簡易檢索 / 詳目顯示

研究生: 余彩綾
TSAI-LING YU
論文名稱: 具訊號分群機制之聯合距離與角度估測於FMCW雷達中之應用
Joint Range and Angle Estimation with Signal Clustering in FMCW Radar
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
Kuen-Tsair Lay
呂政修
Jenq-Shiou Leu
丘建青
Chien-ching Chiu
陳郁堂
ytchen@mail.ntust.edu.tw
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 聯合距離與角度估測FMCW 雷達旋轉不變信號參數估測濾波信號分離
外文關鍵詞: range-angle estimation, filtering, signal clustering, automatic pairing
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 第一章 緒論 1 1.1 引言 . .......................... 1 1.2 研究動機 . ....................... 2 1.3 內容章節概述 . ..................... 4 第二章 相關背景回顧 5 2.1 雷達的種類及應用 . .................. 5 2.2 FMCW 雷達系統與信號模型 . ............ 7 2.3 FMCW 雷達系統參數估測演算法 . .......... 13 2.4 結語 . .......................... 17 第三章 聯合距離與角度估測演算法 18 3.1 距離估測演算法 . .................... 18 3.2 信號分群 . ....................... 21 3.3 角度估測演算法 . .................... 22 3.4 演算法整體流程 . .................... 24 3.5 討論 . .......................... 25 3.5.1 參數自動配對 . ................. 25 3.5.2 估測具有相同距離的目標物 . ......... 26 3.5.3 判斷目標物數量 . ............... 26 3.6 結語 . .......................... 27 第四章 模擬結果與討論 28 4.1 模擬分析 . ....................... 28 4.2 複雜度分析 . ...................... 35 4.3 結語 . .......................... 36 第五章 結論與未來展望 50 5.1 結論 . .......................... 50 5.2 未來展望 . ....................... 51 參考文獻 52

    [1] S. Tokoro, “Automotive application systems of a millimeter-wave Radar,” in Proc. IEEE Intelligent Vehicles Symp., pp. 260-265, 1996
    [2] H. Rohling and C. Moller, “Radar waveform for automotive radar systems and applications,” in Proc. IEEE Radar Conf., pp. 871-876, May. 2004.
    [3] W. Jones,“Building Safer Cars,” IEEE Spectrum, vol. 39, no. 1, pp. 82-85, Jan. 2002.
    [4] H. Rohling and M. -M. Meinecke, “Waveform design principles for automotive
    radar systems,” in Proc IEEE Radar Conf., vol. 4, pp. 1-4, Oct. 2001.
    [5] V. Winkler, “Range Doppler detection for automotive FMCW radars,” in Proc. Eur. Microw. Conf., pp. 1445-1448, 2007.
    [6] E. Hyun, W. Oh and J.-H. Lee, “Two-step moving target detection algorithm for automotive 77 GHz FMCW radar,” in Proc. IEEE Vehicular Tech. Conference, pp. 1-5, 2010.
    [7] E. Hyun and J.-H. Lee, “A meothod for multi-target range and velocity detection in automotive FMCW radar,” in Proc. IEEE Int. Conf. Intell. Transp. Syst., pp. 1-5, Oct. 2009.
    [8] J. Choi, J. Park, and D. Yeom, “High angular resolution estimation methods for vehicle FMCW radar,” in Proc. IEEE Radar Conf., vol. 2, pp. 1868-1871, 2011.
    [9] P. Wenig, M. Schoor, O. Gunther, B. Yang, and R. Weigel, “System design of a 77 GHz automotive radar sensor with superresolution DOA estimation,”in Proc. Int. Signals, Syst., Electron. Symp., pp. 537-540, Jul. 2007.
    [10] R. O. Schmidt, “Multiple emitter location and signal parameter
    estimation,” in Proc. RADC Spectral Estimation Workshop, Rome, pp. 243-258, NY. 1979.
    [11] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoustics, Speech, and Signal Process., vol. 37, no. 7, pp. 984-995, Jul. 1989.
    [12] F. Belfiori, W. van Rossum, and P. Hoogeboom, “Application of 2D MUSIC algorithm to range-azimuth FMCW radar data,” in Proc. Eur. Radar Conf., pp. 242-245, Oct. 2012.
    [13] D.G. OH, Y.H. JU, J.H.LEE,“Subspace-based auto-paired range and DOA estimation of dual-channel FMCW radar without joint diagonalisation,” in Electronics Letters, vol. 50, no. 18, pp. 1320-1322. Aug. 2014.
    [14] A.N. Lemma, A. J. van der Veen, and Ed F. Deprettere, “Analysis of ESPRIT based joint angle-frequency estimation,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, pp. 3053-3056, Jun. 2000.
    [15] M. C. Vanderveen, C. B. Papadias and A. Paulraj, “Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array,” IEEE Communications Letters, vol. 1, no. 1, pp. 12-14, Jan. 1997.
    [16] S. Kim, D. Oh and J. Lee, “Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars,” IEEE Ant. and Wireless Propagation Letters, vol. 14, pp. 1710-1713, Apr. 2015.
    [17] D. Oh, Y. Ju, H. Nam, and J. H. Lee, “Dual smoothing DOA estimation of two-channel FMCW radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 2, pp. 904-917, Apr. 2016.
    [18] C.-H. Lin and W.-H. Fang, “Efficient multidimensional harmonic retrieval:
    a hierarchical signal separation framework,” IEEE Signal Processing Letters, vol. 20, no. 5, pp. 427-430, May 2013.
    [19] A. M. Hsimovich and R.S. Blum, “MIMO radar with
    widely separated antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, Tan. 2008.
    [20] A. G. Stove, “Linear FMCW radar techniques,” in Proc. Inst. Electr. Eng. F-Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992.
    [21] K. W. Chang, G. S. Dow, H. Wang, T. H. Chen, K. Tan, B. Allen,
    and J. Bere, “A W-band single-chip transceiver for FMCW radar,” IEEE Microw. Millimeter-Wave Monolithic Circuits Symp. Dig., vol. 1, pp. 41-44, 1993.
    [22] A. Meta, P. Hoogeboom, and L. P. Ligthart, “Signal processing for FMCW SAR,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3519-3532, Nov. 2007.
    [23] H. Zhou, P. Cao, and S. Chen, “A novel waveform design for
    multi-target detection in automotive FMCW radar,” in Proc. IEEE Radar Conf., pp. 1-5, May. 2016.
    [24] S. Kim, I. Paek, and M. K, “Simulation and test results of triangular fast
    ramp FMCW waveform,” in Proc. IEEE Radar Conf., pp. 1-4, Apr. 2013.
    [25] S.-H. Jeong, Y.-N, Oh, and K.-H Lee, “Design of 24 GHz radar with
    subspace-based digital beam forming for ACC stop-and-go system,” ETRIJ., vol. 32, no. 5, pp. 827-830, Oct. 2010.
    [26] Huang, Y., P. Brennan, D. Patrick, I. Weller, P. Roberts, and
    K. Hughes, “FMCW based MIMO imaging radar for maritime
    navigation,” Progress In Electromagnetics Research, vol. 115, pp. 327-342, Apr. 2011.
    [27] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Trans. Acoustics,
    Speech, and Signal Process., vol. 36, no. 10, pp. 1553-1560, 1988.
    [28] R. L. Lagendijk, J. Biemond, and D. E. Boekee, “Blur identification using the expectation-maximization algorithm,” in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Process., pp. 1397-1400, 1989.
    [29] M. Wax and T. Kailath, “Detection of signals by information
    theoretic criteria,” IEEE Trans. Acous. Speech, Sig.
    Process., vol. 33, no. 2, pp. 387-392, Apr. 1985.
    [30] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “TST-MUSIC for joint
    DOA-delay estimation,” IEEE Trans. Signal Process., vol. 46, pp. 721-729, Apr. 2001.
    [31] G. Woods, D. Maskell, and M. Mahoney, “A high accuracy microwave
    ranging system for industrial applications,” IEEE Trans. Instrum. Meas., vol. 42, pp. 812-816, 1993.
    [32] E. Aboutanios and B. Mulgrew, “Iterative frequency estimation by interpolation on Fourier coefficients,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1237-1242, Apr. 2005.
    [33] G. L. Charvat, Small and Short-Range Radar Systems.
    1st ed. Boca Raton, FL, USA: CRC Press, 2014
    [34] G. H. Golub and C. F. Van Loan, Matrix Computations.
    3rd ed. Johns Hopkins University Press, 1996.
    [35] S. Kueppers, H. Cetinkaya and N. Pohl, “A compact 120 GHz SiGe:C based 2 x 8 FMCW MIMO Radar sensor for robot navigation in low visibility environments,” in Proc. European Radar Conference, 2017.
    [36] Wang, H. N., Y. W. Huang, and S. J. Chung, “Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive applications,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, pp.965–973, 2017.
    [37] K. Ogawa and A. Kajiwara, “2D High Resolution of
    Stepped-FM Radar Based on MUSIC Scheme,” in Proc. Topical Conference on Wireless Sensors and Sensor Networks, pp. 51-54, Mar. 2018.

    無法下載圖示 全文公開日期 2024/08/14 (校內網路)
    全文公開日期 2024/08/14 (校外網路)
    全文公開日期 2024/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE