簡易檢索 / 詳目顯示

研究生: 王子勛
TZU-HSUN WANG
論文名稱: 積體化紫外光感測器與LED警示燈
Integrated UV sensor and LED warning light
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 光電晶體積體化感測器
外文關鍵詞: Phototransistor, Integrated, sensor
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製積體化紫外光感測器與LED警示燈。所使用的晶圓為商用氮化鎵晶圓,經由光罩設計與利用矽擴散(Silicon Diffusion)製程,達到選擇性地將部分最上層的p-GaN反轉成n-GaN,使其結構由p-i-n變成n-p-i-n結構,在同一片晶圓完成發光二極體、p-i-n結構光偵測器以及n-p-i-n結構光電晶體三種元件。並量測發光二極體的光電特性,以及兩種不同電子阻擋層結構晶圓的n-p-i-n光偵測器特性包括暗電流、外部量子效率與在不同偏壓下的響應率。並以運算放大器(operational amplifier)將光偵測器光電流訊號轉為電壓訊號,再透過二級放大達到LED 驅動電壓,藉此可以將看不見的紫外光透過可見的LED來展現與警示。
    在光電特性量測上,發光二極體的啟動電壓約為3.0 V,串聯電阻約為182 Ω。在電流為10 mA下的光輸出功率為4.8 mW,證明此積體化製程是成功相容的,並不影響發光二極體的光電特性。
    再來比較兩種晶圓QRBAH與FEBI製作的光偵測器,其外部量子效率峰值波長分別為384 nm和380 nm,QRBAH外部量子效率值在不同逆向偏壓0 V、1.5 V 、3 V、5 V、7 V、9 V、11 V下分別為37.2 %、46.1 %、54.3 %、56.2 %、64.8 %、88.0 %、109 %。而FEBI外部量子效率值在不同逆向偏壓0 V、1.5 V、3 V、5 V、7 V下分別為30.3 %、32.2 %、33.1 %、39.5 %、76.1 %。兩種n-p-i-n光電晶體元件有著相似的光電特性,而在逆向偏壓7 V時都開始有明顯的電流增益,且峰值外部量子效率與響應率都很相近,但響應速度不同。
    接著使用n-p-i-n光電晶體元件將偵測UV光的電流訊號轉為電壓訊號。並放大轉換完之電壓訊號成功驅動LED。因此n-p-i-n光電晶體更適合做為紫外光偵測器,響應率比p-i-n光偵測器高,與LED積體化不僅省去特殊磊晶的成本,還可增加功能,例如本實驗使用LED為警示燈。


    This paper develops integrated UV sensor and LED warning light. The wafers used are commercial GaN wafers, designed through a mask and utilizing the Silicon Diffusion process. Selectively inverting part of the uppermost layer of p-GaN into n-GaN, and changing its structure from p-i-n to n-p-i-n structure. Three components of light-emitting diode, p-i-n structured photodetector and n-p-i-n structured phototransistor on the same wafer. The characteristics of light-emitting diodes are measured. The characteristics of two different electron blocking layer wafers of n-p-i-n photodetectors included dark current, external quantum efficiency, responsivity under different bias voltages, and responsivity. And then, The operational amplifier is used to convert the photodetector photocurrent signal into a voltage signal and then passes the secondary amplification to reach the LED Turn-on voltage. In this way, invisible UV light can be seen and alerted through visible LED.
    First, In the photoelectric characteristics, the turn on voltage of the light-emitting diode is about 3.0 V, and the series resistance is about 159 Ω. The light output power of the light-emitting diode at a current of 10 mA is 4.8 mW. It’s proving that this integrated process is successfully compatible.
    Then compare the photodetectors made by QRBAH and FEBI. The external quantum efficiency peak wavelengths are 384 nm and 380 nm, respectively. The external quantum efficiency of QRBAH are 37.2 %, 46.1 %, 54.3 %, 56.2 %, 64.8 %, 88.0 %, 109 % under different reverse bias voltages of 0 V, 1.5 V, 3 V, 5 V, 7 V, 9 V, and 11 V, respectively. The FEBI external quantum efficiency are 30.3 %, 32.2 %, 33.1 %, 39.5 %, and 76.1 % at different reverse bias voltages of 0 V, 1.5 V, 3 V, 5 V, and 7 V, respectively. The two n-p-i-n components have similar photoelectric characteristics, and the current gain starts at 7 V at the reverse bias voltage, and the peak external quantum efficiency and responsivity are similar, but the response speed is different.
    The current signal for detecting UV light is converted into a voltage signal using an n-p-i-n component. And the amplified voltage signal is amplified to successfully turn-on the LED. Therefore, the n-p-i-n component is more suitable as an ultraviolet light detector, and the responsivity higher than that of the p-i-n photodetector. Integration with LEDs not only eliminates the cost of special epitaxy, but also adds functionality. For example, LEDs are used as warning lights in this experiment.

    目錄 摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xvi 第一章 導論 1 1.1 前言 1 1.2文獻回顧與研究動機 3 1.3 市售紫外光偵測器介紹 13 第二章 光偵測器理論介紹 19 2.1 光偵測器工作原理 19 2.2 光偵測器架構分類 21 2.2.1 p-n接面光二極體(p-n Photodiode) 21 2.2.2 p-i-n接面光電二極體 24 2.2.3 蕭基位障光電二極體(Schottky Barrier Photodiode) 28 2.2.4 雪崩型光二極體(Avalanche Photodiode) 30 2.2.5 異質接面雪崩光二極體 33 2.2.6 光電晶體 35 2.2.7 光導體光偵測器(Photoconductive Detector) 37 2.3 光偵測器檢測參數 39 2.3.1 量子效率(Quantum Efficiency, QE) 39 2.3.2 響應率(Responsivity, R) 42 2.3.3 響應速度(Response Speed) 43 2.3.4 拒斥比(Rejection Ratio) 43 2.3.5 雜訊等效功率(Noise Equivalent Power, NEP) 44 第三章 元件設計與儀器介紹 45 3.1 光偵測器元件設計 45 3.2 元件製程 47 3.2.1 活化製程(Activation) 49 3.2.2 絕緣製程(Isolation) 49 3.2.3 高台圖型製程(Mesa) 51 3.2.4 矽擴散製程(Silicon diffusion) 53 3.2.5 二氧化矽絕緣層沉積 55 3.2.6 ITO透明導電層沉積 55 3.2.7 N型電極沉積 56 3.3 製程儀器介紹 57 3.3.1 旋轉塗佈機(Spin coater) 57 3.3.2 光罩對準機(Mask aligner) 58 3.3.3 電漿增強式化學氣相沉積 59 3.3.4 感應耦合電漿反應式離子蝕刻機 61 3.3.5 射頻濺鍍機 62 3.3.6電子束蒸鍍機 64 3.3.7 快速升溫退火爐 65 第四章 量測儀器介紹 67 4.1 量測儀器介紹 67 4.1.1 I-V與L-I量測系統 67 4.1.2 薄膜厚度輪廓測度儀(Alpha step) 68 4.1.3 太陽光模擬光源(Solar simulator)I-V量測 69 4.1.4 光激發螢光(Photoluminescence, PL)量測系統 70 4.1.5光電轉換效率量測系統 71 第五章 結果與討論 73 5.1 積體化製程氮化鎵LED基本光電特性 75 5.2 積體化製程氮化鎵光電晶體基本光電特性 77 5.2.1 IC-VEC量測與討論 78 5.2.2 IB-VBE量測與討論 81 5.3積體化氮化鎵元件模組電路架構 82 5.4積體化氮化鎵元件模組電路量測結果與討論 83 5.4.1氮化鎵n-p-i-n光電晶體偵測器驅動LED實驗 83 5.4.1.1 氮化鎵n-p-i-n光電晶體之暗電流、外部量子效率及響應率量測 83 5.4.1.2驅動LED實驗結果與討論 94 第六章 結論與未來展望 97 6.1結論 97 6.2未來展望 101 參考文獻 102

    [1] E. Fred Schubert (2006). Light-emitting diode. Cambridge University Press. New York.
    [2] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, S. Krishnankutty (1997). High speed, low noise ultraviolet photodetectors based on GaN structures. Appl. Phys. Lett., 71, 2154.
    [3] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu & M. Razeghi (1996). AlGaN ultraviolet photoconductors grown on sapphire. Appl. Phys. Lett., 68, 2100.
    [4] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, K. Evans (2006). GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett., 89, 011112.
    [5] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, & H. Temkin(1998). Visible-blind GaN Schottky barrier detectors grown on Si (111). Appl. Phys. Lett., 71, 2334.
    [6] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra (1999). High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN. Appl. Phys. Lett., 75, 247.
    [7] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, & M. Razeghi (1999). High-quality visible-blind AlGaN pin photodiodes. Appl. Phys. Lett., 74, 1171.
    [8] Y. Zhang, S. -C. Shen, H. J. Kim, S. Choi, J.-H. Ryou, R. D.Dupuis, & B. Narayan (2009). Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates. Appl. Phys. Lett., 94, 221109.
    [9] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, S. Verghese (1999). GaN avalanche photodiodes grown by hydride vaporphase epitaxy. Appl. Phys. Lett., 75, 3485.
    [10] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, I. T. Ferguson (2000). Low dark current GaN avalanche photodiodes. IEEE J. Quantum Electron., 36(12), 1389-1391.
    [11] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, K. Evans (2006). GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett., 89, 011112.
    [12] S-C. Shen, Y. Zhang, D. Yoo, J-B. Limb, J-H. Ryou, P. D. Yoder, & R. D. Dupuis (2007). Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD. IEEE Photon. Technol. Lett., 19(21), 1744-1746.
    [13] Shyh-Chiang Shen, Tsung-Ting Kao, Hee-Jin Kim, Yi-Che Lee, Jeomoh Kim, Mi-Hee Ji, Jae-Hyun Ryou, Theeradetch Detchprohm, Russell D. Dupuis (2015). GaN/InGaN avalanche phototransistors. Appl. Phys. Express, 8, 032101.
    [14] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, & Holly Marsh (1998). High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 73(7). 978-980.
    [15] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, & I. Akasaki (2001). Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. Jpn. J. Appl. Phys., 40, 498.
    [16] M. L. Lee, J. K. Sheu, Yung-Ru Shu (2008). Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio. Appl. Phys. Lett., 92, 053506.
    [17] Tsung-Ting Kao, Jeomoh Kim, Theeradetch Detchprohm, Russell D. Dupuis, Shyh-Chiang Shen (2016). High-Responsivity GaN/InGaN Heterojunction Phototransistors. IEEE Photon Technol Lett, 28(19), 2035-2038.
    [18] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li (2017). Optimization of GaN/InGaN Heterojunction Phototransistor. IEEE Photon Technol Lett, 29(4), 373-376.
    [19] Pinghui S. Yeh, Teng-Po Hsu, Yen-Chieh Chiu, Sian Yang, Cheng-You Wu, Jung-Shan Liou (2017). III-Nitride Phototransistors Fabricated on a Light-Emitting-Diode Epitaxial Wafer. IEEE Photonics Technology Letters, 29(19), 1679-1682.
    [20] Zhaojun Liu, Jun Ma, Tongde Huang, Chao Liu, and Kei May Lau(2014). Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors. Appl. Phys. Lett. 104, 091103
    [21] Shen, S.-C., Kao, T.-T., Kim, H.-J., Lee, Y.-C., Kim, J., Ji, M.-H., Ryou, J.-H., Detchprohm, T., Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, Vol.8, 032101, 2015.
    [22] Meixin Feng, Jin Wang, Rui Zhou, Qian Sun, Hongwei Gao, Yu Zhou, Jianxun Liu, Yingnan Huang,Shuming Zhang, Masao Ikeda, Huaibing Wang, Yuantao Zhang, Yongjin Wang , and Hui Yang (2018).On-Chip Integration of GaN-Based Laser, Modulator,and Photodetector Grown on Si Ieee Journal Of Selected Topics In Quantum Electronics24(6) , 820-0305
    [23] Ariane L. Beck, Bo Yang, S. Wang, Charles J. Collins, Joe C. Campbell, Jerry M. Woodall (2004). Quasi-Direct UV/Blue GaP Avalanche Photodetectors. IEEE Journal of Quantum Electronics., 40, 1695.
    [24] Luna Optoelectronics,“GaN UV Photodiode,”SD012-UVA-011 datasheet, Apr. 2016
    [25] Xiaping Chen, Huili Zhu, Jiafa Cai, Zhengyun Wua (2007). High-performance 4H-SiC-based ultraviolet p-i-n photodetector. Journal of Applied Physics., 102, 024505.
    [26] Thorlabs, “GaP Photodiode,” FGAP71 datasheet, Apr. 2017
    [27] Roithner Lasertechnik, “UVA SiC photodiode,” SIC01S-A18 datasheet, Mar. 2017
    [28] Roithner Lasertechnik, “UV Sensor Modules based on GaN.” GUVB-T11GM-LA datasheet, Aug. 2018
    [29] S. O. Kasap, 光電半導體元件 Optoelectronics and Photonics Principles and Practices, 全威圖書有限公司,台北,2006。
    [30] 許登坡,「氮化鎵光電晶體之研發」,國立台灣科技大學電子工程所碩士學位論文,台北,2016。
    [31] 劉博文,光電元件導論,全威圖書有限公司,台北,2005。
    [32] Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr., B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
    [33] Ting Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal ultraviolet photodetectors,” Electronics Letters, vol. 36, no. 18, pp. 1581-1583, August 2000.
    [34] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, 1997.
    [35] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [36] H. Jiang, T. Egawa, H. Ishikawa, “AlGaN Solar-Blind Schottky Photodiodes Fabricated on 4H-SiC,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 18, no. 12, June 15, 2006.
    [37] J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee, ”Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEEE ELECTRON DEVICE LETTERS, vol. 31,no. 10, Oct. 2010.
    [38] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014。
    [39] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013。
    [40] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
    [41] 吳宗哲.「積體化氮化鎵發光二極體與光電晶體之先期實驗結果」.國立台灣科技大學電子工程所碩士學士論文,台北,2019。

    無法下載圖示 全文公開日期 2024/07/22 (校內網路)
    全文公開日期 2024/07/22 (校外網路)
    全文公開日期 2024/07/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE