簡易檢索 / 詳目顯示

研究生: 邱品慈
Pin-Tsu Chiu
論文名稱: 薄膜型結腸支架與光固化填充材料研究
A Study of Thin Film Type Colonic Stents and UV Curable Filling M aterials
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鄭逸琳
Yih-Lin Cheng
周育任
Yu-Jen Chou
張復瑜
Fuh-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 結腸支架可降解支架光固化聚己内酯
外文關鍵詞: colonic stent, biodegradable stent, UV-curable PCL
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前在治療結腸腫瘤所造成的阻塞或是防止結腸手術後的吻合口滲漏,常以植入金屬支架作為治療方式。然而,腸道的收縮易造成金屬支架在腸道中滑動位移,且金屬支架不適用於良性腫瘤的治療。因此,薄膜型結腸支架被提出以解決金屬支架的缺點,然此新型支架的開發尚有模具製作及填充材料開發等問題尚待解決。
    有鑑於此,本研究結合3D列印技術,以及光固化可降解材料研發,開發薄膜型結腸支架技術。利用降低分子量的方式,合成可光固化、且低熔點之光固化聚己内酯(Polycaprolactone, PCL)填充材料,並利用衍生自3D列印母模的薄膜型模具的良好可撓性,製作出可以符合腸道內彎曲皺褶並避免支架位移的新型腸道支架。
    論文實驗結果顯示,透過材料的改質,可以使材料填充溫度降低至30℃,符合人體溫度,以增加充填材料的效率。結合3D列印技術與PCL覆膜技術所製作出的薄膜型支架模具,可以成功填充光固化可降解材料,以完成充填式可降解腸道支架。利用薄膜型支架模具的可撓性,可以使支架完整貼覆於腸道內節與節間隔突起結構,以達成支架位移現象的改善。與市售金屬腸道支架相比,本論文所製作的薄膜型可降解支架,能提供足夠的徑向力,並克服支架位移的瓶頸,對於腸道支架應用具有一定的貢獻。


    Currently, in the treatment of colorectal obstruction and the prevention of anastomotic leakage, metal stents are often used as a treatment. However, intestinal peristalsis may cause the migration of metal stents. Therefore, an innovative thin-film type colonic stent is proposed, but the development of this stent is limited by the mold fabrication and physical properties of the filling materials.
    To solve these problems, this research aims to improve the thin film type biodegradable colonic stent by applying 3D printing and studying UV curing biodegradable materials. By lowering the molecular weight, a UV-curable and low melting point polycaprolactone (PCL) filling material was made. Due to the good flexibility of the thin-film mold, from the 3D printed master, and the special filling process, the developed thin film type colonic stent was proved to be able to conform the curved folds in the colon and prevent the possible migration.
    To confirm whether the method is feasible, the properties of PCL filling material has been analyzed, and the results proved the melting point of the PCL material is under 30C and suitable for performing the filling process in the body temperature. Experiments also proved the developed biodegradable thin film mold, fabricated by 3D printing and dipping process, can be filled with the PCL filling material and cured under UV light successfully to complete the formation of the thin film type colonic stent. The flexibility of the thin-film stent allows it to completely attach to the curving folds inside the colon, which achieves a solution to prevent stent migration. This research designs a new biodegradable stent that provides sufficient radial force, and overcomes the shortage of current biodegradable stents, and provides a possible way to develop biodegradable colonic stents in the future.

    摘要 I Abstract III 致謝 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.2.1 生物可降解支架(Biodegradable stent, BDS) 3 1.2.2 腸道支架及相關臨床實驗 4 1.2.3 腸道內視鏡規格 11 1.3 研究動機與目的 12 1.4 論文架構 14 第二章 文獻回顧 15 2.1分子量對機械性質的影響 15 2.2 生物可降解材料 16 2.2.1聚合物的降解機制[22] 17 2.2.2 聚己內酯 (Polycaprolactone, PCL) 18 2.2.3聚乙烯醇 (Polyvinyl Alcohol, PVA) 19 2.3 生物相容性(Biocompatibility) 20 2.3.1 聚己內酯(Polycaprolactone, PCL) 20 2.3.2 PCL-DA 22 2.4 生物可降解支架 23 2.4.1 聚己內酯(PCL)降解 24 2.4.2 PCL-DA降解 28 2.5 支架覆膜製作 30 2.6 應用積層製造(Additive Manufacturing, AM) 32 2.6.1 熔融擠製技術 (Fused Deposition Modeling, FDM) 33 2.6.2 3D列印製作支架 34 2.7 光固化材料的製備 36 2.8 光固化原理 39 2.8.1 光起始劑 (Photoinitiator) 40 2.9 薄膜型支架研究回顧 41 第三章 實驗方法與規劃 42 3.1 實驗規劃 43 3.2 利用3D Printing製作 PVA快速降解支架 45 3.3 合成材料介紹 47 3.3.1 PCL-DA合成 47 3.3.2 PCL溶於苯 50 3.3.3 添加三乙胺及丙烯醯氯 50 3.3.4 過濾雜質 51 3.3.5 析出產物 52 3.3.6 分離產物與溶劑 52 3.4 充填材料之光固化性質測試 54 3.4.1 光起始劑 54 3.4.2 充填材料光固化性質測試 56 3.5 薄膜型支架模具實驗規劃[46] 57 3.5.1 PCL溶液配置 57 3.5.2 薄膜型支架模具 58 3.5.3 薄膜型支架模具壓縮測試 59 3.6 薄膜型支架模擬置入腸道實驗規劃 60 3.6.1 光固化樹脂 60 3.6.2 利用3D列印支製作腸道模型 60 3.6.3 薄膜型支架置入腸道 61 3.7 原料與藥品 63 3.8 儀器設備 64 3.8.1 3D列印機 64 3.8.2 熱風循環烘箱 (Cyclic Oven) 65 3.8.3 電磁加熱攪拌器 (Hot Plate and Magnetic Stirrer) 66 3.8.4 掃描式電子顯微鏡 (Scanning Electron Microscopes) 67 3.8.5 Z軸量測平台 68 3.8.6 迴轉式動態流變儀 (Modular Compact Rheometer) 68 3.8.7 紅外線傅立葉光譜儀(Fourier Transform Infrared Spectrometer) 69 3.8.8 核磁共振光譜儀 (Nuclear Magnetic Resonance) 70 第四章 結果與討論 71 4.1 3D列印PVA快速降解支架 71 4.2 光固化材料合成實驗結果 74 4.2.1 光固化材料合成之檢測 74 4.2.2 不同分子量之PCL diacrylate之熔點 77 4.2.3 充填材料之黏度 78 4.2.4 充填材料光固化之收縮率 79 4.3 薄膜型支架模具 80 4.3.1 PCL薄膜型支架模具徑向力測量結果 80 4.3.2 薄膜型支架模具 83 4.3.3 薄膜型支架模具注油測試結果 85 4.4 薄膜型支架充填光固化材料 86 4.5 支架徑向力模擬分析結果 87 4.6 支架徑向力模擬分析與實驗結果之比較 89 4.7 支架置入腸道模擬貼合腸壁狀態 91 第五章 結論 93 第六章 未來展望 94 參考文獻 95

    [1] FERLAY, Jacques, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 2015, 136.5: E359-E386.
    [3]衛生福利部國民健康署. 癌症登記報告.2018。
    [4]EL-OMAR, M. M., et al. Update on in-stent restenosis. Current Interventional Cardiology Reports, 2001, 3.4: 296-305.
    [5] SERRUYS, Patrick W. et al. Coronary-artery stents. New England Journal of Medicine, 2006, 354.5: 483-495.
    [6] REPICI, Alessandro; FERREIRA, Daniel de Paula Pessoa. Expandable metal stents for malignant colorectal strictures. Gastrointestinal Endoscopy Clinics, 2011, 21.3: 511-533.
    [7] REPICI, Alessandro; FERREIRA, Daniel de Paula Pessoa. Expandable metal stents for malignant colorectal strictures. Gastrointestinal Endoscopy Clinics, 2011, 21.3: 511-533.
    [8] BIELAWSKA, Barbara, et al. Large-diameter self-expanding metal stents appear to be safe and effective for malignant colonic obstruction with and without concurrent use of chemotherapy. Surgical Endoscopy, 2010, 24.11: 2814-2821.
    [9] LI, Gang, et al. Biodegradable weft‐knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation. Journal of Biomedical Materials Research Part A, 2014, 102.4: 982-990.
    [10] KIM, Eui Joo; KIM, Yoon Jae. Stents for colorectal obstruction: Past, present, and future. World Journal of Gastroenterology, 2016, 22.2: 842.
    [11] SAGAR, Jayesh. Colorectal stents for the management of malignant colonic obstructions. Cochrane Database of Systematic Reviews, 2011, 11.
    [12] WATSON, A. J. M., et al. Outcomes after placement of colorectal stents. Colorectal Disease, 2005, 7.1: 70-73.
    [13] CACERES, Aileen, et al. Colorectal stents for palliation of large-bowel obstructions in recurrent gynecologic cancer: an updated series. Gynecologic Oncology, 2008, 108.3: 482-485.
    [15]http://olympusmedical.co.in/products/all-roducts/endoscopes/index.html
    [16]https://www.fujifilm.eu/eu/products/medical-systems/endoscopy/endoscopy-products/p/ec-760r-vm-vi-vl
    [17] MEIJER, Han E. H.; GOVAERT, Leon E. Mechanical performance of polymer systems: The relation between structure and properties. Progress in Polymer Science, 2005, 30.8-9: 915-938.
    [18] LANDEL, Robert F.; NIELSEN, Lawrence E. Mechanical properties of polymers and composites. CRC press, 1993.
    [19] ANG, Hui Ying, et al. Bioresorbable stents: current and upcoming bioresorbable technologies. International Journal of Cardiology, 2017, 228: 931-939.
    [20] COULEMBIER, Olivier, et al. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly (β-malic acid) derivatives. Progress in Polymer Science, 2006, 31.8: 723-747.
    [21] CALMON-DECRIAUD, Anne; BELLON-MAUREL, Véronique; SILVESTRE, Françoise. Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives. In: Blockcopolymers-Polyelectrolytes-Biodegradation. Springer, Berlin, Heidelberg, 1998. p. 207-226..
    [22] ANG, Hui Ying, et al. Bioresorbable stents: current and upcoming bioresorbable technologies. International Journal of Cardiology, 2017, 228: 931-939.
    [23] COULEMBIER, Olivier, et al. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly (β-malic acid) derivatives. Progress in Polymer Science, 2006, 31.8: 723-747.
    [24] DEMERLIS, C. C.; SCHONEKER, D. R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 2003, 41.3: 319-326.
    [25] CHIELLINI, Emo, et al. Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science, 2003, 28.6: 963-1014.
    [26] RAMOT, Yuval, et al. Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 2016, 107: 153-162.
    [27] DA SILVA, Dana, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 2018, 340: 9-14.
    [28] BLACK, Jonathan. Biological performance of materials: fundamentals of biocompatibility. CRC Press, 2005.
    [29] SERRANO, M. C., et al. In vitro biocompatibility assessment of poly (ε-caprolactone) films using L929 mouse fibroblasts. Biomaterials, 2004, 25.25: 5603-5611.
    [30]陳定閒,「可光固化PCL結合PEG-diacrylate 添加幾丁聚醣(Chitosan)應用於製作組織工程支架之研究」,國立臺灣科技大學機械工程系碩士論文,2014。
    [31] WOODRUFF, Maria Ann; HUTMACHER, Dietmar Werner. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 2010, 35.10: 1217-1256.
    [32] SERRUYS, Patrick W., et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. The Lancet, 2009, 373.9667: 897-910.
    [33] HUTMACHER, Dietmar W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 2001, 12.1: 107-124.
    [34] COULEMBIER, Olivier, et al. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly (β-malic acid) derivatives. Progress in Polymer Science, 2006, 31.8: 723-747.
    [35] ALBERTSSON, A. C.; KARLSSON, S. Controlled degradation by artificial and biological processes. Design of Polymeric Materials, Marcel Dekker, 1996, 54.
    [36] LAM, Christopher X. F., et al. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomedical Materials, 2008, 3.3: 034108.
    [37] YAMADA, Keisuke, et al. Development of a dural substitute from synthetic bioabsorbable polymers. Journal of Neurosurgery, 1997, 86.6: 1012-1017.
    [38] FANG, Hsu-Wei, et al. Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity. Materials Letters, 2008, 62.21-22: 3739-3741.
    [39] VITAL, Alexane, et al. Morphology control in thin films of PS: PLA homopolymer blends by dip-coating deposition. Applied Surface Science, 2017, 393: 127-133.
    [40] WIDMER, Markus S., et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials, 1998, 19.21: 1945-1955.
    [41]ParkSA,KimHJ,LeeSH,LeeJH,KimHK,YoonTR.Fabricationofnano/ microfiber scaffoldsusingacombinationofrapidprototypingandelectro- spinning systems.PolymEngSci2011;51:1883–90.
    [42]俞耀庭,「生物醫用材料」, 初版 新文京,2004。
    [43] PARK, Su A., et al. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Materials Letters, 2015, 141: 355-358.
    [44] LEE, Kyung-Soo; KIM, Dae Su; KIM, Beom Soo. Biodegradable molecularly imprinted polymers based on poly (ε-caprolactone). Biotechnology and Bioprocess Engineering, 2007, 12.2: 152-156.
    [45] WILLIAMS, Christopher G., et al. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005, 26.11: 1211-1218.
    [46]陳芃喧,「以3D列印及薄膜型模具開發新型可降解腸道支架」,國立臺灣科技大學機械工程系碩士論文,2018。
    [47] COIMBRA, Patrícia, et al. Solubility of Irgacure® 2959 photoinitiator in supercritical carbon dioxide: Experimental determination and correlation. The Journal of Supercritical Fluids, 2008, 45.3: 272-281.
    [48] http://www.xtgchem.cn/upload/20110629045632.PDF
    [49] KIM, Ju Hyun; KANG, Tae Jin; YU, Woong-Ryeol. Mechanical modeling of self-expandable stent fabricated using braiding technology. Journal of Biomechanics, 2008, 41.15: 3202-3212.
    [50] TOKUDA, Takanori, et al. Mechanical characteristics of composite knitted stents. Cardiovascular and Interventional Radiology, 2009, 32.5: 1028-1032.
    [51] SINGH, Charanpreet; WANG, Xungai. A biomechanically optimized knitted stent using a bio-inspired design approach. Textile Research Journal, 2016, 86.4: 380-392..
    [52] CHEUNG, Dae Young, et al. Outcome and safety of self-expandable metallic stents for malignant colon obstruction: a Korean multicenter randomized prospective study. Surgical Endoscopy, 2012, 26.11: 3106-3113.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE