簡易檢索 / 詳目顯示

研究生: 潘怡華
Yi-Hua Pan
論文名稱: 製備包覆18β-甘草次酸之聚硫縮酮奈米顆粒並評估其在抑制UVB誘導人類角質細胞發炎之效果
Preparation of 18β-glycyrrhetinic acid loaded polythioketal nanoparticles and evaluation of its anti-inflammatory effect on human keratinocytes induced by UVB
指導教授: 高震宇
Chen-Yu Kao
吳南霖
Nan-Lin Wu
口試委員: 高震宇
Chen-Yu Kao
吳南霖
Nan-Lin Wu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 18β-甘草次酸聚硫縮酮奈米顆粒UVB活性氧物質IL-1βIL-18抑制發炎
外文關鍵詞: 18β-glycyrrhetic acid, polythioketal polymer, nanoparticles, UVB, reactive oxygen species, IL-1β, IL-18, anti-inflammatory
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 18β-甘草次酸(18β-glycyrrhetinic acid)是由甘草成分中的甘草甜素水解代謝後的產物,在抗發炎、抗癌、治療疾病上已有廣泛的研究,可以防止人類角質形成細胞中氧化性DNA損傷和細胞凋亡相關蛋白的激活,是有效的抗氧化劑。
    硫縮酮(thioketal)是一種可以通過氧化方式降解的一種化合物,且在酸性與鹼性環境下穩定,本研究利用此種特性來包覆弱酸性的18β-甘草次酸並製備奈米顆粒。
    首先,合成出聚硫縮酮高分子聚合物做為藥物載體,使用單一乳化法製備包覆18β-甘草次酸之奈米顆粒。透過UVB照射正常人類角質形成細胞(normal human keratinocyte, NHK),誘導細胞發炎產生大量活性氧物質(Reactive oxygen species, ROS),使聚硫縮酮載體降解而釋放出18β-甘草次酸。透過量測IL-1β、IL-18促炎細胞因子濃度的結果表明,包覆18β-甘草次酸之奈米顆粒有抑制發炎的效果,而18β-甘草次酸純藥濃度較高會造成較多的細胞死亡,包覆18β-甘草次酸之聚硫縮酮奈米顆粒細胞毒性較低。


    18β-glycyrrhetic acid is a product of hydrolysis and metabolism of glycyrrhizin which is one of the ingredients in licorice, and it has been extensively studied in anti-inflammatory, anti-cancer and therapeutic diseases. 18β-glycyrrhetinic is potent antioxidants that prevent oxidative DNA fragmentation and the activation of apoptosis-associated proteins in human keratinocytes.
    Thioketal is a compound that can be degraded selectively in response to reactive oxygen species (ROS) and is stable in acidic and alkaline environments. This study used this property to coat 18β-glycyrrhetinic acid to prepare nanoparticle.
    First, the polythioketal polymer was synthesized as a drug carrier, and the nanoparticle coated with 18β-glycyrrhetic acid was prepared by a single emulsification method. Normal human keratinocyte (NHK) is irradiated by UVB to induce inflammation and release a large amount of reactive oxygen species (ROS), which degrades the polythioketal carrier and releases 18β-glycyrrhetic acid. The results of measuring the concentration of IL-1β and IL-18 proinflammatory cytokines showed that the nanoparticle coated with 18β-glycyrrhetinic acid had the effect of inhibiting inflammation. However, the higher concentration of 18β-glycyrrhetinic acid pure drug caused more death cell, and the polythioketal nanoparticle coated with 18β-glycyrrhetinic acid had lower cytotoxicity.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 縮寫表 XI 第一章 緒論 1 第二章 文獻回顧 3 2.1 皮膚組織結構 3 2.1.1 表皮角質形成細胞(Keratinocyte) 5 2.2 紫外線 6 2.1.2 紫外線對皮膚的影響 7 2.2.1 活性氧物質(Reactive oxygen species, ROS)與自由基 8 2.3 藥物傳輸系統(Drug delivery system, DDS) 9 2.3.1 高分子材料載體 11 2.3.2 高分子聚合物奈米顆粒載體製備 12 2.4 硫縮酮(Thioketal) 14 2.5 甘草(Glycyrrhiza uralensis, Licorice) 15 2.5.1 18β-甘草次酸(18β-glycyrrhetinic acid) 16 第三章 研究設計與材料方法 17 3.1 研究設計 17 3.1.1 實驗設計 17 3.1.2 實驗架構與流程 19 3.2 實驗藥品、試劑與儀器設備 20 3.2.1 實驗藥品試劑 20 3.2.2 細胞培養用之藥品試劑 20 3.2.3 實驗分析儀器設備 21 3.3 PPADT高分子聚合物合成 23 3.4 PPADT高分子聚合物特性分析 24 3.4.1 PPADT高分子聚合物組成分析 24 3.4.2 PPADT高分子聚合物分子量分析 25 3.5 奈米顆粒載體製備 26 3.5.1 PPADT-blank NPs製備 26 3.5.2 PPADT-18β-GA NPs製備 26 3.5.3 PPADT-Nile red NPs製備 27 3.6 奈米顆粒載體特性分析 28 3.6.1 粒徑分析 28 3.6.2 表面型態觀察 28 3.6.3 藥物包覆率分析 29 3.6.4 釋放效率 30 3.7 體外細胞實驗 31 3.7.1 細胞培養 31 3.7.2 細胞培養培養液配製 33 3.7.3 細胞繼代培養 33 3.7.4 細胞計數 34 3.7.5 UVB誘導細胞發炎 34 3.7.6 細胞毒性MTT assay 35 3.7.7 PPADT-18β-GA NPs抗發炎效果分析 36 第四章 結果 37 4.1 PPADT高分子聚合物特性分析 37 4.1.1 PPADT高分子聚合物組成分析 37 4.1.2 PPADT高分子聚合物分子量分析 39 4.2 奈米顆粒載體特性分析 41 4.2.1 粒徑分析 41 4.2.2 顆粒表面型態觀察 44 4.2.3 藥物包覆率分析 48 4.2.4 釋放效率 50 4.3 細胞實驗 51 4.3.1 細胞型態觀察 51 4.3.2 細胞毒性MTT assay 56 4.3.3 PPADT-18β-GA NPs顆粒抗發炎效果 59 第五章 討論 62 5.1 PPADT高分子聚合物特性分析 62 5.2 PPADT-blank NPs與PPADT-18β-GA NPs特性分析 62 5.3 細胞體外實驗評估 63 第六章 結論 64 未來展望 64 參考文獻 65

    1. Madronich, S., R.L. McKenzie, L.O. Björn, and M.M. Caldwell, Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B: Biology, 1998. 46(1): p. 5-19.
    2. Henriksen, T., A. Dahlback, S.H.H. Larsen, and J. Moan, ULTRAVIOLET-RADIATION and SKIN CANCER. EFFECT OF AN OZONE LAYER DEPLETION. Photochemistry and Photobiology, 1990. 51(5): p. 579-582.
    3. Perluigi, M., F. Di Domenico, C. Blarzino, C. Foppoli, C. Cini, A. Giorgi, C. Grillo, F. De Marco, D.A. Butterfield, M.E. Schininà, and R. Coccia, Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach. Proteome Science, 2010. 8(1): p. 13.
    4. Paz, M.L., D.H. González Maglio, F.S. Weill, J. Bustamante, and J. Leoni, Mitochondrial dysfunction and cellular stress progression after ultraviolet B irradiation in human keratinocytes. Photodermatology, Photoimmunology & Photomedicine, 2008. 24(3): p. 115-122.
    5. Wilson, D.S., G. Dalmasso, L. Wang, S.V. Sitaraman, D. Merlin, and N. Murthy, Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater, 2010. 9(11): p. 923-8.
    6. Wickett, R.R. and M.O. Visscher, Structure and function of the epidermal barrier. American Journal of Infection Control, 2006. 34(10): p. S98-S110.
    7. Baroni, A., E. Buommino, V. De Gregorio, E. Ruocco, V. Ruocco, and R. Wolf, Structure and function of the epidermis related to barrier properties. Clinics in Dermatology, 2012. 30(3): p. 257-262.
    8. Archer, C.B., Functions of the Skin, in Rook's Textbook of Dermatology, S.B. T. Burns, N. Cox and C. Griffiths, Editor. 2010.
    9. Anatomy and Organization of Human Skin, in Rook's Textbook of Dermatology.
    10. Proksch, E., J.M. Brandner, and J.M. Jensen, The skin: an indispensable barrier. Exp Dermatol, 2008. 17(12): p. 1063-72.
    11. Burns, D.A., N.H. Cox, and P.B. Hill, Comparative Dermatology, in Rook's Textbook of Dermatology, S.B. T. Burns, N. Cox and C. Griffiths, Editor. 2010.
    12. Cristina, A., S. Claudia, L.G. Maria, and G. Giampiero, Keratinocytes in Inflammatory Skin Diseases. Current Drug Targets - Inflammation & Allergy, 2005. 4(3): p. 329-334.
    13. Miodovnik, M., R. Koren, E. Ziv, and A. Ravid, The inflammatory response of keratinocytes and its modulation by vitamin D: The role of MAPK signaling pathways. Journal of Cellular Physiology, 2012. 227(5): p. 2175-2183.
    14. Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001. 81(2): p. 807-69.
    15. Dale Wilson, B., S. Moon, and F. Armstrong, Comprehensive review of ultraviolet radiation and the current status on sunscreens. The Journal of clinical and aesthetic dermatology, 2012. 5(9): p. 18-23.
    16. Lowe, N.J., D.P. Meyers, J.M. Wieder, D. Luftman, T. Borget, M.D. Lehman, A.W. Johnson, and I.R. Scott, Low doses of repetitive ultraviolet A induce morphologic changes in human skin. J Invest Dermatol, 1995. 105(6): p. 739-43.
    17. Reichrath, J., The challenge resulting from positive and negative effects of sunlight: How much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer? Progress in Biophysics and Molecular Biology, 2006. 92(1): p. 9-16.
    18. Golden, R.N., B.N. Gaynes, R.D. Ekstrom, R.M. Hamer, F.M. Jacobsen, T. Suppes, K.L. Wisner, and C.B. Nemeroff, The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry, 2005. 162(4): p. 656-62.
    19. Ryan, C., B. Moran, M.J. McKenna, and et al., The effect of narrowband uv-b treatment for psoriasis on vitamin d status during wintertime in ireland. Archives of Dermatology, 2010. 146(8): p. 836-842.
    20. Diederen, P.V., H. van Weelden, C.J. Sanders, J. Toonstra, and W.A. van Vloten, Narrowband UVB and psoralen-UVA in the treatment of early-stage mycosis fungoides: a retrospective study. J Am Acad Dermatol, 2003. 48(2): p. 215-9.
    21. Ichihashi, M., M. Ueda, A. Budiyanto, T. Bito, M. Oka, M. Fukunaga, K. Tsuru, and T. Horikawa, UV-induced skin damage. Toxicology, 2003. 189(1-2): p. 21-39.
    22. Heck, D.E., D.R. Gerecke, A.M. Vetrano, and J.D. Laskin, Solar ultraviolet radiation as a trigger of cell signal transduction. Toxicology and Applied Pharmacology, 2004. 195(3): p. 288-297.
    23. Vink, A.A. and L. Roza, Biological consequences of cyclobutane pyrimidine dimers. Journal of Photochemistry and Photobiology B: Biology, 2001. 65(2): p. 101-104.
    24. Akira, T. and B.P. R., Impact of UVB Radiation on the Epidermal Cytokine Network. Photochemistry and Photobiology, 1996. 63(4): p. 397-400.
    25. Farr, P.M., J.E. Besag, and B.L. Diffey, The Time Course of UVB and UVC Erythema. Journal of Investigative Dermatology, 1988. 91(5): p. 454-457.
    26. Drouin, R. and J.P. Therrien, UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53. Photochemistry and photobiology, 1997. 66(5): p. 719-26.
    27. Pfeifer, G.P., Y.H. You, and A. Besaratinia, Mutations induced by ultraviolet light. Mutat Res, 2005. 571(1-2): p. 19-31.
    28. Ray, P.D., B.W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012. 24(5): p. 981-90.
    29. Russell, E.G. and T.G. Cotter, Chapter Six - New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes, in International Review of Cell and Molecular Biology, K.W. Jeon, Editor. 2015, Academic Press. p. 221-254.
    30. Safari, J. and Z. Zarnegar, Advanced drug delivery systems: Nanotechnology of health design A review. Journal of Saudi Chemical Society, 2014. 18(2): p. 85-99.
    31. Park, K., Controlled drug delivery systems: past forward and future back. Journal of controlled release : official journal of the Controlled Release Society, 2014. 190: p. 3-8.
    32. Prow, T.W., J.E. Grice, L.L. Lin, R. Faye, M. Butler, W. Becker, E.M.T. Wurm, C. Yoong, T.A. Robertson, H.P. Soyer, and M.S. Roberts, Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews, 2011. 63(6): p. 470-491.
    33. Coelho, J.F., P.C. Ferreira, P. Alves, R. Cordeiro, A.C. Fonseca, J.R. Góis, and M.H. Gil, Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. The EPMA journal, 2010. 1(1): p. 164-209.
    34. Papadimitriou, S.A., Y. Salinas, and M. Resmini, Smart Polymeric Nanoparticles as Emerging Tools for Imaging—The Parallel Evolution of Materials. Chemistry – A European Journal, 2016. 22(11): p. 3612-3620.
    35. Shim, M.S. and Y. Xia, A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angewandte Chemie (International ed. in English), 2013. 52(27): p. 6926-6929.
    36. Saravanakumar, G., J. Kim, and W.J. Kim, Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges. Advanced Science, 2017. 4(1): p. 1600124.
    37. Ma, N., Y. Li, H.P. Xu, Z.Q. Wang, and X. Zhang, Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. Journal of the American Chemical Society, 2010. 132(2): p. 442-+.
    38. Ma, N., H.P. Xu, L.P. An, J. Li, Z.W. Sun, and X. Zhang, Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir, 2011. 27(10): p. 5874-5878.
    39. Cao, W., Y.W. Gu, T.Y. Li, and H.P. Xu, Ultra-sensitive ROS-responsive tellurium-containing polymers. Chemical Communications, 2015. 51(32): p. 7069-7071.
    40. Fang, R.C., H.P. Xu, W. Cao, L.L. Yang, and X. Zhang, Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polymer Chemistry, 2015. 6(15): p. 2817-2821.
    41. Broaders, K.E., S. Grandhe, and J.M.J. Frechet, A Biocompatible Oxidation-Triggered Carrier Polymer with Potential in Therapeutics. Journal of the American Chemical Society, 2011. 133(4): p. 756-758.
    42. Allen, B.L., J.D. Johnson, and J.P. Walker, Encapsulation and Enzyme-Mediated Release of Molecular Cargo in Polysulfide Nanoparticles. Acs Nano, 2011. 5(6): p. 5263-5272.
    43. Kim, J.S., S.D. Jo, G.L. Seah, I. Kim, and Y.S. Nam, ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 1137-1142.
    44. Tang, T., H. Jiang, Y. Yu, F. He, S.-z. Ji, Y.-y. Liu, Z.-s. Wang, S.-c. Xiao, C. Tang, G.-Y. Wang, and Z.-F. Xia, A new method of wound treatment: targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α. International Journal of Nanomedicine, 2015. 10: p. 6571-6585.
    45. Baugh, S.D.P., Z.W. Yang, D.K. Leung, D.M. Wilson, and R. Breslow, Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. Journal of the American Chemical Society, 2001. 123(50): p. 12488-12494.
    46. Park, H., S. Kim, S. Kim, Y. Song, K. Seung, D. Hong, G. Khang, and D. Lee, Antioxidant and Anti-Inflammatory Activities of Hydroxybenzyl Alcohol Releasing Biodegradable Polyoxalate Nanoparticles. Biomacromolecules, 2010. 11(8): p. 2103-2108.
    47. Lee, D., S. Bae, Q.E. Ke, J. Lee, B. Song, S.A. Karumanchi, G. Khang, H.S. Choi, and P.M. Kang, Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury. Journal of Controlled Release, 2013. 172(3): p. 1102-1110.
    48. Power-Billard, K.N., R.J. Spontak, and I. Manners, Redox-active organometallic vesicles: Aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block. Angewandte Chemie-International Edition, 2004. 43(10): p. 1260-1264.
    49. Crucho, C.I.C. and M.T. Barros, Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 2017. 80: p. 771-784.
    50. Rao, J.P. and K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 2011. 36(7): p. 887-913.
    51. Anton, N., J.-P. Benoit, and P. Saulnier, Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 2008. 128(3): p. 185-199.
    52. Asl, M.N. and H. Hosseinzadeh, Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res, 2008. 22(6): p. 709-24.
    53. Momeni, A., G. Rahimian, A. Kiasi, M. Amiri, and S. Kheiri, Effect of licorice versus bismuth on eradication of Helicobacter pylori in patients with peptic ulcer disease. Pharmacognosy research, 2014. 6(4): p. 341-344.
    54. Kim, K.R., C.-K. Jeong, K.-K. Park, J.-H. Choi, J.H.Y. Park, S.S. Lim, and W.-Y. Chung, Anti-inflammatory effects of licorice and roasted licorice extracts on TPA-induced acute inflammation and collagen-induced arthritis in mice. Journal of biomedicine & biotechnology, 2010. 2010: p. 709378-709378.
    55. Orlent, H., B.E. Hansen, M. Willems, J.T. Brouwer, R. Huber, G.A. Kullak-Ublick, G. Gerken, S. Zeuzem, F. Nevens, W.C.M. Tielemans, P.E. Zondervan, M. Lagging, J. Westin, and S.W. Schalm, Biochemical and histological effects of 26 weeks of glycyrrhizin treatment in chronic hepatitis C: A randomized phase II trial. Journal of Hepatology, 2006. 45(4): p. 539-546.
    56. Yang, H., H.-J. Ko, J.-Y. Yang, J.-J. Kim, S.-U. Seo, S.G. Park, S.S. Choi, J.K. Seong, and M.-N. Kweon, Interleukin-1 Promotes Coagulation, Which Is Necessary for Protective Immunity in the Lung Against Streptococcus pneumoniae Infection. The Journal of Infectious Diseases, 2013. 207(1): p. 50-60.
    57. Jeong, S.-J., H.-S. Lim, C.-S. Seo, J.-H. Kim, S.-E. Jin, S.-R. Yoo, and H.-K. Shin, Traditional herbal formula Jakyakgamcho-tang (Paeonia lactiflora and Glycyrrhiza uralensis) impairs inflammatory chemokine production by inhibiting activation of STAT1 and NF-κB in HaCaT cells. Phytomedicine, 2015. 22(2): p. 326-332.
    58. Ayeka, P.A., Y. Bian, P.G. Mwitari, X. Chu, Y. Zhang, R. Uzayisenga, and E.O. Otachi, Immunomodulatory and anticancer potential of Gan cao (Glycyrrhiza uralensis Fisch.) polysaccharides by CT-26 colon carcinoma cell growth inhibition and cytokine IL-7 upregulation in vitro. BMC complementary and alternative medicine, 2016. 16: p. 206-206.
    59. Wang, C.-Y., T.-C. Kao, W.-H. Lo, and G.-C. Yen, Glycyrrhizic Acid and 18β-Glycyrrhetinic Acid Modulate Lipopolysaccharide-Induced Inflammatory Response by Suppression of NF-κB through PI3K p110δ and p110γ Inhibitions. Journal of Agricultural and Food Chemistry, 2011. 59(14): p. 7726-7733.
    60. Kalaiarasi, P., K. Kaviarasan, and K.V. Pugalendi, Hypolipidemic activity of 18beta-glycyrrhetinic acid on streptozotocin-induced diabetic rats. European journal of pharmacology, 2009. 612(1-3): p. 93-97.
    61. Roohbakhsh, A., M. Iranshahy, and M. Iranshahi, Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship. Current Medicinal Chemistry, 2016. 23(5): p. 498-517.
    62. Hung, C.-F., C.-Y. Hsiao, W.-H. Hsieh, H.-J. Li, Y.-J. Tsai, C.-N. Lin, H.-H. Chang, and N.-L. Wu, 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts. PLOS ONE, 2017. 12(8): p. e0182981.
    63. Li, J.-y., H.-y. Cao, P. Liu, G.-h. Cheng, and M.-y. Sun, Glycyrrhizic Acid in the Treatment of Liver Diseases: Literature Review. BioMed Research International, 2014. 2014: p. 15.
    64. VERATTI, E., T. ROSSI, S. GIUDICE, L. BENASSI, G. BERTAZZONI, D. MORINI, P. AZZONI, E. BRUNI, A. GIANNETTI, and C. MAGNONI, 18β-Glycyrrhetinic Acid and Glabridin Prevent Oxidative DNA Fragmentation in UVB-irradiated Human Keratinocyte Cultures. Anticancer Research, 2011. 31(6): p. 2209-2215.
    65. Xudong, W., Z. Luyong, G. Emily, S. Elaine, S. Jing, W. Tao, W. Cuifen, Y. Ming, J. Zhenzhou, H.P. B., S.A. J., P.W. M., and Z. Huiping, Prevention of free fatty acid–induced hepatic lipotoxicity by 18β‐glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology, 2008. 47(6): p. 1905-1915.

    QR CODE