簡易檢索 / 詳目顯示

研究生: 鄭又豪
YU-HAO CHENG
論文名稱: 寬頻共模抑制與雙頻吸收之E型共模抑制濾波器設計
Broadband CM Suppression and Dual-band Absorption E-type Common Mode Suppression Filter
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 曾昭雄
Chao-Hsiung Tseng
丘建青
Chien-Ching Chiu
黃建彰
Chien-Chang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 反射型共模抑制濾波器吸收型共模抑制濾波器信號完整性多層印刷電路板
外文關鍵詞: Reflective-type Common mode suppression filter, Absorptive-type Common mode suppression filter, Signal integrity, Multi-layer Printed Circuit Board
相關次數: 點閱:339下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一個主題為反射型寬頻共模抑制濾波器,此濾波器架構應用於多層印刷電路板,在蜿蜒差動傳輸線下方置入一E型諧振器,透過蜿蜒差動對與E型諧振器之間相互作用達到雙模態激發,並適當設計傳輸零點的位置,使其達到寬頻共模抑制的特性。在頻域上,此濾波器於 2 GHz 至 10.5 GHz 共模皆抑制於10 dB以上,高達136%比例頻寬,濾波器的電氣尺寸為0.22λg × 0.3λg,λg為其抑制頻帶中心頻率6GHz波長,並且於抑制頻率範圍內差模訊號皆保持良好的完整性。
    第二個主題是將反射型寬頻共模抑制濾波器延伸為雙頻吸收式共模抑制濾波器,論文採用雙頻步階阻抗相位匹配、串聯式吸收端相關技術,並根據通訊協定802.11b 與 802.11ac 針對2.4 GHz ~ 2.5 GHz與5.17 GHz ~ 5.33 GHz雙頻段進行共模雜訊吸收。從頻域上,此濾波器差模穿透從 DC至12 GHz的皆小於 - 3 dB。共模抑制範圍從 2.1 GHz 至 10.7 GHz 皆抑制於15 dB以上,並且在2.4 GHz ~ 2.5 GHz與5.17 GHz ~ 5.33 GHz吸收效率分別為 94% ~ 77% 與 95% ~ 92%。
    綜合上述,此篇論文提出之濾波器具有體積小、架構簡易與寬頻共模雜訊抑制等優點,且提出針對雙頻段進行共模雜訊吸收的技術,並有良好的差動訊號完整性。在實務上具有其應用價值。


    The first topic of this thesis is a reflective common mode suppression filter. This filter structure is fabricated on a multilayer printed circuit board. An E-type resonator is placed under the differential transmission line. Through the differential pair and resonator achieves bimodal excitation in common mode, and the position of the transmission zero is appropriately designed to achieve the characteristic of broadband common mode suppression. In frequency domain, this filter is suppressed more than 10 dB in the common mode from 2 GHz to 10.5 GHz, up to 136% fractional bandwidth, the electrical size of the filter is 0.22λg × 0.3λg, and λg is the center frequency of the suppression band. And the differential mode signal maintains good integrity from DC to 12GHz.
    The second topic is to extend the reflective-type common mode suppression filter to a dual-frequency absorptive-type common mode suppression filter by using step-impedance phase matching and series absorber techniques. For the frequency domain, the insertion loss is less than 3 dB from DC to 12 GHz. The common mode is suppressed more than 15 dB from 2.1 GHz to 10.7 GHz, and the absorption efficiencies are 94% ~ 77% and 95% ~ 92% at 2.4 GHz ~ 2.5 GHz and 5.17 GHz ~ 5.33 GHz, respectively.
    In summary, the filter proposed in this thesis has the advantages of small size, simple structure and wideband common-mode noise suppression. We propose a common-mode noise absorption technique for dual-band, and have good differential signal integrity. It has its application value in practice.

    摘要 i ABSTRACT ii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 4 1.3 論文架構 8 第二章 共模抑制濾波器設計基礎理論 9 2.1差動傳輸線簡介 9 2.2差動傳輸線 10 2.3 奇偶模分析 11 2.3.2 奇模傳輸之特性分析 13 2.3.3 偶模傳輸之特性分析 14 2.4 差動電路特性分析與量測 16 2.4.1 混合模態散射參數(Mixed-Mode S-parameter) 16 第三章 E型反射型寬頻共模抑制濾波器設計 21 3.1 共模抑制濾波器設計目標及原型架構 22 3.1.1 濾波器原型架構 22 3.1.2 濾波器原型架構之頻域模擬 24 3.2 共模抑制濾波器之差模分析 26 3.2.1 差動傳輸線阻抗設計 26 3.2.2 蜿蜒差動線探討 27 3.3 共模抑制濾波器之共模分析 29 3.3.1 模態一,fratio1設計方法 31 3.3.2 f01、f02落點設計 33 3.3.3 曲線交界處優化及設計流程統整 36 3.4 濾波器之共模等效電路 38 3.5 E型縮小化設計 40 3.6 實際量測結果 44 3.6.1 實際量測頻域結果 44 3.6.3 實際量測時域結果 47 第四章 雙頻吸收型共模抑制濾波器設計 49 4.1吸收型共模抑制濾波器核心概念 50 4.2 RCMF共模反射(Scc11)精簡模型設計 52 4.3雙頻相位匹配技術選擇 57 4.4吸收端設計 59 4.4.1並聯式吸收端 59 4.4.2串聯式吸收端 61 4.5電路整合設計 63 4.5.1雙頻相位設計 63 4.5.2電路整合 64 4.6模擬結果 66 4.7實際量測結果 68 第五章 結論 72 參考文獻 74

    [1] Z. Chen, G. Katopis, "A Comparison of Performance Potentials of Single Ended vs. Differential Signaling", Proc. of IEEE EPEP, pp. 185-188, Oct. 2004.
    [2] D. G. Kam, H. Lee, J. Kim, J. Kim, "A new twisted differential line structure on high-speed printed circuit boards to enhance immunity to crosstalk and external noise", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 411-413, Sep. 2003.
    [3] E. Bogatin, Signal Integrity – Simplified, N.J.: Pretice Hall, 2004.
    [4] http://en.wikipedia.org/wiki/Differential_signaling
    [5] P. Fornberg, M. Kanda, C. Lasek, M. Piket-May, S. Hall, "The impact of a nonideal return path on differential signal integrity", IEEE Trans. Electromag. Compat., vol. 44, pp. 11-15, Feb. 2002.
    [6] N. Orhanovic, R. Raghuram, N. Matsui, "Signal propagation and radiation of single and differential microstrip traces over split image planes", Proc. IEEE Int. Symp. Electromagn. Compat., pp. 339-343, 2000.
    [7] B. Archambeault, S. Connor, J. Diepenbrock, "EMI emissions from mismatch in high-speed differential signal trace and cables", Proc. IEEE Int. Electromagn. Compat. Symp., pp. 1-6, 2007-Jul.
    [8] C. R. Paul, Introduction to Electromagnetic Compatibility, New York: Wiley, 1992.
    [9] M. Damnjanovic, L. Zivanov, G. Stojanovic, "Common mode chokes for EMI Suppression in Telecommunication Systems", Proc. Int. Conf. Comput. Tool, pp. 905-909, 2007-Sep.-912.
    [10] G. Shiue, W. Guo, C. Lin, R. Wu, "Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines", IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 560-569, Aug. 2006.
    [11] C. H. Chang, R. Y. Fang, C. L. Wang, "Bended differential transmission line using compensation inductance for common-mode noise suppression", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 9, pp. 1518-1525, Sep. 2012.
    [12] B.-R. Huang, C.-H. Chang, R.-Y. Fang, C.-L. Wang, "Common-mode noise reduction using asymmetric coupled line with SMD capacitor", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 6, pp. 1082-1089, Jun. 2014.
    [13] G. Shiue, W. Guo, C. Lin, R. Wu, "Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines", IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 560-569, Aug. 2006.
    [14] W.-T. Liu, C.-H. Tsai, T.-W. Han, T.-L. Wu, "An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane", IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248-250, Apr. 2008.
    [15] F. de Paulis, L. Raimondo, S. Connor, B. Archambeault, A. Orlandi, "Compact configuration for common mode filter design based on planar electromagnetic bandgap structures", IEEE Trans. Electromagn. Compat., vol. 54, no. 3, pp. 646-654, Jun. 2012.
    [16] S. J. Wu, C. H Tsai, T. L. Wu, T. Itoh, "A novel wideband common-mode suppression filter for GHz differential signals using coupled patterned ground structure", IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009.
    [17] C.-Y. Hsiao, C.-H. Tsai, C.-N. Chiu, T.-L. Wu, "Radiation suppression for cable-attached packages utilizing a compact embedded common- mode filter", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 10, pp. 1696-1703, Oct. 2012.
    [18] G.-H. Shiue, C.-M. Hsu, C.-L. Yeh, C.-F. Hsu, "A comprehensive investigation of a common-mode filter for gigahertz differential signals using quarter-wavelength resonators", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 1, pp. 134-144, Jan. 2014.
    [19] J. Naqui, A. Fernandez-Prieto, M. Duron-Sindreu, J. Selga, F. Medina, F. Mesa, F. Marton, "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and applications", IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3023-3034, Oct. 2012.
    [20] Chein-Hua Hung, Chih-Ying Hsiao, and Tzong-Lin Wu, “A novel common-mode filter (CMF) design based on signal interference technique,” IEEE Electrical Design of Advanced Packaging & Systems Symposium (2014), pp. 125-128
    [21] T.-W. Weng, C.-H. Tsai, C.-H. Chen, D.-H. Han, T.-L. Wu, "Synthesis model and design of a common-mode bandstop filter (CM-BSF) with an all-pass characteristic for high-speed differential signals", IEEE Trans. Microw. Theory Techn., vol. 62, no. 8, pp. 1647-1656, Aug. 2014.
    [22] P.-J. Li, C.-H. Cheng, Y.-C. Tseng, T.-L. Wu, "Novel absorptive design of common-mode filter at desired frequency band", Proc. IEEE 20th Workshop Signal Power Integr., pp. 1-4, May 2016.
    [23] P. J. Li, Y. C. Tseng, C. H. Cheng, T. L. Wu, "A novel absorptive common-mode filter for cable radiation reduction", IEEE Trans. Comp. Packag. Manuf. Tech., vol. 7, no. 4, pp. 511-518, April 2017.
    [24] C.-F. Chen, T.-M. Shen, T.-Y. Huang, R.-B. Wu, "Design of multimode net-type resonators and their applications to filters and multiplexers", IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 848-856, Apr. 2011.
    [25] A.-S. Liu, T.-Y. Huang, R.-B. Wu, "A dual wideband filter design using frequency mapping and stepped-impedance resonators", IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 2921-2929, Dec. 2008.
    [26] C.-F. Chen, T.-Y. Huang, R.-B. Wu, "Design of dual- and triple-passband filters using alternately cascaded multiband resonators", IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3550-3558, Sep. 2006.
    [27] J. Liu, X. Y. Zhang, C. L. Yang, "Analysis and design of dual-band rectifier using novel matching network", IEEE Trans. Circuits Syst. II Exp. Briefs.
    [28] S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design, A Handbook of Interconnect Theory and Design Practices, Hoboken, NJ: Wiley, 2000.
    [29] S. B. Cohn, "Slot line on a dielectric substrate", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 768-778, Oct. 1969.
    [30] Yinchao Chen, Shuhui Yang, "Mixed mode S-parameters analysis for differential networks in integrated circuits", Proceedings of 16th IPFA, pp. 1-7, June 2009.
    [31] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001.

    QR CODE