簡易檢索 / 詳目顯示

研究生: 麥博翔
Po-Hsiang Mai
論文名稱: 石墨烯/奈米碳管-超奈米鑽石複合結構高穩定性之氫氣感測分析
Graphene/Carbon nanotube-Ultra-nanocrystalline diamond for high stability hydrogen sensor properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
Bohr-Ran Huang
周賢鎧
Shyankay Jou
章詠湟
Yung-Huang Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 161
中文關鍵詞: 石墨烯奈米碳管超奈米鑽石氫氣感測器氣體感測
外文關鍵詞: Graphene, Carbon nanotube, Ultra-nanocrystalline diamond, hydrogen sensor
相關次數: 點閱:376下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為四個部分,第一部分不同成長時間的摻氮超奈米鑽石(N-UNCD)之氫氣感測分析,並進行物性及電性之分析;第二部分則是以上一部分氫氣感測分析最好結果之N-UNCD為基底,濺鍍不同時間的鎳金屬作為催化劑並進行熱解化學氣相沉積(Thermal CVD),以N-UNCD作為唯一碳源作不同時間成長奈米碳管並進行氫氣感測量測和比較物性及電性之分析。第三部分則是在以第二部分中所得到氫氣感測分析最佳結果,加入不同量的還原氧化石墨烯(rGO)水溶液和不同層數由化學氣相沉積法製造之石墨稀兩種石墨纇的材料複合奈米碳管作氫氣感測之分析,並進行物性與電性之分析。第四部份則是將前三部份所得到分別對於氫氣感測最好的參數進行穩定性、重複性與選擇性之分析。
    研究發現,超奈米鑽石(N-UNCD)在成長時間為5分鐘時,經由原子力顯微鏡(AFM)所得到之表面粗糙度(Ra)為50.2nm,此時的N-UNCD具有較大的鑽石顆粒結晶,可以得知在成長5分鐘時N-UNCD具有較大的表面積,其在500ppm的氫氣流量下,靈敏度為2.3%;接著再以五分鐘的N-UNCD為基底,濺鍍上不同分鐘的鎳金屬作為催化劑,以熱解化學氣相沉積成長不同時間的奈米碳管,可以發現成長出奈米碳管後相較於超奈米鑽石在500ppm的氫氣流量下,對於氫氣感測之靈敏度提升至5.2%。造成響應值提升,其原因為成長奈米碳管後,氧氣的吸附面積較超奈米鑽石來得大,因此,整體的比表面積提升,導致更多的氧氣吸附。
    在加入P型的還原氧化石墨烯和石墨稀後為了使費米能階平衡,奈米碳管和還原氧化石墨烯以及石墨烯的交界處會有些微能帶彎曲現象,使空乏區形成,但其較奈米碳管和超奈米鑽石接面的空乏區小,且因奈米碳管之功函數比石墨烯大,當在氫氣的環境中,自由電子可以輕易的從奈米碳管導帶傳到石墨稀的導帶,使空乏層寬度降低,電阻下降,奈米碳管-超奈米鑽石複合還原氧化石墨烯在500ppm的氫氣流量下之靈敏度提升為5.3%;奈米碳管-超奈米鑽石複合石墨烯在500ppm的氫氣流量下之靈敏度更提升為6.12%。
    最後在以不同波段的發光二極體(LED)去照射奈米碳管-超奈米鑽石複合結構進行氫氣感測之分析可以發現,因超奈米碳管-超奈米鑽石在紫外光波段具有吸收波長,當照射紫外光時進行氫氣感測可以發現因電子能階的跳耀,造成電阻上升,在500ppm的氫氣流量下靈敏度提升為14.51%。


    At present, there are many types of the commercially available hydrogen sensors, including electrochemical, semiconductor, thermoelectric, metallic, optical and acoustic ones, etc. Among them, semiconductor sensors exhibit high sensitivity, fast response, long-term stability and potential for integration in hydrogen sensing performance. In this study, we report hydrogen sensor based on combination of Ultra-nanocrystalline diamond (N-UNCD), carbon nanotubes (CNTs), reduced graphene oxide (rGO) and Graphene (Gr) via an innovative process. More briefly, we divide this study into four parts. The first part deals with N-UNCD growth in different time duration to measure hydrogen properties. The second part we use N-UNCD as the only carbon source, sputtering different Ni thickness as catalyst and using thermal CVD process to grow CNTs without CH4 gas. Because the only carbon source is N-UNCD, it is envisioned to that the as-grown CNTs are derived from N-UNCD, and then, we used this structure to measure hydrogen properties. The third part we used different amount of rGO solution to add on CNTs and measure hydrogen properties. The fourth part we transfer graphene which was growing by CVD on CNTs and measure hydrogen properties. From the overall studies, we revealed that the as-prepared Gr/CNTs-N-UNCD based hydrogen sensor exhibit enhanced Response of 6.12% compared to those of N-UNCD (2.3%), CNT-N-UNCD (5.2%) and rGO/CNT-N-UNCD (5.3%) based hydrogen sensor. As proved by HRTEM, the as-prepared CNTs is derived from N-UNCD, therefore, it has also some characteristics of N-UNCD, which was revealed from hydrogen properties, that shows very good stability and repeatability. After two months of stability measurement, the sensitivity of this structure for hydrogen sensing is as much as 84%, it shows that this structure is markedly suitable for hydrogen sensing components.

    目錄 中文摘要 Ⅰ 英文摘要 III 致謝 Ⅴ 目錄 ⅤⅠ 圖目錄 XⅠ 表目錄 XⅤ 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1鑽石薄膜的特性簡介 4 2.1.1 鑽石薄膜基本性質及結構 4 2.1.2超奈米鑽石成長機制 5 2.1.3奈米結晶鑽石 6 2.2 奈米碳管之特性簡介 8 2.2.1 奈米碳管特性 8 2.2.2 奈米碳管合成方法 11 2.2.3奈米碳管成長機制 16 2.3 石墨烯特性簡介 18 2.3.1 石墨烯的基本性質與結構 18 2.3.2 石墨烯成長機制與製備方法 21 2.3.3 石墨烯的特性 25 2.4 還原氧化石墨烯的特性簡介 26 2.4.1 還原氧化石墨烯還原方法 26 2.5 氣體感測器機制與種類 28 2.5.1電化學型氣體感測器 30 2.5.2紅外線感測型氣體感測器 30 2.5.3觸媒燃燒型氣體感測器 31 2.5.4金屬氧化物半導體型氣體感測器 ….32 第三章 實驗方法 34 3.1 實驗設計與流程 34 3.2 製備之材料介紹 38 3.3 基板清洗 39 3.4 微波電漿化學氣相沉積法成長摻氮-超奈米鑽石結晶 40 3.5 化學氣相沉積法成長高穩定性奈米碳管 42 3.6 製作還原氧化石墨烯 44 3.7 石墨烯轉移 45 3.8 儀器設備與材料分析方法 50 3.7.1 場發射掃描式電子顯微鏡(FE-SEM) 50 3.8.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 51 3.8.3 拉曼光譜儀(Raman spectrum) 51 3.8.4 霍爾量測儀(Hall measurement ) 52 3.8.5 光激發螢光光譜儀(Photoluminescence,PL) 53 3.8.6 場發射槍穿透式電子顯微鏡(FEG-TEM) 54 3.8.7 原子力顯微鏡(Atomic Force Microscpoic,AFM) 55 3.8.8 紫外光/可見光光譜儀分析(UV-Vis Spectrometers) 56 3.8.9氣體感測器(Gas sensor) 57 第四章 奈米碳管-超奈米鑽石複合結構分析與氫氣感測特性 58 4.1超奈米鑽石特性分析 58 4.1.1 表面型態分析 58 4.1.2 拉曼光譜儀分析 62 4.1.3光激發螢光光譜儀分析 63 4.1.4超奈米鑽石氫氣感測分析 66 4.2 超奈米鑽石誘導成長奈米碳管特性分析 72 4.2.1 表面型態分析 72 4.2.2 場發射槍穿透式電子顯微鏡分析 74 4.2.3 拉曼光譜儀分析 76 4.2.4 光激發螢光光譜儀分析 76 4.2.5 超奈米鑽石濺鍍不同時間催化劑成長奈米碳管氫氣感測分析 79 4.3超奈米鑽石藉由催化劑誘導成長不同時間奈米碳管氣體感測特性 84 4.3.1 表面型態分析 85 4.3.2 拉曼光譜儀分析 86 4.3.3 超奈米鑽石誘導成長不同時間奈米碳管氫氣感測分析 88 4.4 超奈米鑽石誘導成長奈米碳管氫氣感測之穩定性與重複性分析 93 4.4.1 重複性分析 93 4.4.2 穩定性分析 95 4.4.3 穩定性比較 96 4.5 不同光源(LED)照射奈米碳管-超奈米鑽石複合結構氫氣感測分析 98 4.5.1 紫外光-可見光光譜分析 98 4.5.2 發光二極體照射奈米碳管-超奈米鑽石複合結構氫氣感測分析 99 4.6 參考文獻比較 100 第五章 石墨烯/奈米碳管-超奈米鑽石複合結構之氫氣感測特性 101 5.1奈米碳管-超奈米鑽石複合結構加入還原氧化石墨烯氫氣感測特性分析 101 5.1.1 表面型態分析 102 5.1.2 拉曼光譜儀分析 103 5.1.3 光激發螢光光譜儀分析 104 5.1.4 還原氧化石墨烯/奈米碳管-超奈米鑽石複合結構氫氣感測分析 105 5.2還原氧化石墨烯/奈米碳管-超奈米鑽石複合結構穩定性與重複性分析 110 5.2.1 還原氧化石墨烯/奈米碳管-超奈米鑽石複合結構重複性分析 110 5.2.2 還原氧化石墨烯/奈米碳管-超奈米鑽石複合結構穩定性分析 112 5.3奈米碳管-超奈米鑽石複合結構轉移不同層數石墨烯氫氣感測特性分析 113 5.3.1 表面型態分析 114 5.3.2 拉曼光譜儀分析 115 5.3.3 光激發螢光頻譜儀分析 117 5.3.4 石墨烯/奈米碳管-超奈米鑽石複合結構氫氣感測分析 118 5.3.5 氫電漿後處理雙層石墨稀/奈米碳管-超奈米鑽石超複合結構氣體感測特性 122 5.4 石墨烯/奈米碳管-超奈米鑽石複合結構氫氣感測重複性與穩定性分析 126 5.4.1石墨烯-奈米碳管-超奈米鑽石複合結構重複性分析 126 5.4.2石墨烯-奈米碳管-超奈米鑽石複合結構穩定性分析 128 5.4.3重複性比較 130 5.4.4穩定性比較 131 5.5 參考文獻比較 132 第六章 結論與未來展望 133 6.1 結論 133 6.2 未來展望 137 參考文獻 138

    參考文獻
    [1]. Xueying Kou, Ning Xie, Fang Chen, Tianshuang Wang, Lanlan Guo, Chong Wang, Qingji Wang, Jian Ma, Yanfeng Sun, Hong Zhang, Geyu Lu, “ Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping”, Sensors and Actuators B 256 (2018) 861–869.
    [2]. R. Sankar Ganesha,b, M. Navaneethanb,c, V.L. Patil d, S. Ponnusamy b, C. Muthamizhchelvanb, S. Kawasaki e, P.S. Patil d, Y. Hayakawaa,c, “ Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature ”, Sensors and Actuators B 255 (2018) 672–683.
    [3]. C.W. Zou, J. Wang, W. Xie, “ Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/ TiO2 nanoparticles heterojunction composites ”, Journal of Colloid and Interface Science 478 (2016) 22–28.
    [4]. H. W. Kroto , J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, “ C60: Buckminsterfullerene ”, Nature, 318(No.6042), 162-163,(1985).
    [5]. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F., “ Photoinduced electron transfer from a conducting polymer to buckminsterfullerene ”, Science. Nov 27 ; 258 (5087) : 1474-6 (1992).
    [6]. Ayrat M. Dimiev and James M. Tour. “ Mechanism if Graphene Oxide Formation.
    [7]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, “ Vapor Depositiion of Diamond Particles from Methane ” Japanese J.Appl. Phys. (1992) 1562.
    [8]. Lin, C. R., et al. “ Development of high-performance UV detector using nanocrystalline diamond thin film ” International Journal of Photoenergy (2014)
    [9]. Suneet Arora, V.D. Vankar, “ Field emission characteristics of microcrystalline diamond films:Effect of surface coverage and thickness ” Thin Solid Films (2006) 1963.
    [10]. S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park IEEE (1996) 526.
    [11]. 曾永華、陳柏穎、鄭宇明、游銘永,“人造鑽石的合成及應用”,科學發展497期,一百零三年五月。
    [12]. S.Iijima, “ Helical microtubles of graphitic carbon ” Nature,345(1991),56
    [13]. R.Saito, G.Dresselhaus, M.S.G.Dresselhaus, “ Physical Properties of Carbon Nanotubes ”,Imperial College Press,London,1998.
    [14]. N.Hamada, S.Sawda, A.Oshiyama, “ New one-dimensional conductors: Graphitic microtubules ” Phys.Rev.Lett.,68,1581,1992
    [15]. R.Saito , M.Fujita, G.Dresselhaus, M.S.G.Dresselhaus, “ Electronic structure of chiral graphene tubules ” Appl. Phys. Lett., 60, 2204,1992
    [16]. J. Justin Gooding, “ Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing”, Electrochimica Acta 50 (2005) 3049–3060.
    [17]. J. Lu, “ Carnon Nanotubes - “ The Material for the new Millennium, in The International Conference on Novel Formation Mechanisms and Physical Properties ”.
    [18]. Yahachi Saito, Sashiro Uemura , Carbon 38(2000), 169.
    [19]. Wang, M., Zhao, X.,Ohkohchi, M.,Ando,Y., “ Carbon nanotubes grown on the surface of cathode deposit by arc discharge”, Fullerence Sciense and Technology, Vol.4, No.5,pp. 1027-1039(1996)
    [20]. Ando, Y., Zhao, X., Sugai, T., Kumar, M., “ Growing carbon nanotubes ” , Materials Today, Vol. 7, No.9, pp. 22-29(2004)
    [21]. Cuo, T., Nikolaev, P., Thess, A. Colbert, D.T., Smalley, R.E., “ Catalytic growth of single-walled nanotubes by laser vaporization ”, Chemical Physics Letters, Vol.243, No.1-2,PP.49-54(1995)
    [22]. Pan, Z.W., Xie, S.S., Chang, B.H., Sun, L.F., Zhou, W.Y., Wang, G., “ Direct growth of aligned open carbon nanotubes by chemical vapor deposition ”, Chemical Physics Letters, Vol. 299, No. 1, pp. 97-102(1999).
    [23]. S.Fan, M.G. Chapline, N.R. Franklin, T. W. Tomlber and H.Dai, “ Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties ”, Science283 (1999)512.
    [24]. Mukul Kumar and Yoshinori Ando, “ Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production ” J. Nanosci. Nanotechnol. 2010, Vol. 10, No. 6.
    [25]. K.S. Novoselov,A.K Geim. “ Electric Field Effect in Atomically Thin Carbon Film ” Science. 306.666,(2004)
    [26]. K .I .Bolotin, K.J Sikes, “ Ultrahigh electron moblilty in suspended graphene ” Solid State Commun. 146.135(2008)
    [27]. Wiki/Graphene.
    [28]. 石墨烯的結構、性質與應用https://read01.com/J6PLkB.html#.WwKyCEiFNPY
    [29]. 石墨烯與二維材料-微奈米科技研究中心-林志堅 http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/2601/435955689.pdf
    [30]. Mark Wilson. “ Electrons in atomically thin carbon sheets behave like massless particles”, Phy.Today, 59.21,(2006)
    [31]. K.S. Novoselov,A.K Geim. “ Electric Field Effect in Atomically Thin Carbon Film” Science. 306.666,(2004)
    [32]. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,“ Fine Structure Constant Defines Visual Transparency of Graphene”, Science,: Vol. 320 no. 5881 p. 1308,( 2008)
    [33]. B. C. Brodie et al., Philos. Trans. R. Soc. London, “On the atomic weight of graphite”, Journal Article 149 (1959) 249.
    [34]. Y. Xu et al., J. Am. Chem. Soc., “ Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets”, ACS Publications 130 (2008) 5856.J. William et al., J. Am. Chem. Soc., 80, 1339 (1958).
    [35]. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai. “ Highly conducting graphene sheets and Langmuir-Blodgett films ”. Nature Nanotech 3 (2008) 538-542.
    [36]. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau Superior thermal; “ Conductivity of single-layer graphene ”, Nano Lett, 8,902-907(2008).
    [37]. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau Superior thermal; “ Conductivity of single-layer graphene ”, Nano Lett, 8,902-907(2008).
    [38]. Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi & Byung Hee Hong, “ Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706-710, (2009)
    [39]. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,“ Fine Structure Constant Defines Visual Transparency of Graphene”, Science,: Vol. 320 no. 5881 p. 1308,( 2008)
    [40]. Galina V. Dubacheva. Functional “ Monolayers from carbon nanostructures-fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy conversion ” Coordination Chemistry Reviews 256 (2012) 2628–2639.
    [41]. Brodie, B. Note sur un Nouveau “ Procede pour la Purification et la Pesagregation du Graphite ”. Ann. Chim. Phys.1855, 45, 351–353.
    [42]. B. C. Brodie et al., Philos. Trans. R. Soc. London, 149, 249 (1959).
    [43]. J. William et al., J. Am. Chem. Soc., 80, 1339 (1958).
    [44]. Y. Xu , H. Bai, G. Lu, “ Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets ” J. Am. Chem. Soc.,130, 5856 (2008).
    [45]. H. He, J. Klinowski, M. Forster and A. Lerf, “ A new structural model for graphite oxide” Chemical Physics Letters 287 (1–2), 53-56 (1998).
    [46]. K. P. Loh, Q.Bao, G. Eda and M.Chhowalla, “ Graphene oxide as a chemically tunable platform for optical applications ” Nature Chemistry 2(12),1015-1024(2010)
    [47]. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol”. Chemical Physics Letters 360, 229–234 (2002).
    [48]. C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, L. J. Li, “Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors”, ACS Nano 4, 9, 5285–5292 (2010).
    [49]. D. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoffb, C. W. Bielawski, “Reduction of graphite oxide using alcohols”, J. Mater. Chem. 21, 3443–3447 (2011).
    [50]. S. Liua, Ke Chena, Y. Fua, S. Yua, Z. Baoa, “Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties”, Applied Surface Science 258, 5299–5303 (2012).
    [51]. Z, G, Wang, P. J. Li, Y. F. Chen, J. R. He, B. J. Zheng, J. B. Liu, F. Qi, “The green synthesis of reduced graphene oxide by the ethanol-thermal reaction and its electrical properties”, Materials Letters 116, 416–419 (2014).
    [52]. 陳一誠, “金屬氧化物半導體行氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
    [53]. http://highscope.ch.ntu.edu.tw/wordpress/?p=40839
    [54]. https://kknews.cc/zh-tw/science/qyeb6qr.html
    [55]. http://www.sanlien.com/ad/san_tech.nsf/foundationview/836522106181709A482577A5002C8968/$FILE/77-25-31.pdf.
    [56]. 陳一誠, “金屬氧化物半導體行氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
    [57]. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci. 86, 335 (1979).
    [58]. http://www.ctld.nfu.edu.tw/server/BT/content1/files/C06/c3.pdf
    [59]. http://ezphysics.nchu.edu.tw/prophys/basicexp/expnote/hall/hall_920703.pdf
    [60]. Sankaran, Kamatchi Jothiramalingam, “ Enhancement of electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment ” ACS applied materials & interfaces 6 16(2014) 14543-14551
    [61]. Zaitsev, “ Optical properties of diamond: a data handbook, Berlin”, 2000.
    [62]. G. Davies, M. F. Hamer, R. Soc. Lond. A 348, 285–98
    [63]. X. F. He, N. B. Manson, Peter T. H. Fisk , “ Paramagnetic resonance of photoexcited N- V defects in diamond. I. Level anticrossing in the A ground state” Phys. Rev. B 47, 8809–8815(1993)
    [64]. F. M. Hossain, M. W. Doherty, H. F. Wilson, L. C. L. Hollenberg, “ Ab Initio Electronic and Optical Properties of the N−V− Center in Diamond ” Phys. Rev. Lett. 101, 226403, 2008
    [65]. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 7, 2004.
    [66]. S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, Y. C. Yu , “ Bright Fluorescent Nanodiamonds:  No Photobleaching and Low Cytotoxicity ” J Am Chem Soc, 127, 17604-17605, 2005
    [67]. 成會明,奈米碳管,五南圖書出版有限公司,台北,第197頁(2004)
    [68]. Adhimoorthy Saravanan, B.R Huang, J.P Chu , “ Interface engineering of ultrananocrystalline diamond/MoS2-ZnOheterostructures and its highly enhanced hydrogen gas sensing properties ” , Sensors & Actuators: B. Chemical 292 (2019) 70–79
    [69]. Adhimoorthy Saravanan, B.R Huang, Deepa Kathiravan, “ Hierarchical morphology and hydrogen sensing properties of N2-based nanodiamond materials produced through CH4/H2/Ar plasma treatment ” , Applied Surface Science 457 (2018) 367–375
    [70]. J. Suehiro, S. Yamane, K. Imasaka, “ Carbon nanotube-based hydrogen gas sensor electrochemically functionalized with palladium ”, IEEE Sens. (2007) 555.
    [71]. S. Dhall, N. Jaggi, R. Nathawat, “Functionalized multiwalled carbon nanotubes based hydrogen gas sensor”, Sens. Actuat. A 201 (2013) 321–327.
    [72]. T.C. Lin, B.R. Huang, “Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing”, Sens. Actuat. B 162 (2012) 108–113.
    [73]. Daewoong Jung, Maeum Han, Gil S. Lee “Fast-Response Room Temperature Hydrogen Gas Sensors Using Platinum-Coated Spin-Capable Carbon Nanotubes”, ACS Appl. Mater. Interfaces (2015)7, 3050−3057.
    [74]. Keyi Yan, Yuhki Toku, Yang Ju “ Highly sensitive hydrogen sensor based on a new suspended structure of cross-stacked multiwall carbon nanotube sheet ”, International Journal of hydrogen energy 44(2019) 6344-6352
    [75]. Rakesh Kumar, Shweta Malik, B.R. Mehta “ Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers ” , Sensors and Actuators B 209 (2015) 919–926.
    [76]. Yusin Pak, Sang-Mook Kim, Huisu Jeong “ Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons”, ACS Appl. Mater. Interfaces (2014) 6, 13293−13298.
    [77]. A. Esfandiar , S. Ghasemi , A. Irajizad , O. Akhavan , M.R. Gholami “The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing” , International journal of hydrogen energy 37 (2012) 15423-15432
    [78]. Zhangyuan Zhang, Xuming Zou, Lei Xu, Lei Liao, Wei Liu, “ Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor” The Royal Society of Chemistry (2015) , 7, 10078–10084
    [79]. Kanika Ananda, Onkar Singh “ Hydrogen sensor based on graphene/ZnO nanocomposite” Sensors and Actuators B 195 (2014) 409–415

    無法下載圖示 全文公開日期 2025/01/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE