簡易檢索 / 詳目顯示

研究生: 林家慶
Chia-Ching Lin
論文名稱: 低輸出電流漣波之降壓型轉換器分析與研製
Analysis and Implementation of Buck Converter with Low Output Current Ripple
指導教授: 邱煌仁
Huang-Jen Chiu
黃仁宏
Jen-Hung Huang
口試委員: 邱煌仁
Huang-Jen Chiu
黃仁宏
Jen-Hung Huang
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 輸出電流漣波四階濾波器疊接式降壓型轉換器
外文關鍵詞: Output current ripple, Fourth-order filter, Stacked buck converter
相關次數: 點閱:193下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為研製一具低輸出電流漣波之降壓型轉換器。為達成此目的,本文為分別討論被動型電流漣波消除技術與疊接式降壓型轉換器之電流漣波消除技術,並深入研究疊接式降壓型轉換器之耦合電感形式與分離電感形式,比較各種電流漣波消除技術之優缺點後,因考量輸出電流漣波與暫態輸出電流之變化量,最終選用疊接式降壓型轉換器作為研究方向,在考慮開關間死區時間的影響下,雖然可以透過修正開關訊號來減少死區時間造成的IP與IS之電流變化斜率不匹配,透過搭配LC二階濾波器,來進一步降低因開關死區時間所產生之電流漣波,接著推導疊接式降壓型轉換器之耦合電感形式搭配LC二階濾波器之小訊號模型,並研究文獻[1]所提出RC – delay型控制器對暫態的影響,最後在模擬軟體與實作結果中得到驗證,1kW條件下的疊接式降壓型轉換器能成達低輸出電流漣波。


    The thesis is to implement a buck converter with low output current ripple. In order to achieve the goal, this paper discusses the passive current ripple cancellation and stacked buck converter with current ripple cancellation respectively. The stacked buck converter can be classified into coupled inductor and separate inductor. After comparing the advantage and of the various methods, considering the output current ripple and transient response, finally choose stacked buck converter with coupled inductor as research direction. Although we can modify the switch signal to reduce the current ripple of the dead time. Further consideration of output current ripple that we can combine the stacked buck converter with LC filter. Deriving a small signal model of stacked buck converter with LC filter and discuss the transient response of the RC delay controller[1]. Under the condition of output power is 1kW, the stacked buck converter with LC filter reduce output current ripple effectively.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 2 第二章 電流漣波消除技術比較 3 2.1 被動型電流漣波消除技術分析 3 2.2 被動型電流漣波消除技術之架構轉換 7 2.3 疊接式降壓型轉換器之電流漣波消除分析 11 第三章 暫態響應與電流漣波消除技術的關係 17 3.1降壓型轉換器搭配四階濾波器之設計考量 17 3.2疊接式降壓型轉換器之設計考量 20 3.2.1分離電感形式 20 3.2.2耦合電感形式 22 3.2.3傳統降壓型轉換器與疊接式降壓型轉換器之比較 25 3.2.4耦合電感形式搭配LC二階濾波器 27 第四章 疊接式降壓型轉換器之閉迴路分析 31 4.1小訊號推導 31 4.1.1疊接式降壓型轉換器之分離電感形式小訊號推導 31 4.1.2疊接式降壓型轉換器之耦合電感形式小訊號推導 34 4.1.3疊接式降壓型轉換器之耦合電感形式搭配LC二階濾波器小訊號推導 38 4.2 RC delay型控制器之分析 40 第五章 電路設計與實作結果 52 5.1元件參數設計 52 5.1.1電路規格 52 5.1.2疊接式降壓型轉換器之耦合電感形式搭配LC二階濾波器設計 52 5.1.3功率開關設計設計 54 5.2疊接式降壓型轉換器之耦合電感形式搭配LC二階濾波器之補償器設計 55 5.3電路模擬 59 5.4實驗結果 62 第六章 結論與未來展望 68 6.1結論 68 6.2未來展望 68 參考文獻 70

    [1] Bruce W.Carsten, Corvallis, Oreg. 1992. Ripple cancellation circuit with fast load response for switch mode voltage regulators with synchronous rectification. U.S. Patent No. 5929692
    [2] K.W.E Cheng, B.P.Divakar, Hongjie Wu, KaiDing and Ho Fai Ho, “Battery-Management System (BMS) and SOC Development for Electrical Vehicles,” IEEE Transaction on Vehicular Technology, vol. 60, no. 1, pp76-88, 2011.
    [3] Ahmed T. Elsayed, Christopher R. Lashway and Osama A. Mohammed, “Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure,” IEEE Transactions on Smart Grid, vol.7, no. 2, pp. 897-905, 2016.
    [4] Antonio Manenti, Andrea Abba, Alessandro Merati, Sergio M. Savaresi and Angelo Geraci, “A New BMS Architecture Based on Cell Redundancy,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4314-4322, 2011.
    [5] 何昌祐,「SoC Introduction of Li-Ion Battery & Gauge」,Application Note- Richtek Technology,AN024,2014 年9 月。
    [6] M.J. Schutten, R.L. Steigerwald, J.A. Sabate, “Ripple current cancellation circuit,” Eighteenth Annual IEEE Applied Power Electronic Conference and Exposition, 2003, pp. 465-470.
    [7] Soumya Shubhra Nag, Santanu Mishra and Avinash Joshi, “A Passive Filter Building Block for Input or Output Current Ripple Cancellation in a Power Converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 564-575, 2016.
    [8] Josh Wibben and Ramesh Harjani, “A High-Efficiency DC–DC Converter Using 2 nH Integrated Inductors,” IEEE Journal of Solid- State Circuits, vol. 43, no. 4, pp. 844-854, 2008.
    [9] R. Erickson and D. Maksimovic, Fundementals of Power Electronics, 2nd ed. Berlin, Germany: Springer, 2001.
    [10] J. Wang, W.G. Dunford, K. Mauch, “Analysis of a ripple-free input current boost converter with discontinuous conduction characteristics,” IEEE Trans. on Power Electronics, vol.12, no. 4, July 1997, pp. 684-94
    [11] D.C. Hamill, P.T. Krein, “A ‘zero’ripple technique applicable to any DC converter,” IEEE PESC, 1999, pp. 1165-71
    [12] S. ´ Cuk, “Switching DC-to-DC converter with zero input or output current ripple,” in Proc. Rec. IEEE Ind. Appl. Soc. Annu. Meeting, Toronto, ON, Canada, Oct. 1978, pp. 1131–1146.
    [13] S. ´ Cuk, “A new zero-ripple switching DC-to-DC converter and integrated magnetics,” IEEE Trans. Magn., vol. 19, no. 2, pp. 57–75, Mar. 1983.
    [14] R. S. Balog and P. T. Krein, “Coupled-inductor filter: A basic filter building block,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 537–546, Jan. 2013.
    [15] T. C. Neugebauer, J. W. Phinney, and D. J. Perreault, “Filters and components with inductance cancellation,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 483–491, Mar./Apr. 2004.
    [16] Infineon Technologies AD, “1EDI120N12AF Single Channel MOSFET and GaN HEMT Gate Driver IC,” Data Sheet, Jun. 2015.
    [17] Broadcom Inc., “AFBR-1624Z/1629Z and AFBR-2624Z/2519Z Fiber Optic Transmitter and Receiver,” Data sheet, Mar. 2013.

    QR CODE