簡易檢索 / 詳目顯示

研究生: 黃勛偉
Hsun-Wei Huang
論文名稱: 應用Underwood 法進行反應蒸餾程序之最小能耗評估與分析
Minimum Energy Estimation and Analysis for Reactive Distillation Processes via Underwood Method
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
李瑞元
Jui-Yuan Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 118
中文關鍵詞: Underwood法簡捷法最小能耗反應蒸餾
外文關鍵詞: Underwood Method, Shortcut Method, Minimum Energy Demand, Reactive Distillation
相關次數: 點閱:213下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用Underwood簡捷法估算反應蒸餾塔(Reactive Distillation, RD)及反應性分隔內壁蒸餾塔(Reactive Dividing Wall Column, RDWC)所需之最小蒸氣量。於反應蒸餾程序中,化學反應通常會伴隨反應熱產生,因此不同系統必須有相對應的修正並做出額外的假設,使Underwood簡捷法可以成功地應用於吸熱及放熱系統。
    於理論推導程序中,分別以兩種計算方式進行RD及RDWC程序之探討,並且藉由商業模擬軟體Aspen Plus建立不同條件下之理想反應蒸餾程序、反應性分隔內壁蒸餾塔以及碳酸二苯酯(Diphenyl carbonate, DPC)反應蒸餾製程及其熱耦合組態。
    根據比較結果顯示,I_P (HK+LK⇌HHK+LLK)為RD程序估算最精準之組態,誤差值介於- 8.02%至11.04%,並且於RDWC程序中,此組態之估算誤差值介於- 10.64%至16.16%亦為最準確之組態。對於真實系統而言,DPC反應蒸餾製程之塔底總蒸氣量誤差為+1.46%,熱耦合設計之誤差則為+19.69%,故驗證此簡捷法可以有效地作為初步設計的起始猜測值。


    The objective of this study is to extend Underwood’s concept to reactive distillation (RD) column and reactive dividing wall column (RDWC), but the exothermic and endothermic reactions in the distillation column will cause the difficulty in derivative procedure. Thus, the modified terms and the additional assumptions are necessary in order to simplify the derivation procedure.
    In the derivation procedure, there are two different concepts applied in RD and RDWC processes, furthermore, the ideal cases and the realistic cases are used to compare the difference between the shortcut method and rigorous simulation. Also, RD processes, RDWC processes, diphenyl carbonate (DPC) RD and RDWC process are simulated by commercial software Aspen Plus.
    According to the results, I_P (HK+LK⇌HHK+LLK) configuration has the lowest deviation error in RD and RDWC process (RD: - 8.02% ~ 11.04%, RDWC: - 10.64 ~ 16.16%). For the DPC process, the percent deviation for RD is +1.46% and +19.69% for RDWC, it shows that the novel shortcut method is effective and helpful.

    致謝 摘要 Abstract 目錄 圖目錄 表目錄 1. 緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機與目的 1.4 組織章節 2. 一般蒸餾塔之Underwood法 2.1 前言 2.2 一般蒸餾塔之理論推導 2.3 計算程序 3. 應用Underwood法於反應蒸餾程序 3.1 前言 3.2 單塔組態之理論推導 3.2.1 方法一(一般進料組成) 3.2.2 方法二(準進料組成:離開反應器之組成) 3.3 雙塔組態之理論推導 3.4 計算流程 3.4.1 單塔組態 3.4.2 雙塔組態 3.5 理想反應蒸餾程序之結果比對 3.5.1 方法分析 3.5.2 不同單塔組態及反應量分析 3.5.3 雙塔組態之反應量分析 3.5.4 相對揮發度排序之影響 3.5.5 平衡常數之影響 3.6 DPC反應蒸餾程序之結果比對 4. 應用Underwood法於RDWC 4.1 前言 4.2 Underwood法於DWC之應用 4.2.1 DWC_L之應用 4.2.2 DWC_U之應用 4.2.3 DWC_M之應用 4.3 Underwood法於RDWC之理論推導 4.3.1 方法一(RDWC_M之一般進料組成) 4.3.2 方法二(準進料組成) 4.4 計算流程 4.5 理想RDWC之結果比對 4.5.1 方法分析 4.5.2 不同組態及反應量分析 4.5.3 相對揮發度排序之影響 4.5.4 平衡常數之影響 4.6 DPC反應蒸餾程序熱耦合組態之結果比對 5. 結論及未來展望 5.1 結論 5.2 未來展望 參考文獻 附錄一 符號說明

    [中文]
    [1] 童士哲,「反應蒸餾塔之概念性設計:相對揮發度排序之影響」,國立臺灣大學化學工程研究所碩士論文(2006)。
    [2] 何瑞鴻,「理想系統之反應性分隔內壁蒸餾塔設計與節能研究」,國立臺灣大學化學工程研究所碩士論文(2009)。
    [3] 何元傑,「依據再混合的程度定量估計內隔壁式蒸餾塔的節能效果」,國立臺灣大學化學工程研究所碩士論文(2009)。
    [4] 翁國郡,「複合型熱整合組態於間接序列式反應蒸餾程序之設計與控制」,國立臺灣科技大學化學工程研究所碩士論文(2014)。

    [英文]
    [1] Al‐Arfaj, M. A., & Luyben, W. L. Effect of number of fractionating trays on reactive distillation performance, AIChE J., 46(12), 2417-2425, 2000.
    [2] Avami, A., Marquardt, W., Saboohi, Y., & Kraemer, K. Shortcut design of reactive distillation columns, Chem. Eng. Sci. , 71, 166-177, 2012.
    [3] Barbosa, D., & Doherty, M. F. Design and minimum-reflux calculations for single-feed multicomponent reactive distillation columns, Chem. Eng. Sci.,. 43(7), 1523-1537, 1988a.
    [4] Barbosa, D., & Doherty, M. F. Design and minimum-reflux calculations for double-feed multicomponent reactive distillation columns, Chem. Eng. Sci., 43(9), 2377-2389, 1988b.
    [5] Barnes, F. J., Hanson, D. N., & King, C. Calculation of minimum reflux for distillation columns with multiple feeds, Ind. Eng. Chem. Proc. Des. and Dev., 11(1), 136-140, 1972.
    [6] Bausa, J., Watzdorf, R. v., & Marquardt, W. Shortcut methods for nonideal multicomponent distillation: I. Simple columns, AIChE J., 44(10), 2181-2198, 1998.
    [7] Carlberg, N. A., & Westerberg, A. W. Temperature-heat diagrams for complex columns. 2. Underwood's method for side strippers and enrichers, Ind. Eng. Chem. Res., 28(9), 1379-1386, 1989a.
    [8] Carlberg, N. A., & Westerberg, A. W. Temperature-heat diagrams for complex columns. 3. Underwood's method for the Petlyuk configuration, Ind. Eng. Chem. Res., 28(9), 1386-1397, 1989b.
    [9] Cheng, K., Wang, S.-J., & Wong, D. S. H. Steady-state design of thermally coupled reactive distillation process for the synthesis of diphenyl carbonate, Comput. Chem. Eng., 52, 262-271, 2013.
    [10] Engelien, H. K., & Skogestad, S. Minimum energy diagrams for multieffect distillation arrangements, AIChE J., 51(6), 1714-1725, 2005.
    [11] Fatoorehchi, H., & Abolghasemi, H. Approximating the minimum reflux ratio of multicomponent distillation columns based on the Adomian decomposition method, J. Taiwan Inst. Chem. Eng., 45(3), 880-886, 2014.
    [12] Fenske, M. Fractionation of straight-run Pennsylvania gasoline, Ind. Eng. Chem., 24(5), 482-485, 1932.
    [13] Fidkowski, Z., & Krolikowski, L. Thermally coupled system of distillation columns: optimization procedure, AIChE J., 32(4), 537-546, 1986.
    [14] Franklin, N., & Forsyth, J. The interpretation of minimum reflux conditions in multi-component distillation, Chem. Eng. Res. Des., 75, S56-S81, 1953.
    [15] Halvorsen, I. J., & Skogestad, S. Minimum energy consumption in multicomponent distillation. 1. V min diagram for a two-product column, Ind. Eng. Chem. Res., 42(3), 596-604, 2003a.
    [16] Halvorsen, I. J., & Skogestad, S. Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements, Ind. Eng. Chem. Res., 42(3), 605-615, 2003b.
    [17] Halvorsen, I. J., & Skogestad, S. Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements, Ind. Eng. Chem. Res, 42(3), 616-629, 2003c.
    [18] King, C. J. Separation Process. McGraw-Hill, Chemical Engineering Series, New York, 1980.
    [19] Kiss, A. A., Flores Landaeta, S. J., & Infante Ferreira, C. A. Towards energy efficient distillation technologies – Making the right choice, Energy, 47(1), 531-542, 2012.
    [20] Lee, J. W., Hauan, S., Lien, K. M., & Westerberg, A. W. Difference points in extractive and reactive cascades. II—Generating design alternatives by the lever rule for reactive systems, Chem. Eng. Sci., 55(16), 3161-3174, 2000.
    [21] Levy, S. G., Van Dongen, D. B., & Doherty, M. F. Design and synthesis of homogeneous azeotropic distillations, 2. Minimum reflux calculations for nonideal and azeotropic columns, Ind. Eng. Chem. Fund., 24(4), 463-474, 1985.
    [22] Lucia, A., Amale, A., & Taylor, R. Distillation pinch points and more. Comput. Chem. Eng., 32(6), 1342-1364, 2008.
    [23] McCabe, W. L., & Thiele, E. Graphical design of fractionating columns, Ind. Eng. Chem., 17(6), 605-611, 1925.
    [24] Monroy-Loperena, R., & Vacahern, M. Roots of the Underwood’s equations in short-cut distillation from a companion matrix eigenvalues, Chem. Eng. Sci., 76, 9-13, 2012.
    [25] Rico-Ramirez, V., Huerta-Garrido, M. E., & Hernandez-Castro, S. Simplified design of batch reactive distillation columns, Ind. Eng. Chem. Res., 43(14), 4000-4011, 2004.
    [26] Shiras, R., Hanson, D., & Gibson, C. Calculation of minimum reflux in distillation columns, Ind. Eng. Chem., 42(5), 871-876, 1950.
    [27] Sun, L., & Bi, X. Shortcut Method for the Design of Reactive Dividing Wall Column, Ind. Eng. Chem. Res., 53(6), 2340-2347, 2014.
    [28] Tung, S. T., & Yu, C. C. Effects of relative volatility ranking to the design of reactive distillation, AIChE J., 53(5), 1278-1297, 2007.
    [29] Underwood, A. Fractional distillation of multicomponent mixtures, Ind. Eng. Chem., 41(12), 2844-2847, 1949.
    [30] Weinfeld, J. A., Owens, S. A., & Eldridge, R. B, Reactive dividing wall columns: A comprehensive review, Chem. Eng. and Process., 123, 20-33, 2018.

    QR CODE