗損與拉伸強度 87 4.5.6 切屑表面分析(Chip Surface Analysis) 88 第五章 複線式往復線鋸加工實驗 90 5.1 複線式鑽石線鋸切片機(DWS-150 Machine) 91 5.2 製程參數設定與實驗規劃 93 5.2.1 實驗流程 93 5.2.2 實驗規劃 94 5.2.3 實驗參數設定 95 5.3 材料移除率 97 5.3.1 理論材料移除率估算 97 5.3.2 實際材料移除率 98 5.4 晶圓表面粗糙度分析(Surface Roughness Analysis) 99 5.5 晶圓幾何形貌(Wafer Geometry) 106 5.5.1 晶圓均勻度分析(Non-uniformity Analysis) 106 5.5.2 晶圓翹曲分析(Bow and Warp Analysis) 108 5.6 鉭酸鋰晶圓次表層破壞(Sub-surface Damage Analysis) 112 5.7 切片製程後之線材耗損 115 5.8 綜合討論 118 第六章 結果與建議 119 6.1 結論 119 6.2 建議 120 參考文獻 121 附錄A DWS-150線鋸機規格表 125 附錄B 本研究製程之相關圖片 126 附錄C 鉭酸鋰切片粗糙度量測 129 附錄D 鉭酸鋰切片波紋圖量測 139

    [1] 樊志遠,5G時代手機要支持50個頻段:17%逆市增長率,濾波器的盛宴,新財富投研筆記,2017,Available from: https://kknews.cc/zh-tw/tech/oy2ymjm.html
    [2] D. Cochet-Muchy, "Growth of piezoelectric crystals by Czochralski method," vol. 04, no. C2, pp. C2-33-C2-45, 1994.
    [3] B. T. Matthias and J. P. Remeika,"Ferroelectricity in the Ilmenite Structure", Physical Review, vol. 76, no. 12, pp. 1886-1887, 1949.
    [4] N. N. Yamada and H. Toyoda, "Curie Point and Lattice Constants of Lithium Tantalate", no. Japanese Journal of Applied Physics, pp. pp. 298B-299B, 1968.
    [5] S. Miyazawa and H. Iwasaki, "Congruent melting composition of lithium metatantalate." , pp. 276-278, 1971.
    [6] 鍾崇仁,"使用二氧化矽薄膜作為質子交換鈮(鉭)酸鋰表面聲波溫度補償之研究",國立中山大學,電機工程學系研究所,碩士論文,2003。
    [7] X. Wei, H.Yuan, H. W.Du, W.Xiong, and R. W.Huang, "Study on chemical mechanical polishing mechanism of LiTaO3 wafer", in Advances in Grinding and Abrasive Technology Xiii, vol. 304-305, G. Cai, X. P. Xu, and R. Kang, Eds. Key Engineering Materials, 2006, pp. 310-314.
    [8] A. S. He, H. Huang, and L. B. Zhou, "Mechanical Properties and Deformation of LiTaO3 Single Crystals Characterised by Nanoindentation and Nanoscratch", Advanced Materials Research, vol. 565, pp. 564-569, 2012.
    [9] W. Hang, L. B. Zhou, J. Shimizu, and J. L.Y uan, "Study on thermal influence of grinding process on LiTaO3", Advanced Materials Research vol. 797, ed, 2013, pp. 252-257.
    [10] 須藤正昭, "酸化物単結晶LiTaO3ウエハの高平坦化加工",精密工学会学術講演会講演論文集, vol. 2011A, pp. 35-36, 2011.
    [11] W. Hang, L. Zhou, K. Zhang, J. Shimizu, and J. Yuan, "Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution", Precision Engineering, vol. 44, pp. 62-69, 2016.
    [12] C. C. A. Chen and P. H. Chao, "Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells", The 13th International Symposium on Advances in Abrasive Technology Conference, 2010.
    [13] 梁俊碩,"線鋸切割太陽能基板之研究",國立台灣科技大學,機械工程研究所碩士論文,2008。
    [14] C. C. A. Chen and P. H. Chao, "Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells", in Advanced Materials Research, 2010, vol. 126, pp. 177-180: Trans Tech Publ.
    [15] W. Wang, Z. X. Liu, W. Zhang, Y. H. Huang, and D. M. Allen, "Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers", CIRP Annals, vol. 60, no. 1, pp. 255-258, 2011.
    [16] 許仙薇,"搖擺運動於單晶氧化鋁基板鑽石線鋸切割影響之研究",國立台灣科技大學,機械工程研究所碩士論文,2013。
    [17] 詹明賢,"單晶與多晶矽基板鑽石線鋸加工之切屑分析研究",國立台灣科技大學,機械工程研究所碩士論文,2014。
    [18] S. Schwinde, M.Berg, M. J. S. E. M. Kunert, and S. Cells, "New potential for reduction of kerf loss and wire consumption in multi-wire sawing", vol. 136, pp. 44-47, 2015.
    [19] H. Yuan, X. Wei, H. W. Du, W. Hu, and W. Xiong, "Influence of Polishing Parameters on Chemical Mechanical Polishing Processes of LiTaO3 Wafer, " Key Engineering Materials, vol. 315-316, pp. 561-565, 2006.
    [20] 杜宏傳,魏昕,林悦香,潘志國,江景濤,"LiTaO3 晶片 CMP 過程的化學去除機理研究",2008。
    [21] H. S. Lee, "Effect of Citric Acid in Chemical Mechanical Polishing (CMP) for Lithium Tantalate (LiTaO3) Wafer", in Advanced Materials Research, 2016, vol. 1136, pp. 305-310: Trans Tech Publ.
    [22] P. Sreejith, "Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions." Materials letters, 2008, vol. 62(2), pp. 276-278.
    [23] V. Upadhyay, PK. Jain, NK. Mehta and, K. Branko, 2012, “Minimum quantity lubrication assisted turning—an overview.” DAAAM Int. Sci. Book, vol. 39, pp. 463-479.
    [24] 鄧婉妤,"以Fenton法結合Ferrite Process處理含EDTA與重金屬之廢水",國立中山大學,環境工程研究所碩士論文,2004。
    [25] Y. Repelin, E. Husson, F. Bennani, C. J. J. O. P. roust, and C. O. solids, "Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations", vol. 60, no. 6, pp. 819-825, 1999.
    [26] B. R. Lawn, A. Evans, and D. J. J. O. T. A. C. S. Marshall, "Elastic/plastic indentation damage in ceramics: the median/radial crack system", vol. 63, no. 9‐10, pp. 574-581, 1980.
    [27] K. H. Zum Gahr, "Microstructure and wear of materials", Elsevier, 1987.

    QR CODE