簡易檢索 / 詳目顯示

研究生: 王鋅祐
Xin-You Wang
論文名稱: 基於NX軟體的自動化量測路徑規劃程式開發
Automated Inspection Planning Program Development Based on Siemens NX
指導教授: 李維楨
Wei-Chen Lee
口試委員: 林清安
Ching-An Lin
石伊蓓
Yi-Pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 量測路徑規劃三次元量測儀NX軟體NX Open函式庫二次開發程式
外文關鍵詞: inspection planning, coordinate measuring machine, Siemens NX, NX Open API, secondary development program
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於目前三次元量測路徑規劃的方法需要使用者於三次元量測軟體上針對模型特徵,逐一輸入量測點數、量測點分布方法與量測點序列排序方法等複雜參數,並於實際量測中不斷往返進行修正才能建立完善的量測路徑,過程繁瑣且耗時。然而現有的自動量測路徑規劃研究又多為獨立系統,與工業界常用的CAD/CAM軟體並無連結,以至於技術門檻較高不易跨越。本研究的目的為開發基於Siemens NX軟體的自動化量測路徑規劃程式,藉由Siemens NX軟體提供的NX Open函式庫,使用C#程式語言進行二次程式開發,將量測路徑規劃的工作自動化,達到節省時間、人力成本與降低技術門檻的目標。
    本研究中所開發的自動化量測路徑規劃程式,可對模型中的特徵自動標註圓弧面之半徑尺寸、兩平行平面之間的平行距離尺寸以及特徵之深度與高度尺寸,並藉由量測設備模型,令系統中的模擬環境與真實量測情形更加貼近,隨後自動建立三次元量測所需的量測特徵、量測路徑、容差等物件,於路徑規劃的同時便將預期碰撞的路徑進行修正,最後將路徑規劃結果透過Siemens NX軟體的後處理器轉譯為三次元量測的程式碼,綜合上述一系列流程達到自動化量測路徑規劃的成果。根據本論文中的兩個實例驗證結果,實例驗證一的量測路徑規劃時間由人工規劃的20分鐘縮短為19秒鐘,實例驗證二的總和路徑規劃時間由89分鐘縮短為4分15秒,證實由程式進行量測路徑自動規劃確實可以節省大量的時間與人力成本,並於實例驗證二的實際量測中確認程式進行自動路徑規劃的可行性。本研究經由程式的開發達成將量測路徑規劃的工作自動化,並透過Siemens NX軟體連結CAD中的模型資訊,降低使用三次元量測進行產品檢測的技術門檻,故此對三次元量測的推廣以及精密產業的發展有實質上的助益。


    The inspection planning method of nowadays coordinate measuring machine is time-consuming. Users are required to not only input complex parameters such as the point number, the distribution method and the sequencing method for each feature in 3D models, but also continuously modify the inspection path during operation. As a result, the need for automated inspection planning emerges. However, the existing researches about automated inspection planning fall short to combine with commercial CAD/CAM software so that the technical barrier of this method is not easy to overcome. The objective of this study is to develop an automated inspection planning program based on Siemens NX. With the NX Open API provided by Siemens NX, our secondary development program was developed in C# programming environment to reduce time cost and human resources, and to make this technique more accessible.
    The automated inspection planning program developed in this study can automatically dimension the radius of circular surfaces, the distance between two parallel plane, the depth and the height of model’s features. Furthermore, with our program, the simulation environment can get closer to the reality by importing models of measuring equipment. The three-dimensional measuring elements can be automatically generated such as inspection features, inspection paths, and tolerances. The anticipated collision paths are corrected immediately after the path planning. Finally, inspection paths are translated into DMIS by NX postprocessors. The above series of processes achieves our objective of automate inspection planning. In this paper, we verify the feasibility of our program with two examples. In the first example, the inspection planning time is shortened from 20 minutes to 19 seconds. And for the second example, the time is shortened from 89 minutes to 4 minutes and 15 seconds. These two examples demonstrate that the automated inspection planning program can save lots of time and labor costs. Meanwhile, the inspection test of the second example confirms the feasibility of inspection paths generated by the program.
    This study successfully developed an automated inspection planning system through the secondary development program, and relates the model information in CAD to Siemens NX software. Thereby, our program reduces the technical barrier for product inspection using the coordinate measuring machine. Our research results would have positive effects to the promotion of coordinate measuring machines and the development of precision industry.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.3 研究目的 4 第二章 系統開發工具與實驗設備介紹 5 2.1 NX Open二次開發工具 5 2.2 三次元量測儀-Metrology CMM-V564CNC 5 2.3 接觸式測頭座-Renishaw MH20i 7 2.4 三次元量測儀通訊協議 8 2.4.1 DMIS 8 2.4.2 I++ DME介面 8 第三章 研究方法 9 3.1 Siemens NX二次開發程式撰寫方法-以C#程式語言為例 9 3.2 自動化尺寸標註 11 3.2.1 產品和製造資訊 11 3.2.2 特徵辨識 12 3.2.3 自動化尺寸標註 14 3.2.4 常用公差表建立與自動公差值計算 18 3.2.5 自動化設計圖生成以及PMI轉換 22 3.3 量測路徑規劃環境建立 24 3.3.1 量測設置檔案建立 24 3.3.2 PMI與模型實體匯入 25 3.3.3 量測機床調用 26 3.3.4 測頭座調用 27 3.3.5 量測設備模型圖 28 3.4 自動化量測路徑規劃與修正 29 3.4.1 量測特徵生成 29 3.4.2 量測路徑規劃 31 3.4.3 容差生成 34 3.4.4 碰撞對設定與路徑修正 35 3.4.5 連結至PMI功能 37 3.5 量測點數設定方法與平面度量測實驗 40 3.5.1 量測點數之文獻探討 40 3.5.2 平面度量測實驗 41 3.5.3 量測點數組合設計表 46 3.6 路徑驗證與量測程式碼輸出 47 3.6.1 路徑驗證 47 3.6.2 量測程式碼輸出 49 第四章 實例驗證與討論 52 4.1 自動化量測路徑規劃程式之介面設計 52 4.2 自動化量測路徑規劃程式之操作流程範例 53 4.3 實例驗證一 59 4.4 實例驗證二 63 4.5 實例驗證結果探討 68 第五章 結論與未來展望 69 參考文獻 70 附錄 73

    [1] S. G. Zhang, A. Ajmal, J. Wootton, and A. Chisholm, "Feature-based inspection process planning system for co-ordinate measuring machine (CMM)," Journal of Materials Processing Technology, Article vol. 107, no. 1-3, pp. 111-118, 2000.
    [2] G. Lee, J. Mou, and Y. Shen, "Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine," International Journal of Machine Tools and Manufacture, Article vol. 37, no. 7, pp. 917-934, 1997.
    [3] W. S. Kim and S. Raman, "On the selection of flatness measurement points in coordinate measuring machine inspection," International Journal of Machine Tools and Manufacture, Article vol. 40, no. 3, pp. 427-443, 2000.
    [4] Z. C. Lin and W. S. Lin, "The application of grey theory to the prediction of measurement points for circularity geometric tolerance," International Journal of Advanced Manufacturing Technology, Article vol. 17, no. 5, pp. 348-360, 2001.
    [5] Z. C. Lin and W. S. Lin, "Measurement point prediction of flatness geometric tolerance by using grey theory," Precision Engineering, Article vol. 25, no. 3, pp. 171-184, 2001.
    [6] M. A. Badar, S. Raman, and P. S. Pulat, "Intelligent search-based selection of sample points for straightness and flatness estimation," Journal of Manufacturing Science and Engineering, Transactions of the ASME, Article vol. 125, no. 2, pp. 263-271, 2003.
    [7] R. Raghunandan and P. V. Rao, "Selection of an optimum sample size for flatness error estimation while using coordinate measuring machine," International Journal of Machine Tools and Manufacture, Article vol. 47, no. 3-4, pp. 477-482, 2007.
    [8] B. M. Colosimo, E. G. Moya, G. Moroni, and S. Petrò, "Statistical Sampling Strategies for Geometric Tolerance Inspection by CMM," Economic Quality Control, vol. 23, no. 1, 2008.
    [9] N. Zaimovic-Uzunovic and S. Lemes, "Cylindricity measurement on a coordinate measuring machine," in Lecture Notes in Mechanical Engineering, ed, 2018, pp. 825-835.
    [10] M. W. Cho, H. Lee, G. S. Yoon, and J. Choi, "A feature-based inspection planning system for coordinate measuring machines," International Journal of Advanced Manufacturing Technology, Article vol. 26, no. 9-10, pp. 1078-1087, 2005.
    [11] S. M. Stojadinovic, V. D. Majstorovic, N. M. Durakbasa, and T. V. Sibalija, "Towards an intelligent approach for CMM inspection planning of prismatic parts," Measurement: Journal of the International Measurement Confederation, Article vol. 92, pp. 326-339, 2016.
    [12] S. M. Stojadinovic, V. D. Majstorovic, N. M. Durakbasa, and T. V. Sibalija, "Ants colony optimisation of a measuring path of prismatic parts on a CMM," Metrology and Measurement Systems, Article vol. 23, no. 1, pp. 119-132, 2016.
    [13] Z. Han, S. Liu, X. Li, Y. Wang, X. Zhang, and G. Zhang, "Path planning method for intelligent CMMs based on safety and the high-efficiency principle," International Journal of Advanced Manufacturing Technology, Article vol. 95, no. 9-12, pp. 4003-4012, 2018.
    [14] Z. Han, S. Liu, F. Yu, X. Zhang, and G. Zhang, "A 3D measuring path planning strategy for intelligent CMMs based on an improved ant colony algorithm," International Journal of Advanced Manufacturing Technology, Article vol. 93, no. 1-4, pp. 1487-1497, 2017.
    [15] A. ISO, "22093-2004,“," Industrial automation systems and integration-Physical device control-Dimensional Measuring Interface Standard (DMIS), 2004.
    [16] S. V. B. Sathi and P. V. M. Rao, "STEP to DMIS: Automated generation of inspection plans from CAD Data," in 2009 IEEE International Conference on Automation Science and Engineering, CASE 2009, 2009, pp. 519-524.
    [17] H. A. Hussien, A. M. Youssef, and M. K. Shoukry, "Automated inspection planning system for CMMs," in International Conference on Engineering and Technology, ICET 2012 - Conference Booklet, 2012.
    [18] Y. Bai, S. Wei, K. Liu, and X. Wang, "A strategy to automatically planning measuring path with CMM offline," in 2010 International Conference on Mechanic Automation and Control Engineering, MACE2010, 2010, pp. 3064-3067.
    [19] A. Kamrani, E. Abouel Nasr, A. Al-Ahmari, O. Abdulhameed, and S. H. Mian, "Feature-based design approach for integrated CAD and computer-aided inspection planning," International Journal of Advanced Manufacturing Technology, Article vol. 76, no. 9-12, pp. 2159-2183, 2015.
    [20] B. ISO, "286-2: 2010 “Geometrical Product Specifications (GPS)-ISO code system for tolerances on linear sizes," ed: Part.
    [21] S. Martínez-Pellitero, J. Barreiro, E. Cuesta, and A. I. Fernández-Abia, "Knowledge base model for automatic probe orientation and configuration planning with CMMs," Robotics and Computer-Integrated Manufacturing, Article vol. 49, pp. 285-300, 2018.
    [22] B. Standard, "7 172: Guide to Assessment of position, size and departure from nominal form of geometric features," ed: BSt, 1989.
    [23] 陳盈宏, "尺寸與幾何公差評估法研究," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 1994.
    [24] G. Moroni and S. Petrò, "Coordinate measuring machine measurement planning," in Geometric Tolerances: Impact on Product Design, Quality Inspection and Statistical Process Monitoring, 2010, pp. 111-158.
    [25] R. Raghunandan and P. Venkateswara Rao, "Selection of sampling points for accurate evaluation of flatness error using coordinate measuring machine," Journal of Materials Processing Technology, Article vol. 202, no. 1-3, pp. 240-245, 2008.
    [26] S. E. Sadaoui, C. Mehdi-Souzani, and C. Lartigue, "Computer-Aided Inspection Planning: A Multisensor High-Level Inspection Planning Strategy," Journal of Computing and Information Science in Engineering, Article vol. 19, no. 2, 2019, Art. no. 21005.

    無法下載圖示 全文公開日期 2025/01/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE