帳號:guest(3.227.0.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者姓名(中文):王思凱
作者姓名(英文):Sz-Kai Wang
論文名稱(中文):高效能7 kW無線功率傳輸系統之研製
論文名稱(外文):Design and Implementation of High Performance 7 kW Wireless Power Transfer System
指導教授姓名(中文):邱煌仁
林景源
黃仁宏
指導教授姓名(英文):Huang-Jen Chiu
Jing-Yuan Lin
Peter Huang
口試委員姓名(中文):邱煌仁
林景源
黃仁宏
謝耀慶
劉宇晨
口試委員姓名(英文):Huang-Jen Chiu
Jing-Yuan Lin
Peter Huang
Yao-Ching Hsieh
Yu-Chen Liu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學號:M10602227
出版年(民國):108
畢業學年度:107
學期:2
語文別:中文
論文頁數:92
中文關鍵詞:無線功率傳輸串聯諧振寬範圍輸出電壓後置轉換器
外文關鍵詞:Wireless Power TransferSeries ResonantWide Output VoltageZero-Voltage-Switching
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本論文主要討論應用於電動車上之高效能7 kW無線功率傳輸電路之操作工作點分析、選擇、設計並實作。本論文將說明無線功率傳輸之種類與基本簡介,並分析非理想變壓器與耦合電感等效模型,接著說明串聯諧振式和LCC諧振式無線功率傳輸之基本原理,進而研究串聯諧振式無線功率傳輸電路在各個操作區間之優劣,同時考量各個操作區間之限制,歸納出適合電路規格之操作方法與操作區間,並針對寬範圍輸出電壓之應用,實際設計一高效能串聯諧振式無線功率傳輸系統。
本論文中將探討串聯諧振式無線功率傳輸系統電路操作區間之優劣並提供一設計流程,該設計流程可確保串聯諧振式無線傳輸系統電路在規格限制下之負載變化範圍與耦合係數變化範圍以內,以定頻率的方式操作,並配合後置轉換器穩定工作。最終完成一高效能7 kW串聯諧振式無線功率傳輸原型機,此原型機在線圈距離170mm時,滿載可達效率97%;在線圈距離210mm時,滿載可達效率96%
This thesis presents a high performance 7 kW wireless power transfer (WPT) system applied on electric vehicle charging, and based on series-series resonant compensation topology. In the beginning, the basic introduction about WPT is illustrated. Equivalent models of non-ideal transformer and coupling inductance are analyzed to simplify the equivalent circuit of resonant tank. In addition, series-series resonant compensation topology and LCC resonant compensation topology are introduced and comparison. Sum up the consideration and application, series-series resonant compensation topology is chosen to be the main structure of WPT. Then, First Harmonic Analysis(FHA) is used to predigest the circuit operation and find out proper operating interval, also choose better control method for the wide output voltage range application.
A design method is proposed that can guarantee output voltage meet the specification with series-series compensated WPT system under given coupling coefficient variation range, load range in this thesis. In order to reduce switching loss on the primary side power switches, the converter is designed and controlled with Zero-Voltage-Switching(ZVS). Finally, a prototype high performance 7 kW WPT system is built and tested. The prototype efficiency is 96% under full load and 170 mm coil distance, and 95% under full load and 210 mm coil distance.
摘 要
Abstract
誌 謝
目 錄
圖索引
表索引
第一章 緒論
1.1研究動機
1.2無線功率傳輸系統簡介與分類
第二章 無線功率傳輸線圈之等效模型分析
2.1非理想變壓器等效電路模型與T型等效模型推導
2.1.1非理想變壓器等效電路模型
2.1.2非理想變壓器T型等效電路模型推導
2.2耦合電感等效電路模型與T型等效模型推導
2.2.1耦合電感等效電路模型
2.2.2耦合電感T型等效電路模型推導
第三章 串聯諧振式無線功率傳輸系統工作點分析與選擇
3.1諧振式無線功率傳輸系統基本介紹
3.1.1串聯諧振式無線功率傳輸系統
3.1.2 LCC諧振式無線功率傳輸系統基本原理
3.2基本波近似法
3.3基於非理想變壓器模型之電路分析與控制選擇
3.4基於耦合電感模型之電路分析與控制選擇
3.4.1零相位角工作點
3.4.2固定增益工作點
3.4.3其他工作區間
3.5操作於電感、電容性區間之分析與電路分岔現象
3.6輸出電壓控制方式分類與比較
3.6.1後置轉換器控制
3.6.2頻率調變控制
第四章 無線傳輸系統設計考量與設計實例
4.1提高無線功率傳輸效率之設計考量
4.2線圈氣隙變動之設計考量與實例
4.2.1操作於零相位角工作點之設計考量
4.2.2操作於固定增益工作點之設計考量
4.2.3操作於其他工作區間之設計考量
4.3實際無線傳輸線圈繞製與傳統變壓器繞製之差別
第五章 實作驗證
5.1設計規格
5.2線圈參數設計流程
5.3電路設計考量
5.3.1功率級元件設計考量與選擇
5.3.2線圈與諧振槽規格
5.4實驗結果
第六章 結論與未來展望
6.1結論
6.2未來展望
參考文獻

[1] P. Hu, Wireless/Contactless Power Supply: - Inductively Coupled Resonant Converter Solutions. VDM-Verlag, 2009.
[2] Qianhong Chen, Chi K. Tse, Siu-Chung Wong, Wei Zhang, “Design for Efficiency Optimization and Voltage Controllability of Series–Series Compensated Inductive Power Transfer Systems” Transactions on Power Electronics, vol. 29, no.1, January. 2014
[3] 謝昕哲,「雙向串聯諧振式無線能量傳輸系統之研製」,國立台灣科技大學電子工程系碩士論文,2016年。
[4] 簡國訓,「高頻分時多相串聯-串聯諧振式無鐵芯電源轉換器」,國立台灣科技大學電子工程系碩士論文,2018年。
[5] Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, "An Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013.
[6] C. Qiu, K. T. Chau, C. Liu and C. C. Chan, "Overview of Wireless Power Transfer for Electric Vehicle Charging," Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, Barcelona, 2013, pp. 1-9.
[7] G. A. Covic and J. T. Boys, "Inductive Power Transfer," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013.
[8] F. Musavi and W. Eberle, "Overview of Wireless Power Transfer Technologies for Electric Vehicle Battery Charging," in IET Power Electronics, vol. 7, no. 1, pp. 60-66, January 2014.
[9] J. H. Kim et al., "Development of 1-MW Inductive Power Transfer System for a High-Speed Train," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6242-6250, Oct. 2015
[10] R. Haldi and K. Schenk, "A 3.5 kW Wireless Charger for Electric Vehicles with Ultra High Efficiency," Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Pittsburgh, PA, 2014, pp. 668-674.
[11] B. H. Choi, E. S. Lee, J. H. Kim and C. T. Rim, "7m-Off-Long-Distance Extremely Loosely Coupled Inductive Power Transfer Systems Using Dipole Coils," Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Pittsburgh, PA, 2014, pp. 858-563.
[12] C. Park, S. Lee, G. H. Cho and C. T. Rim, "Innovative 5-m-Off-Distance Inductive Power Transfer Systems With Optimally Shaped Dipole Coils," in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 817-827, Feb. 2015.
[13] M. Kline. "Capacitive Power Transfer" [Online], Electrical Engineering and Computer Sciences, University of California at Berkeley, CA, 2010.Available:http://digitalassets.lib.berkeley.edu/
techreports/ucb/text/EECS-2010-155.pdf[March,17 2016]
[14] C. Y. Xia, C. W. Li and J. Zhang, "Analysis of Power Transfer Characteristic of Capacitive Power Transfer System And Inductively Coupled Power Transfer System," Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, Jilin, 2011, pp. 1281-1285.
[15] M. P. Theodoridis, "Effective Capacitive Power Transfer," in IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4906-4913, Dec. 2012.
[16] H. Funato, H. Kobayashi and T. Kitabayashi, "Analysis of Transfer Power of Capacitive Power Transfer System," Power Electronics and Drive Systems (PEDS), 2013 IEEE 10th International Conference on, Kitakyushu, 2013, pp. 1015-1020.
[17] W. C. Brown, "The Technology and Application of Free-Space Power Transmission by Microwave Beam," in Proceedings of the IEEE, vol. 62, no. 1, pp. 11-25, Jan. 1974.
[18] R. M. Dickinson, "Performance of a High-Power, 2.388-GHz Receiving Array in Wireless Power Transmission Over 1.54 km," Microwave Symposium, 1976 IEEE-MTT-S International, Cherry Hill, NJ, USA, 1976, pp. 139-141.
[19] W. C. Brown, "The History of Power Transmission by Radio Waves," in IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, Sep 1984.
[20] L. Xiao, P. Wang, D. Niyato, and E. Hossain, "Dynamic Spectrum Access in Cognitive Radio Network with RF Energy Harvesting, " IEEE Wireless Communications, vol. 21, no. 3, pp. 102-110, June. 2014.
[21] S. D. Jarvis, J. Mukherjee, M. Perren and S. J. Sweeney, "Development and Characterisation of Laser Power Converters for Optical Power Transfer Applications," in IET Optoelectronics, vol. 8, no. 2, pp. 64-70, April 2014.
[22] Y. Kawaguchi and M. Yamada, "Experimental Evaluation of a 3-Kw High-Efficiency Inductive Contactless Power Transfer (IPCT) System For Electric Vehicles," 2014 16th European Conference on Power Electronics and Applications (EPE'14-ECCE Europe),26-28 Aug. 2014.
[23] R. Chen et al., "Analysis and Parameters Optimization of a Contactless IPT System for EV Charger," Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, Fort Worth, TX, 2014, pp. 1654-1661.
[24] D. Thenathayalan and J. H. Park, "Wide-Air-Gap Transformer Model for the Design-Oriented Analysis of Contactless Power Converters," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-6359, Oct. 2015.
[25] C. Zheng et al., "High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.
[26] 紀旭鴻,「新型非接觸式可調光LED驅動電路」,國立台灣科技大學電機工程系碩士論文,2016年。
[27] C. S. Wang, G. A. Covic and O. H. Stielau, "Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems," in IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, Feb. 2004.
[28] C. S. Wang, O. H. Stielau and G. A. Covic, "Design Considerations for a Contactless Electric Vehicle Battery Charger," in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[29] S. Li and C. C. Mi, "Wireless Power Transfer for Electric Vehicle Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, March 2015.
[30] Y. H. Kim and K. H. Jin, "Design and Implementation of a Rectangular-Type Contactless Transformer," in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5380-5384, Dec. 2011.
[31] M. Ryu, H. Cha, Y. Park and J. Back, "Analysis of The Contactless Power Transfer System Using Modelling and Analysis of the Contactless Transformer," Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference, pp. 1036–1042, 2005.
[32] Z. U. Zahid et al., "Modeling and Control of Series–Series Compensated Inductive Power Transfer System," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 111-123, March 2015.
[33] Qianhong Chen, Chi K. Tse, Siu-Chung Wong Wei Zhang, “Load-Independent Duality of Current and Voltage Outputs of a Series-or Parallel-Compensated Inductive Power Transfer Converter with Optimized Efficiency,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, March.2015.
[34] 吳義利,「切換式電源轉換器原理與實用技術設計(實例設計導向)」,文笙書局股份有限公司,2015年。
[35] Chenggang Fang, Jiancheng Song, Lingyan Lin, Yameng Wang, “Practical Considerations of Series-Series and Series-Parallel Compensation Topologies in Wireless Power Transfer System Application,” IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) Year: 2017 pp: 255 - 259
[36] Marojahan Tampubolon,「具有多個發送線圈之LCC-S補償動態無線電力傳輸」,國立台灣科技大學電子工程系博士論文,2018年。
[37] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, Wiley, 1995.
[38] S. Y. Cho, I. O. Lee, S. Moon, G. W. Moon, B. C. Kim and K. Y. Kim, "Series-Series Compensated Wireless Power Transfer at Two Different Resonant Frequencies," ECCE Asia Downunder (ECCE Asia), 2013 IEEE, Melbourne, VIC, 2013, pp. 1052-1058.
[39] J. y. Lee, K. m. Yoo, B. S. Jung, B. s. Chae and J. K. Seo, "Large Air-Gap 6.6 Kw Wireless EV Charger with Self-Resonant PWM," in Electronics Letters, vol. 50, no. 6, pp. 459-461, March 13 2014.
[40] G. Buja, M. Bertoluzzo and K. N. Mude, "Design and Experimentation of WPT Charger for Electric City Car," in IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, Dec. 2015.
[41] C. S. Wang, G. A. Covic and O. H. Stielau, "General Stability Criterions for Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer Systems," Industrial Electronics Society, 2001. IECON '01. The 27th Annual Conference of the IEEE, Denver, CO, 2001, pp. 1049-1054 vol.2.
[42] Q. Chen, L. Jiang, J. Hou, Xiaoyong Ren and Xinbo Ruan, "Research on Bidirectional Contactless Resonant Converter for Energy Charging Between EVs," Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, Vienna, 2013, pp. 1236-1241.
全文檔公開日期:2024/07/08 (本校及校內區域網路)
全文檔公開日期:2024/07/08 (校外網際網路)
全文檔公開日期:2024/07/08 (國家圖書館:臺灣博碩士論文系統)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *