簡易檢索 / 詳目顯示

研究生: 葉宗達
Chung-Da Yeh
論文名稱: 台灣離岸風場興建暨營運階段風險管理之研究
Risk Management in Offshore Wind Power Construction and Operations in Taiwan
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 曾惠斌
Hui-Ping Tserng
陳柏翰
Po-Han Chen
廖敏志
Min-Chih Liao
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 171
中文關鍵詞: 離岸風電風力發電風險管理
外文關鍵詞: Offshore wind, Wind power, Risk management
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣長期仰賴進口化石燃料發電,用電需求增加使空污問題日趨嚴重,有鑒於此,政府提高再生能源使用率,大力推動離岸風電,目標在2025年累積設置5.5 Gigawatts (GW)的裝置容量,同時期望在台建構產業供應鏈,培植國內核心製造能量。然亞洲離岸風電處於發展初期,無開發先例可作為借鏡,而台灣過去文獻大多著墨陸域風機事故的災因探討及風險防阻,對於國內離岸風電之風險仍有待進一步探究。據國際風電事故資料統計,離岸風電事故好發於興建與營運階段,因此,本文旨在探討台灣離岸風電興建與營運階段的風險管理,期能使國內相關業者瞭解此行業之風險進而有效管理風險。本文研擬了一些行動策略及研究方法,透過文獻資料整理歸納出風險因子,遵循專案管理知識體指南(PMBOK® Guide)之風險管理步驟進行研究與分析。研究結果顯示,「政治」為台灣離岸風電產業最主要的風險。最後,本研究提供風險排序及防阻措施,期能貢獻給相關業者於國內或亞洲鄰近國家作為離岸風電專案管理之參考,以降低風險發生率。


    Taiwan has long relied on imported fossil fuels to generate electricity. Increases in electricity demand have led to increasingly severe air pollution. In view of this, the government has increased the use of renewable energy and strongly promoted offshore wind power, aiming to achieve an accumulated capacity of 5.5 Gigawatts (GW) by 2025. Simultaneously, the government aims to establish an industrial supply chain in Taiwan and cultivate domestic core manufacturing energy. However, offshore wind power is in the preliminary stage of development and no precedents for development exist. Literature in Taiwan has primarily examined causes of onshore wind turbine accidents and risk prevention; further exploration is required regarding the risks of domestic offshore wind power. According to statistics on international wind power accidents, offshore accidents mostly occur during the construction and operation stages. Therefore, the present study investigated risk management during the construction and operation phases of offshore wind power in Taiwan. This will enable domestic industry personnel to understand the risks of this industry, and thus effectively manage risk. In this study, action strategies and research methods were developed and risk factors compiled through organizing data in the literature. Research and analysis followed the risk management steps of the PMBOK® Guide (A Guide to the Project Management Body of Knowledge). The result of this study presents that "politics" is the major risk of Taiwan offshore wind power industry. The risk rankings and preventive measures provided by the results of this study can serve as a reference for relevant industry personnel in Taiwan and neighboring Asian countries to use in the management of offshore wind power projects for reducing risk incidence.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 離岸風電介紹 1 1.1.1 風力發電機組 1 1.1.2 離岸風場 4 1.1.3 離岸風場分包方式 6 1.2 研究動機與目的 7 第二章 文獻回顧 8 2.1 全球及台灣離岸風電發展與現況 8 2.1.1 全球離岸風電發展與現況 8 2.1.2 台灣離岸風電發展與現況 11 2.2 國際風電事故案例 16 2.3 風險管理之應用 18 第三章 研究流程與方法 20 3.1 研究流程 20 3.2 風險分析方法 21 3.2.1 問卷調查法 21 3.2.2 風險影響程度-發生頻率分析法(RIFA) 22 3.2.3 層級分析法(AHP) 23 第四章 風險辨識 26 4.1 風險分類 26 4.2 風險分解結構(RBS) 27 4.3 風險因子說明 28 第五章 風險分析 30 5.1 問卷設計邏輯及受訪者背景介紹 30 5.1.1 問卷設計邏輯 30 5.1.2 受訪者背景資料 32 5.2 風險影響程度-發生頻率(RIFA)問卷結果與分析 33 5.2.1 分析流程與方法 33 5.2.2 風險影響程度-發生頻率(RIFA)問卷結果統計 34 5.2.3 風險影響程度-發生頻率(RIFA)分佈圖 35 5.3 層級分析法(AHP)問卷結果與分析 36 5.3.1 分析流程與方法 36 5.3.2 風險因子排序結果 41 5.4 RIFA與AHP結合之綜合排序結果 42 第六章 風險回應 43 6.1 RIFA分佈圖各象限之風險回應方式 43 6.2 風險因子防阻措施之探討 44 6.2.1 第一象限風險因子防阻措施探討 44 6.2.2 第二象限風險因子防阻措施探討 45 6.2.3 第三象限風險因子防阻措施探討 46 6.2.4 第四象限風險因子防阻措施探討 47 第七章 結論與建議 48 7.1 結論 48 7.2 建議與未來研究方向 52 參考文獻 53 附錄一 文獻之風險因子整理 56 附錄二 專家訪談問卷 (中文版) 59 附錄三 專家訪談問卷 (英文版) 71 附錄四 問卷問答題專家回覆整理 84 附錄五 問卷紀錄 87

    [1] 4C Offshore, Global Offshore Wind Speeds Rankings, Retrieved 31 August 2019, from https://www.4coffshore.com/windfarms/windspeeds.aspx
    [2] 涂莞庭, 再生能源基礎設施災損鑑識與防災策略:以台中港區風力發電機組為例, 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2010.
    [3] 黃一桂, 風力發電機葉片受強風侵襲之表層破損機制與風險防阻, 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2012.
    [4] 林冠宇, 風機塔柱受強風傾倒觸發機制暨其風險防阻措施之研究, 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2017.
    [5] 勞動部職業安全衛生署, 離岸風電海域作業安全指引, 2019.
    [6] S. Rodrigues, C. Restrepo, G. Katsouris, R. T. Pinto, M. Soleimanzadeh, P. Bosman, P. Bauer, A multi-objective optimization framework for offshore wind farm layouts and electric infrastructures, Energies, vol. 9, 2016, 216.
    [7] Ørsted, 離岸風場規劃-供應鏈的機會與展望, 2017.
    [8] 台船公司, 海事工程及安全性問題探討, 2016.
    [9] REN21, Renewable 2018 Global Status Report, 2018, 109-118.
    [10] Ørsted, Our Offshore Wind Farms, Retrieved 31 August 2019, from https://orsted.com/en/Our-business/Offshore-wind/Our-offshore-wind-farms
    [11] GWEC, 51.3 GW of Global Wind Capacity Installed in 2018, 2019.
    [12] GWEC, 40GW of New Offshore Wind Capacity by 2023, 2019.
    [13] IEEFA, IEA: Offshore Wind Capacity Could Top 200GW by 2040, 2018.
    [14] 經濟部, 風力發電 4 年推動計畫(核定本), 2017.
    [15] 經濟部能源局, 我國離岸風電推動進展, 2018.
    [16] 風力發電單一服務窗口, 潛力場址, Retrieved 31 Aug 2019, from https://www.twtpo.org.tw/offshore_show.aspx?id=963
    [17] 經濟部能源局, 離岸風電推動現況與展望, 2018.
    [18] 經濟部工業局, 離岸風力發電產業政策, 2018.
    [19] CWIF, Wind Turbine Accident and Incident Compilation, Retrieved 31 October 2019, from http://www.caithnesswindfarms.co.uk/fullaccidents.pdf
    [20] C. Arakawa, RECENT DEVELOPMENT AND CHALLENGES OF WIND TURBINE TECHNOLOGY, 2012.
    [21] S. M. Kao, N. S. Pearre, Administrative arrangement for offshore wind power developments in Taiwan: Challenges and prospects, Energy Policy, vol. 109, 2017, 463-472.
    [22] 施淳仁, 台灣西部離岸風場液化潛能評估, 2013.
    [23] D. C. Quarton, An international design standard for offshore wind turbines: IEC 61400-3, Bristol, UK: Garrad Hassan and Partners, Ltd, 2005.
    [24] V. Negro, J.-S. López-Gutiérrez, M. Dolores Esteban, C. Matutano, Uncertainties in the design of support structures and foundations for offshore wind turbines, Renewable energy, vol. 63, 2014, 125-132.
    [25] 簡慶文、張景鐘、李慶胤、簡孝東, 易損性分析應用於風力機塔抗颱風安全評估, 2016.
    [26] IEC, Wind Energy Generation Systems-Part 3-1: Design Requirements for Fixed Offshore Wind Turbines, Retrieved 31 August 2019, from https://webstore.iec.ch/publication/29360
    [27] DNV GL, Reducing Cyclone and Earthquake Challenges for Wind Turbines-New Wind Industry Project to Develop Joint Guideline, Retrieved 31 August 2019, from https://www.dnvgl.com/news/reducing-cyclone-and-earthquake-challenges-for-wind-turbines-144220
    [28] PMI, Chapter 11 Project Risk Management, in PMBOK® Guide, 5 ed, 2013, p. 309-354.
    [29] Institute of Risk Management, A Risk Practitioners Guide to ISO 31000: 2018, 2018.
    [30] E. Ahlgren, E. Grudic, Risk Management in Offshore Wind Farm Development, CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, 2017.
    [31] B. B. M. Keers, C. Paul van Fenema, Managing risks in public-private partnership formation projects, International Journal of Project Management, vol. 36, 2018, 861-875.
    [32] M. Arashpour, B. Abbasi, M. Arashpour, M. Reza Hosseini, R. Yang, Integrated management of on-site, coordination and off-site uncertainty: Theorizing risk analysis within a hybrid project setting, International Journal of Project Management, vol. 35, 2017, 647-655.
    [33] B.-G. Hwang, X. Zhao, L. P. Toh, Risk management in small construction projects in Singapore: Status, barriers and impact, International Journal of Project Management, vol. 32, 2014, 116-124.
    [34] X. Zhao, B.-G. Hwang, G. S. Yu, Identifying the critical risks in underground rail international construction joint ventures: Case study of Singapore, International Journal of Project Management, vol. 31, 2013, 554-566.
    [35] M. Garbuzova-Schlifter, R. Madlener, AHP-based risk analysis of energy performance contracting projects in Russia, Energy Policy, vol. 97, 2016, 559-581.
    [36] T. Wang, S. Wang, L. Zhang, Z. Huang, Y. Li, A major infrastructure risk-assessment framework: Application to a cross-sea route project in China, International Journal of Project Management, vol. 34, 2016, 1403-1415.
    [37] M. Yucesan, G. Kahraman, Risk Evaluation and Prevention in Hydropower Plant Operations: A Model Based on Pythagorean Fuzzy AHP, Energy Policy, vol. 126, 2019, 343-351.
    [38] R. F. A. Eskander, Risk assessment influencing factors for Arabian construction projects using analytic hierarchy process, Alexandria Engineering Journal, vol. 57, 2018, 4207-4218.
    [39] N. Gatzert, T. Kosub, Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks, Renewable and Sustainable Energy Reviews, vol. 60, 2016, 982-998.
    [40] J. A. Martilla, J. C. James, Importance-performance analysis, Journal of Marketing, vol. 41, 1977.
    [41] T. L. Satty, K. P. Kearns, Analytical planning: The organization of systems, ed: Oxford: Pergamon, 1985.
    [42] T. L. Saaty, Highlights and critical points in the theory and application of the Analytic Hierarchy Process, European journal of operational research, vol. 74, 1994, 426-447.
    [43] T. L. Saaty, Rank from comparisons and from ratings in the analytic hierarchy/network processes, European Journal of Operational Research, vol. 168, 2006, 557-570.
    [44] T. L. Saaty, E. Rokou, How to prioritize inventions, World Patent Information, vol. 48, 2017, 78-95.
    [45] T. L. Saaty, Analytic hierarchy process, Encyclopedia of Biostatistics, vol. 1, 2005.
    [46] Risktec, De-Risking Offshore Wind Energy, 2011.
    [47] EWEA, Where's the money coming from? Financing offshore wind farms, 2013.
    [48] Swiss Re, Offshore Wind Farm Discussion-Insurance Challenge and Case Review, 2017.
    [49] AON, Offshore Wind Risk Management and Insurance, 2018.
    [50] T. L. Saaty, Applications of Analytical Hierarchies, Mathematics and Computers in Simulation, vol. 21, 1979, 1-20.
    [51] T. L. Saaty, Decision-making with the AHP: Why is the principal eigenvector necessary, European Journal of Operational Research, vol. 145, 2003, 85-91.
    [52] AON, Insurance and Risk Overview for Offshore Wind Farms, 2019.

    無法下載圖示 全文公開日期 2025/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE