簡易檢索 / 詳目顯示

研究生: 郭信甫
Shin-Fu Guo
論文名稱: 應用線性混頻器技術實現雙電容性共振腔注入鎖定除頻器
Double Capacitive Cross-Coupled Injection Frequency Divider Using Linear Mixer Approach
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 馮武雄
Wu-Shiung Feng
賴文政
Wen-Cheng Lai
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 129
中文關鍵詞: 壓控振盪器注入鎖定除頻器線性混頻器交叉耦合鎖頻範圍
外文關鍵詞: Voltage Controlled Oscillator, Injection-Locked Frequency Divider, Linear Mixer, Cross-Coupled, Locking Range
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 射頻積體電路(RFIC)中,收發器(Transceiver)的鎖相迴路(Phase locked loop)特性格外的重要,PLL內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而為了追求低功耗,低相位雜訊,與較寬的除頻範圍,在這其中又以壓控振盪器和注入鎖定除頻器特性最重要,而此論文主要研究鎖相迴路中的注入鎖定除頻器。

    首先,第一部分我們呈現一個寬頻除六注入鎖定除頻器,此除頻器使用台積電矽鍺0.18 μm製程,晶片面積為855.42×954.492 μm2。此除三除頻器設計基於一電容耦合的壓控振盪器,且再外加一個共振腔來增加除頻範圍,可以找到除頻器最寬可除頻範圍在13.2 GHz ~ 16 GHz (21.02%)。但此除頻器最佳工作電壓操作在0.95伏特,整體功耗為5.6 mW,在注入強度為0 dbm時,除頻範圍可從14.5 GHz ~ 16.3 GHz (11.69%),FOM為2.09。
    接著,第二部份我們呈現一個寬頻除五注入鎖定除頻器,由電矽鍺0.18 μm製程實現。此除五除頻器也是使用雙電容性共振腔的架構。在工作偏壓0.95 V、注入強度0 dBm下,除五範圍總共為3.8 GHz,注入頻率從12 GHz ~ 15.8 GHz,總除頻百比例為27.34 %。此除頻器功耗為5.11 mW,晶片面積855.42×954.492 μm2。

    接著,第三部份我們呈現一個寬頻除四注入鎖定除頻器,同樣使用電矽鍺0.18 μm製程來實現。此除頻器使用使用雙電容性共振腔的架構下設計,而這次特別使用一對自製互感結合可調式電容以移動除頻範圍。在VT的調整下,可使互感的強度增加進而影響除頻範圍移動,形成一個彈性較高的除頻器。在驅動偏壓為0.95 V、注入功率為0 dbm時,注入鎖定頻率為10.1 ~ 14 GHz,鎖住範圍共3.9GHz,百分比為32.37 %。此晶片面積為1006.28 × 925.377 μm2,除頻器的核心功耗共2.61 mW。

    最後,第四部份我們呈現一個雙共振腔除三注入鎖定除頻器,同樣使用電矽鍺0.18 μm製程來實現。此除三除頻器也是使用雙電容性共振腔的架構。在工作偏壓0.9 V、注入強度0 dBm下,除五範圍總共為4.7 GHz,注入頻率從6.3 GHz ~ 11 GHz,總除頻百比例為54.33 %。此除頻器功耗為4.45 mW,晶片面積855.42×954.492 μm2。


    In the RF integrated circuits (IC) , PLL are very important block of the transceiver circuit, PLL characteristics include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD), In order to pursue low-power, low phase noise, wide Locking range, the most important characteristics of performance are VCO and Divider, this thesis presents the design of Injection-locked frequency dividers (ILFDs).

    First, a Wide-Locking Range Divide-by-6 Injection-Locked Frequency Divider Using Linear Mixer Approach (ILFD) using a standard 0.18 μm BiCMOS process is presented. The die area is 855.42×954.492 μm2. The ILFD circuit bases on capacitive cross-coupled oscillator and uses extra capacitive cross-coupled to enhance the locking range , therefore we found maximum locking range at 13.2 GHz ~ 16 GHz (19.86%). But the best performance of the chip is at supply voltage 0.95 V, the power consumption of the ILFD core is 5.6 mW and the locking range is from 14.5 GHz ~ 16.3 GHz (11.69%) at injection power Pinj = 0 dBm.

    Secondly, a 5:1 LC-resonator Injection-Locked Frequency Dividers (ILFD) was implemented in the standard 0.18 μm BiCMOS process. The divide-by-5 ILFD uses double capacitive cross-coupled oscillator. At the power supply of 0.95 V, and at the incident power of 0 dBm the maximum locking range of the divide-by-5 ILFD is 3.8 GHz (27.34%) from 12 to 15.8 GHz, the ILFD has overlapped locking ranges. The core power consumption is 5.11 mW. The die area is 855.42×954.492 μm2.

    Third, a Wide-Band Harmonic Mixer Divide-by-4 Injection-Locked Frequency Divider (ILFD) was implemented in the standard 0.18 μm BiCMOS process. The divide-by-4 ILFD uses double capacitive cross-coupled oscillator and mutual inductors combine with a pair of varactors. At the power supply of 0.95 V, and at the incident power of 0 dBm, the locking range of the divide-by-4 ILFD is 3.9 GHz, from the incident frequency 10.1 to 14 GHz and the locking range percentage is 32.37%. The die area is 1006.28 × 925.377 μm2. The power consumption of ILFD core is 2.61 mW.

    Finally, a Double Capacitive Cross-Coupled Divide-by-3 Injection-Locked Frequency Divider (ILFD) was implemented in the standard 0.18 μm BiCMOS process. The divide-by-3 ILFD uses double capacitive cross-coupled oscillators. At the power supply of 0.9 V, and at the incident power of 0 dBm the maximum locking range of the divide-by-3 ILFD is 4.7 GHz (54.33%) from 12 to 15.8 GHz, the ILFD has overlapped locking ranges. The core power consumption is 4.45 mW. The die area is 855.42×954.492 μm2.

    摘要 I Abstract III 致謝 V Table of Contents VI List of Figures IX List of Tables XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 Basic concepts 7 2.2.1 Feedback Oscillators 7 2.2.2 Resonator and Negative Resistance 9 2.3 The Classification of Oscillators 12 2.3.1 Ring Oscillator 12 2.3.2 LC-Tank Oscillator 15 2.4 Passive Components Design in VCO 24 2.4.1 Inductor Design 24 2.4.2 Transformer Design 27 A. Physical Layouts of Transformers 29 B. Compact Models of Transformer 33 2.4.3 Capacitor Design 35 2.4.4 Varactor Design 37 2.4.5 Resistor Design 41 2.5 The Performance parameters of VCO 42 2.5.1 RF Center Frequency [Hz] 42 2.5.2 RF Output Signal Power [dBm] 42 2.5.3 Power Dissipation [mW] 42 2.5.4 Harmonic/spurious [dBc] 43 Phase Noise 43 2.5.6 Tuning Range 46 2.5.7 Tuning Sensitivity [Hz/V] 47 2.5.8 Quality Factor 48 2.5.9 Figure of Merit [dBc/Hz] 51 Chapter 3 Design of Injection Locked Frequency Divider 52 3.1 General considerations 53 3.2 Operation Range 55 Chapter 4 Wide-Locking Range Divide-by-6 Injection-Locked Frequency Divider Using Linear Mixer Approach 60 4.1 Introduction 60 4.2 Circuit Design 63 4.3 Measurement Results 68 Chapter 5 5:1 LC-resonator Injection-Locked Frequency Dividers 74 5.1 Introduction 74 5.2 Circuit Design 75 5.3 Measurement Results 79 Chapter 6 Wide-Band Harmonic Mixer Divide-by-4 Injection-Locked Frequency Divider 85 6.1 Introduction 85 6.2 Circuit Design 86 6.3 Measurement Results 88 Chapter 7 Double Capacitive Cross-Coupled Divide-by-3 Injection-Locked Frequency Divider 95 7.1 Introduction 95 7.2 Circuit Design 96 7.3 Measurement Results 97 Chapter 8 Conclusions 103 References 105

    [1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May. 1992.
    [3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [4] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
    [5] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [6] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [7] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, Jun. 2000.
    [8] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun. 1974.
    [10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [11] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569−572, 2000.
    [12] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [14] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [15] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [16] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, Jul. 1996.
    [17] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, Jul. 1996.
    [18] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [19] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [20] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, Jun. 1999.
    [21] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, Jun. 2001.
    [25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, Jul. 2002.
    [26] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, Jun. 1999.
    [27] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [28] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [29] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [30] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett, vol. 16, no. 5, pp. 299–301, May 2006.
    [31] H. Wu and Hajimiri A., “A 19 GHz 0.5 mW 0.35 um CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech., pp. 412–413, Feb. 2001.
    [32] L. Wang, Y. Z. Xiong, S. M. Hu, and T. G. Lim, “A 0.13-μm HBT divide-by-6 injection-locked frequency divider,” IEEE ASSC Conf., pp.97-100, Nov. 2011.
    [33] L. Wang, T. Zhang, O. Li, M. Yang, Q. Chen, M. Zan, and Y. Guo, “A D-band divide-by-6 injection-locked frequency divider with Lange-coupler feedback architecture in 0.13 µm SiGe HBT,” IEICE Express, vol. 14, no. 17, pp. 1–12, 2017.
    [34] C.-C. Chan, T.-H. Lin, and H.-Y. Chang, “A 31.2% locking range K-band divide-by-6 injection-locked frequency divider using 90 nm CMOS technology,” in IEEE MTT-S Int. Microwave Symposium Digest, Phoenix, USA, May 2015.
    [35] J.-W. Wu, C.-H. Tu, S.-W. Chen and M.-C. Tu, “Divide-by-six injection-locked frequency divider by employing two down-conversions,” in Proc. of the 10th European Microwave Integrated Circuits Conference (EuMIC), pp. 246–249, Sept. 2015.
    [36] T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa, “A 13.2% locking-range divide-by-6, 3.1 mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, ” IEEE European Solid-State Circuits Conf., pp. 403-406, 2013.
    [37] P.-H. Feng, and S.-H. Liu, “A current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1523- 1532, Apr. 2013.
    [38] S.-L. Jang, and C.-Y. Lin, ” Wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, no. 23, pp.1710-1712, 2014.
    [39] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ”Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
    [40] M. Farazian, P. S. Gudem, and L. E. Larson, “A CMOS multi-phase injection-locked frequency divider for V-band operation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 239–241, Apr. 2009.
    [41] F. H. Huang, D. M. Lin, H. P. Wang, W. Y. Chiu, and Y. J. Chan, “20 GHz CMOS injection-locked frequency divider with variable division ratio,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 469–472, Jun. 2005
    [42] M. Acar, D. Leenaerts, and B. Nauta, “A wideband CMOS injection locked frequency divider,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 211–214, Jun. 2004,.
    [43] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ”A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, Jul. 2010.
    [44] S.-L. Jang, S.-J. Jian, and C.-W. Hsue, ”Frequency tuning hysteresis of a dual-resonance ÷3 cross-coupled injection-locked frequency divider,”IET Microw. Antennas Propag., vol. 12, no.8, pp. 1302-1309, 2018.
    [45] W.-C. Lai, S.-L. Jang, S.-J. Jian, T.-C. Kung, and C.-W. Hsue, “Wide locking range divide-by-5 injection-locked frequency divider using linear mixer approach for microwave device application,” in Proc. IEEE Int. Conf. Ubiquitous Wireless Broadband (ICUWB), pp. 1–3, Oct. 2016.
    [46] P.-K. Tsai, T.-H. Huang and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electron. Letts, vol.46, no.14, pp.1003-1004, Jul. 2010.
    [47] C.-L. Yang, T.-H. Huang, C.-L. Chiang, and S.-P. Yu, ”Dynamic control to enhance locking range of divide-by-five prescaler for 24 GHz PLL,” IEEE Int. Microwave Symp. Boston, Massachusetts, USA , pp. 1-3, Jun. 2013.
    [48] M. Jalalifar and G.-S. Byun, ”A K-band divide-by-five injection-locked frequency divider using a near-threshold VCO,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 881-883, 2014.
    [49] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide locking range, millimeter-wave divide-by-5 injection-locked frequency dividers,”IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679–685, Mar. 2012.
    [50] Y.-H. Chang and Y.-C. Chiang, ”A low-power K-band divide-by-5 injection-locked frequency divider,” Proceedings of the 46th European Microwave Conference, pp.289-292, 2016.
    [51] J. Jeong and Y. Kwon, “V-band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1891-1898, Jun. 2005.
    [52] S.-L. Jang, and C.-W. Chang, ”A 90 nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,”IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, Apr. 2010.
    [53] S.-L.Jang, T.-C. Kung and C.-W. Hsue,"Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp.398-400, 2017.
    [54] S.-L. Jang, and C.-C. Fu. ”Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, no. 2, pp. 523–528, Feb. 2014.
    [55] S.-L. Jang, and W.-C. Liu, ”Injection-locked frequency divider using single-injected dual-injection MOSFETs,” Microelectronics Journal, pp.1409-1412, 2015.
    [56] S.-L. Jang, J.-F. Huang and F.-B. Lin,”Wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback,” Int. J. RF and Microwave Computer-Aided Engineering, vol.25, no. 7, pp.557–562, 2015.
    [57] C.-W. Chang and S.-L. Jang, ”LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., vol. 101, no. 2, pp. 204-211, 2014.
    [58] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
    [59] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
    [60] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider," Int. J. Electronics., vol. 98, no. 4, pp. 521-527, Apr. 2011.
    [61] S.-L. Jang, Y.–T. Chang, C.-W. Hsue and M.-H. Juang, ” Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” Int. J. Circuit Theory and Applications, vol.44, no. 5, pp.968-976, May. 2015.
    [62] S.-L. Jang,C. C. Liu and C.-W. Chung, ”A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19, no. 4, pp. 236-238, Apr. 2009.
    [63] S.-L. Jang, S.-J. Jian and C.-W. Hsue, "Wide-band divide-by-4 injection-locked frequency divider using harmonic mixer," IEEE Microw. Wireless Compon. Lett., 924-926, Oct. 2017.
    [64] S.-L.Jang, and C.-Y. Lin, ”A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014.
    [65] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters., vol. 51, no. 23, pp.1888-1889 , 2015.
    [66] S.-L.Jang, and C.-H. Fang, ”Divide-by-4 capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process., 86:59-63, 2016.
    [67] S.-L. Jang, and C.-W. Chang, ”A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, Apr. 2010.
    [68] S.-L. Jang, S.-J. Jian, and C.-W. Hsue, ”Frequency tuning hysteresis of a dual-resonance ÷3 cross-coupled injection-locked frequency divider,”IET Microw. Antennas Propag., vol. 12, no.8, pp. 1302-1309, 2018.
    [69] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, pp.27–29, Feb. 2006
    [70] Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu, ”Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov. 2013.
    [71] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
    [72] K.-H. Chien, J. Y. Chen and H. K. Chiou, “Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with darlington topology,” IEEE Trans. Microw. Theory Tech., vol. 99, 2015.
    [73] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, pp.27–29, Feb. 2006
    [74] S.-L. Jang, and C.-W. Chang, “A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
    [75] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, Jul. 2010.
    [76] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
    [77] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, pp. 1888 – 1889, Nov. 2015
    [78] S.-L.Jang and C.-Y. Chuang, “Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr CircSig Process., vol. 76, no. 1, pp. 111-116, 2013
    [79] S.-L.Jang, and C.-Y. Lin, “A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters., vol. 50, no. 23, pp.1710-1712, 2014.
    [80] S.-L.Jang, C.-Y. Lin and M.-H. Juang, “Enhanced locking range technique for a divide-by-3 differential injection-locked frequency divider,” Electronics Letters., vol. 51, no. 6, pp. 456 – 458, Mar. 2015.
    [81] S.-L.Jang, T.-C. Kung and C.-W. Hsue, “Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, 2016.
    [82] S.-L.Jang, and J.-H. Hsieh, “A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598, 2013.

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE