帳號:guest(3.227.0.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者姓名(中文):方有騰
作者姓名(英文):YU-TENG FANG
論文名稱(中文):具中心抽頭電感雙輸出之降壓型轉換器
論文名稱(外文):Buck Converter Dual Output with Tapped Inductor
指導教授姓名(中文):邱煌仁
林景源
指導教授姓名(英文):Huang-Jen Chiu
Jing-Yuan Lin
口試委員姓名(中文):邱煌仁
劉邦榮
黃仁宏
林景源
口試委員姓名(英文):Huang-Jen Chiu
Pang-Jung Liu
Peter Huang
Jing-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學號:m10602274
出版年(民國):108
畢業學年度:107
學期:2
語文別:中文
論文頁數:89
中文關鍵詞:單電感多輸出電壓模式控制交叉穩壓切換式降壓器中心抽頭電感降壓器
外文關鍵詞:Single inductor multiple output(SIMO)voltage mode controlcontrol, cross regulationswitching buck convertertapped buck
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本論文提出具中心抽頭電感雙輸出之降壓型轉換器,一般單電感多輸出是使用傳統電感器,主要特色以中心抽頭電感延長責任週期達到更大的降壓比,並利用延長責任週期降低上臂功率級開關峰值電流改善切換損,將電感電流操作在連續導通模式,並利用相序調整方式來抑制交叉穩壓現象。
本論文採用TSMC 0.35 m 2P4M 3.3/5 V mixed-signal CMOS製程實現,晶片包含PADs之晶片面積為1.7×3.342 mm2。輸入電壓為5 V,輸出電壓分別為1.8 V及1.2 V,輸出負載範圍各為50-400 mA,外接功率級中心抽頭電感為4.7 H匝數比為1.5,輸出電容為10 F。模擬結果交叉穩壓為0.125-0.175 mV/mA,轉換器最高效率在兩輸出各100 mA為92.3%,最低效率在兩輸出各400 mA為89%。
This thesis proposes a dual-output voltage mode buck with a tapped inductor. The general single-inductor multi-output uses a traditional inductor. The main feature of this paper is to extend the duty cycle of the tapped inductor to achieve a larger step-down ratio, and to extend the responsibility. The extend cycle reduces the peak current of the upper power stage switch to improve the switching loss, operates the inductor current in continuous conduction mode, and uses phase sequence scheme to suppress the cross regulation phenomenon.
This thesis is implemented in the TMSC 0.35 m 2P4M 3.3/5 V mixed-signal CMOS process. The wafer area of the wafer containing PADs is 1.7×3.342 mm2. The input voltage is 5 V, the output voltage is 1.8 V and 1.2 V respectively, the output load range is 50-400 mA, the external power stage tapped inductance is 4.7 H, the turns ratio is 1.5, and the output capacitance is 10 F. The simulation results have a cross-regulated voltage of 0.125-0.175 mV/mA. The maximum efficiency of the converter is 92.3% for each of the two outputs of 100 mA, and the lowest efficiency is 89% for each of the two outputs of 400 mA.
摘 要 iv
Abstract v
誌 謝 vi
圖索引 xi
表索引 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文內容架構 3
第二章 單電感多輸出電路架構與控制方法 4
2.1 單電感多輸出轉換器簡介 4
2.2 單電感多輸出轉換器工作原理 5
2.2.1 單電感多輸出降壓型轉換器 5
2.2.2 單電感多輸出升壓型轉換器 6
2.2.3 單電感多輸出升降壓型轉換器 6
2.3 單電感多輸出轉換器操作模式 8
2.3.1 分時多工控制 8
2.3.2 偽連續導通模式 16
2.3.3 能量分佈控制 23
2.4 交叉穩壓 30
第三章 具中心抽頭電感雙輸出之降壓型轉換器 31
3.1 中心抽頭電感降壓器架構 31
3.1.1 中心抽頭電感降壓器作動 32
3.1.2 中心抽頭電感降壓器轉換比 34
3.1.3 雙輸出中心抽頭電感設計 36
3.2 回授控制電路 40
3.2.1 相序調整技術 40
3.2.2 電壓模式回授控制 41
第四章 轉換器設計與實現 45
4.1 系統整體架構簡介 45
4.2 內部電路設計 47
4.2.1 鋸齒波產生器 47
4.2.2 磁滯比較器 48
4.2.3 二級放大器 48
4.2.4 死區時間 49
4.2.5 相序調整電路 51
第五章 模擬結果與電路佈局 52
5.1 內部電路模擬波形 52
5.1.1 鋸齒波產生器 52
5.1.2 磁滯比較器 52
5.1.3 二級放大器 53
5.1.3 死區時間 54
5.2 具中心抽頭電感雙輸出之降壓型轉換器之模擬波形 55
5.2.1 模擬軟體Simplis模擬結果 55
5.2.2 模擬軟體Spectre模擬結果 56
5.2.3 模擬結果比較 58
5.3 晶片佈局圖 61
5.4晶片腳位配置與定義 63
第六章 實測波形 65
第七章 結論與未來展望 68
參考文獻 70
[1] D. Kwon and G. A. Rincon-Mora, "Single-Inductor–Multiple-Output Switching DC–DC Converters," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 8, pp. 614-618, Aug. 2009.
[2] Dongsheng Ma, Wing-Hung Ki, Chi-Ying Tsui, and P. K. T. Mok, "A single-inductor dual-output integrated DC/DC boost converter for variable voltage scheduling," Proceedings of the ASP-DAC 2001. Asia and South Pacific Design Automation Conference 2001 (Cat. No.01EX455), Yokohama, Japan, 2001, pp. 19-20.
[3] Wei-Hsun Chang, Jia-Hui Wang, and Chien-Hung Tsai, "A peak-current controlled single-inductor dual-output DC-DC buck converter with a time-multiplexing scheme," Proceedings of 2010 International Symposium on VLSI Design, Automation and Test, Hsin Chu, 2010, pp. 331-334.
[4] Miao Yang, Weifeng Sun, Shen Xu, Shengli Lu, and Longxing Shi, "A 65nm 10MHz single-inductor dual-output switching buck converter with time-multiplexing control," 2011 9th IEEE International Conference on ASIC, Xiamen, 2011, pp. 870-873.
[5] X. Jing, P. K. T. Mok, and M. C. Lee, "A Wide-Load-Range Constant-Charge-Auto-Hopping Control Single-Inductor-Dual-Output Boost Regulator With Minimized Cross-Regulation," in IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2350-2362, Oct. 2011.
[6] C. Leng, C. Yang, and C. Tsai, "Digital PWM controller for SIDO switching converter with time-multiplexing scheme," 2009 International Symposium on VLSI Design, Automation and Test, Hsinchu, 2009, pp. 52-55.
[7] Dongsheng Ma, Wing-Hung Ki, and Chi-Ying Tsui, "A pseudo-CCM/DCM SIMO switching converter with freewheel switching," 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), San Francisco, CA, USA, 2002, pp. 390-476 vol.1.
[8] J. Xu, Z. Weng, H. Jiang, C. Zhang, Z. Wang, and Q. Lin, "A high efficiency single-inductor dual-output buck converter with adaptive freewheel current and hybrid mode control," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1614-1617.
[9] Yang Yang, Sun Liang, and Wu Xiaobo, "A single-inductor dual-output buck converter with self-adapted PCCM method," 2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Xi'an, 2009, pp. 87-90.
[10] Y. Zhang, R. Bondade, D. Ma, and S. Abedinpour, "An integrated SIDO boost power converter with adaptive freewheel switching technique," 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010, pp. 3516-3522.
[11] Y. Zhang and D. Ma, "Integrated SIMO DC-DC converter with on-line charge meter for adaptive PCCM operation," 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, 2011, pp. 245-248.
[12] Q. Liu, X. Wu, M. Zhao, M. Chen, and X. Shen, "Monolithic quasi-sliding-mode controller for SIDO buck converter in PCCM," 2012 IEEE Asia Pacific Conference on Circuits and Systems, Kaohsiung, 2012, pp. 428-431.
[13] H. Le, C. Chae, K. Lee, S. Wang, and G. Cho, "A Single-Inductor Switching DC–DC Converter With Five Outputs and Ordered Power-Distributive Control," in IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007.
[14] W. Xu, Y. Li, X. Gong, Z. Hong, and D. Killat, "A Dual-Mode Single-Inductor Dual-Output Switching Converter With Small Ripple," in IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 614-623, March 2010.
[15] P. Patra, J. Ghosh, and A. Patra, "Control Scheme for Reduced Cross-Regulation in Single-Inductor Multiple-Output DC–DC Converters," in IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5095-5104, Nov. 2013.
[16] Z. Shen, X. Chang, W. Wang, X. Tan, N. Yan, and H. Min, "Predictive Digital Current Control of Single-Inductor Multiple-Output Converters in CCM With Low Cross Regulation," in IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1917-1925, April 2012.
[17] D. Lu, Y. Qian, and Z. Hong, "4.3 An 87%-peak-efficiency DVS-capable single-inductor 4-output DC-DC buck converter with ripple-based adaptive off-time control," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 82-83.
[18] J. D. Dasika, B. Bahrani, M. Saeedifard, A. Karimi, and A. Rufer, "Multivariable Control of Single-Inductor Dual-Output Buck Converters," in IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2061-2070, April 2014.
[19] J. Wei, P. Xu, H. Wu, F. C. Lee, K. Yao, and M. Ye, "Comparison of three topology candidates for 12 V VRM," APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), Anaheim, CA, USA, 2001, pp. 245-251 vol.1.
[20] Weiming Lin, Jinhui Wang, Junlai Huang, and Yuzhen Xu, "A novel tapped inductor bi-directional Buck-Boost topology," INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference, San Diego, CA, 2008, pp. 1-5.
[21] N. Kondrath and M. K. Kazimierczuk, “Analysis and design of common-diode tapped inductor PWM buck converter”, in Proc. Electrical Manufacturing and Coil Winding Conference, Nashville, TN, (2009) September 29-30
[22] A. Chadha, A. Ayachit, D. K. Saini, and M. K. Kazimierczuk, "Steady-state analysis of PWM tapped-inductor buck DC-DC converter in CCM," 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, 2018, pp. 1-6.
[23] Kaiwei Yao, Mao Ye, Ming Xu, and F. C. Lee, "Tapped-inductor buck converter for high-step-down DC-DC conversion," in IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 775-780, July 2005.
[24] Jong-Hu Park and Bo-Hyung Cho, "The zero Voltage switching (ZVS) critical conduction mode (CRM) buck Converter With tapped-inductor," in IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 762-774, July 2005.
[25] Kun-Yu Lin, Chun-Shih Huang, Dan Chen, and K. H. Liu, "Modeling and design of feedback loops for a voltage-mode single-inductor dual-output buck converter," 2008 IEEE Power Electronics Specialists Conference, Rhodes, 2008, pp. 3389-3395.
[26] 王信雄博士, ”開關轉換器 控制理論與設計實務”
[27] Y. H. Lee, T. C. Huang, Y. Y. Yang, W. S. Chou, K. H. Chen, C. C. Huang, and Y. H. Lin, "Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SmO) Step-Down DC-DC Converter," IEEE J Solid-State Circuits, vol. 46, no. 11, Nov. 2011.
[28] X. Jing., P. K. T. Mok, and M. C. Lee, "A Wide Load Rang Constant-Charge Auto-Hopping Control Single-Inductor DualOutput boost Regulator With Minimized Cross-Regulation," IEEE J Solid-State Circuits, vol. 46, no. 10, Oct. 2011.
[29] H. Wang and L. Chang-Chien, "Low cross regulation voltage-mode controlled single-inductor dual-outputs (SIDO) voltage regulator," 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan, 2013.
全文檔公開日期:2024/08/14 (本校及校內區域網路)
全文檔公開日期:2024/08/14 (校外網際網路)
全文檔公開日期:2024/08/14 (國家圖書館:臺灣博碩士論文系統)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *