簡易檢索 / 詳目顯示

研究生: 陳福強
Kevin Indrawan Sucipto
論文名稱: 利用改變起始粉末晶面取向抑制 SrTiO3 第二相生成之研究
Inhibition of second phase of interconnector by controlling surface orientation of SrTiO3 starting powder
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
chen-hao wang
游進陽
Chin-Yang Yu
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 100
中文關鍵詞: 粉末化學製備法電子顯微鏡鈣鈦礦
外文關鍵詞: powders: chemical preparation
相關次數: 點閱:178下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以鈦酸鍶作為固態氧化物燃料電池連接板之研究倍受關注,因其具有良好的化學及物理穩定性。然而,高溫退火處理形成之多晶樣品會發生相分離現象。第二相出現在具有較高鍶濃度的(100)平面,其源自於碳酸鍶的熱分解作用。
    本研究之目的希望利用過氧化氫來控制SrTiO3¬晶體的表面能,達到降低{111}面族表面能,進而使{100}晶面減少。
    研究中分別於前驅物中添加三個不同濃度 (0.03, 0.15, 和0.45M)的雙氧水,並利用噴霧熱裂解法製備鈦酸鍶粉末,再於1500ºC下進行燒結1小時、1000ºC下退火24小時,最後與未添加雙氧水的試片進行比較。
    選擇使用噴霧熱裂解法製備是因為它簡單且能夠連續操作,具有高均勻的顆粒分佈結果。本研究合成之粉體部分利用X光繞射分析儀(XRD)、拉曼光譜儀、掃描式電子顯微鏡(SEM)、氮氣吸脫附分析儀(BET)分別鑒定相組成、表面形貌及比表面積。而燒結體則使用能量色散X-射線光譜(EDS)、XRD、阿基米德法分別進行相組成、表面形貌(元素組成)、相對密度。
    最後由實驗結果得知,添加過氧化氫的多晶SrTiO3在1000℃ 24小時的熱處理下可以減少RP第二相的偏析。


    Strontium titanate (SrTiO3)-based solid oxide fuel cell interconnectors have attracted more attention due to their chemical and physical stabilities. However, there is a phase segregation after become bulk specimen and annealed for period of time in high temperature. Second phase appeared on the Sr-rich (100) surface plane due to thermal decomposition of SrCO3. By controlling the crystalline SrTiO3 surface energy using hydrogen peroxide (H2O2), it can be lowering the {100} plane surface energy, so the population of {100} will be decreased. In this experiment, SrTiO3 powders were prepared by spray pyrolysis method using different concentration of H2O2 (0.03, 0.15, and 0.45M) and were sintered at 1500ºC for 1h and annealed at 1000ºC for 24h while comparing with un-treated sample. Spray pyrolysis was chosen because it is simple and able for continuous operation with high and uniform particles distribution result. As characterization, X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to research crystallographic phase and particle surface morphology. For bulk specimens, XRD, SEM-energy dispersive spectroscopy (EDS), Archimedes method, were conducted to research crystallographic phase, surface morphology, and relative density. Finally, H2O2-treated SrTiO3 bulk able to reduce the segregation of Ruddlesden Popper phase at 1000ºC for 24h.

    CONTENTS 摘要 II ABSTRACT V ACKNOWLEDGEMENTS VI CONTENTS VII LIST OF FIGURES XI LIST OF TABLES XV Chapter 1. Introduction 1 1.1 Ceramic material 1 1.2 Strontium titanate second phase segregation 3 1.3 Purposes of this study 4 Chapter 2. Literature review 6 2.1 Solid Oxide Fuel Cell 6 2.1.1 Solid Oxide Fuel Cell Interconnector part 8 2.2 Interconnector material 10 2.3 Properties of strontium titanate 11 2.3.1 Crystal structure of strontium titanate 12 2.3.2 Physical properties of strontium titanate 13 2.3.3 Surface energy of strontium titanate 13 2.4 Phase composition of strontium titanate 14 2.4.1 Ruddlesden-Popper (RP) phases 15 2.4.2 RP phase formation 16 2.5 Sintering 17 2.5.1 Stages of sintering 18 2.5.2 Sintering method 21 2.6 Spray pyrolysis 22 2.6.1 Ultrasonic spray pyrolysis equipment 22 2.6.2 Particle formation in the spray pyrolysis method 25 Chapter 3. Experimental Procedure 28 3.1 Experimental materials 28 3.2 Experimental equipment 29 3.3 Preparation 31 3.3.1 Spray pyrolysis procedure 33 3.3.2 Die pressing and sintering 34 3.3.3 Annealing 34 3.4 Characterizations 35 3.4.1 X-ray diffraction 35 3.4.2 Nitrogen Adsorption/Desorption 35 3.4.3 Raman Spectroscopy 36 3.4.4 Field Emission Scanning Electron Microscope 37 3.4.5 Back-Scattered Electron Detector 39 3.4.6 Energy-dispersive X-ray Spectroscopy 40 3.4.7 Relative density 40 Chapter 4. Results 42 4.1 SrTiO3 powders 42 4.1.1 Crystallographic phase 42 4.1.2 SrTiO3 powder particle surface morphology 44 4.1.3 Surface area 47 4.2 SrTiO3 bulk after sintering process 48 4.2.1 Crystallographic phase 48 4.2.2 Cross sectional micrograph 50 4.2.3 Relative density 52 4.3 SrTiO3 bulk after sintering and annealing process 53 4.3.1 Crystallographic phase 53 4.3.2 Scanning electron micrograph 55 4.3.3 Cross sectional micrograph 60 4.3.4 Relative density 62 Chapter 5. Discussion 64 5.1 Influence of H2O2 to SrTiO3 particle shape 64 5.2 Influence of H2O2 to surface population. 65 5.3 SrTiO3 phase segregation 67 5.4 SrTiO3 bulk specimens’ grain 69 Chapter 6. Conclusions 73 Chapter 7. Future works 75 References 76

    References
    [1] M.M. Subedi, Ceramics and its Importance The Himalayan Physics, 4 (2013) 80-82.
    [2] J.T. Black, R.A. Kohser, DeGarmo's materials and processes in manufacturing, John Wiley & Sons, 2017.
    [3] M. Gonçalves, C. Bergmann, Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure, Construction and building materials, 21 (2007) 2059-2065.
    [4] T. Ota, P. Jin, I. Yamai, Low thermal expansion and low thermal expansion anisotropy ceramic of Sr0. 5Zr2 (PO4) 3 system, Journal of materials science, 24 (1989) 4239-4245.
    [5] S. Stach, 11 - Modelling fracture processes in orthopaedic implants, in: Z. Jin (Ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System, Woodhead Publishing 2014, pp. 331-368.
    [6] R. Dorey, Chapter 4 - Microstructure–property relationships: How the microstructure of the film affects its properties, in: R. Dorey (Ed.) Ceramic Thick Films for MEMS and Microdevices, William Andrew Publishing, Oxford, 2012, pp. 85-112.
    [7] I.D. Marinescu, B. Rowe, Y. Ling, H.G. Wobker, Chapter 3 - Abrasive Processes, in: I.D. Marinescu, T.K. Doi, E. Uhlmann (Eds.) Handbook of Ceramics Grinding and Polishing, William Andrew Publishing, Boston, 2015, pp. 67-132.
    [8] F. Wakai, A. Domínguez-Rodríguez, CHAPTER 8 - Grain Boundary Dynamics in Ceramics Superplasticity, in: H. Hosono, Y. Mishima, H. Takezoe, K.J.D. MacKenzie, K. MacKenzie, Y. Mishima, H. Takezoe (Eds.) Nanomaterials, Elsevier Science Ltd, Oxford, 2006, pp. 297-314.
    [9] K.P. Constant, Ceramic Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
    [10] K. Nakamura, M. Mori, T. Ohnuma, Atomistic Investigation of the Second Phase Precipitation in (Sr, La)TiO3 Interconnect Material, ECS Transactions, 57 (2013) 2773-2782.
    [11] M. Mori, Z. Wang, T. Itoh, S. Yabui, K.-i. Murai, T. Moriga, A-Site and B-Site Non-stoichiometry and Sintering Characteristics of (Sr1− xLax) 1− yTi1− zO3 Perovskites, Journal of Fuel Cell Science and Technology, 8 (2011) 051014.
    [12] X. Li, H.L. Zhao, X.O. Zhou, N.S. Xu, Z.X. Xie, N. Chen, Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells, Int. J. Hydrog. Energy, 35 (2010) 7913-7918.
    [13] H. Wei, L. Beuermann, J. Helmbold, G. Borchardt, V. Kempter, G. Lilienkamp, W. Maus-Friedrichs, Study of SrO segregation on SrTiO3 (100) surfaces, Journal of the European Ceramic Society, 21 (2001) 1677-1680.
    [14] K. Szot, W. Speier, Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy, Physical Review B, 60 (1999) 5909-5926.
    [15] S. Šturm, A. Rečnik, C. Scheu, M. Čeh, Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO3, Journal of Materials Research, 15 (2000) 2131-2139.
    [16] S.N. Ruddlesden, P. Popper, New compounds of the K2NIF4 type, Acta Crystallographica, 10 (1957) 538-539.
    [17] C. Navas, H.-C. zur Loye, Conductivity studies on oxygen-deficient Ruddlesden-Popper phases, Solid State Ionics, 93 (1996) 171-176.
    [18] K. Szot, M. Pawelczyk, J. Herion, C. Freiburg, J. Albers, R. Waser, J. Hulliger, J. Kwapulinski, J. Dec, Nature of the surface layer in ABO3-type perovskites at elevated temperatures, Applied Physics A, 62 (1996) 335-343.
    [19] L. Dong, H. Shi, K. Cheng, Q. Wang, W. Weng, W. Han, Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals, Nano Research, 7 (2014) 1311-1318.
    [20] A. Choudhury, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation—A review, 2013.
    [21] I.R.d. Larramendi, N. Ortiz-Vitoriano, I.B.D.-. Bautista, T. Rojo, Designing Perovskite Oxides for Solid Oxide Fuel Cells, 2016.
    [22] Y.N. Magar, R.M. Manglik, Modeling of Convective Heat and Mass Transfer Characteristics of Anode-Supported Planar Solid Oxide Fuel Cells, Journal of Fuel Cell Science and Technology, 4 (2006) 185-193.
    [23] W.Z. Zhu, S.C. Deevi, Development of interconnect materials for solid oxide fuel cells, Materials Science and Engineering: A, 348 (2003) 227-243.
    [24] S. Gupta, M.K. Mahapatra, P. Singh, Lanthanum chromite based perovskites for oxygen transport membrane, Materials Science and Engineering: R: Reports, 90 (2015) 1-36.
    [25] P. Piccardo, R. Amendola, SOFC's Interconnects Materials Development, 2018.
    [26] J.J. Urban, W.S. Yun, Q. Gu, H. Park, Synthesis of Single-Crystalline Perovskite Nanorods Composed of Barium Titanate and Strontium Titanate, Journal of the American Chemical Society, 124 (2002) 1186-1187.
    [27] T. Moriga, R. Minakata, Y. Nomura, H. Ishikawa, K.-I. Murai, M. Mori, Stability and electrical conductivity of Nb- or Ta- doped SrTiO3 perovskites for interconnectors in solid oxide fuel cells, Journal of the Ceramic Society of Japan 125 (2017) 223-226
    [28] H. Wei, L. Beuermann, J. Helmbold, G. Borchardt, V. Kempter, G. Lilienkamp, W. Maus-Friedrichs, Study of SrO segregation on SrTiO 3(100) surfaces, 2001.
    [29] F. Voigts, T. Damjanovi, #263, #252, n. Borchardt, C. Argirusis, W. Maus-Friedrichs, Synthesis and characterization of strontium titanate nanoparticles as potential high temperature oxygen sensor material, J. Nanomaterials, 2006 (2006) 21-21.
    [30] F.M. Pontes, E.J.H. Lee, E.R. Leite, E. Longo, J.A. Varela, High dielectric constant of SrTiO3 thin films prepared by chemical process, Journal of Materials Science, 35 (2000) 4783-4787.
    [31] A. Ianculescu, A. Brǎileanu, G. Voicu, N. Drǎgan, D. Crisan, Formation and properties of some antimony-doped strontium titanate ceramics, 2006.
    [32] S.R. Hui, A. Petric, Electrical Properties of Yttrium-Doped Strontium Titanate Under Reducing Conditions, 2002.
    [33] A.G.H. Smith, Structural and Defect Properties of Strontium Titanate, Department of Chemistry, UniversityCollegeLondon, London, 2011.
    [34] K. Uchida, A. Yoshikawa, K. Koumoto, T. Kato, Y. Ikuhara, H. Ohta, A Single-Crystalline, Epitaxial SrTiO3 Thin-Film Transistor, arXiv preprint arXiv:0912.4341, (2009).
    [35] R. Wurm, O. Dernovsek, P. Greil, Sol-gel derived SrTiO3 and SrZrO3 coatings on SiC and C-fibers, Journal of materials science, 34 (1999) 4031-4037.
    [36] A.C.L.S. Marques, Advanced Si pad detector development and SrTiO3 studies by emission channeling and hyperfine interaction experiments, Physic, Faculty of Sciences of the University of Lisbon, Portugal, 2009.
    [37] D.M. Saylor, B. Dasher, T. Sano, G.S. Rohrer, Distribution of Grain Boundaries in SrTiO3 as a Function of Five Macroscopic Parameters, Journal of the American Ceramic Society, 87 (2004) 670-676.
    [38] S.-J. Shih, S. Lozano-Perez, D.J.H. Cockayne, Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3, Journal of Materials Research, 25 (2010) 260-265.
    [39] J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, X.D. Xiang, Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series, Applied Physics Letters, 78 (2001) 3292-3294.
    [40] C. Rodenbücher, Resistive switching phenomena of extended defects in Nb-doped SrTiO3 under influence of external gradients, Forschungszentrum Jülich GmbH, Germany, 2014.
    [41] S. Sturm, A. Recnik, M. Ceh, Microstructure evolution in SrTiO3 with different Sr/Ti ratios, Kzltet, 33 (1999) 479.
    [42] L. Lu, O. Ishiyama, 14 - Iron ore sintering, in: L. Lu (Ed.) Iron Ore, Woodhead Publishing 2015, pp. 395-433.
    [43] S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, V.L. Sprenkle, J.W. Stevenson, Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs, Electrochemical and Solid-State Letters, 5 (2002) A173-A175.
    [44] X.M. Du, R.M. Almeida, Sintering kinetics of silica-titania sol-gel films on silicon wafers, Journal of materials research, 11 (1996) 353-357.
    [45] I. Denry, J.R. Kelly, State of the art of zirconia for dental applications, Dental materials, 24 (2008) 299-307.
    [46] Z.Z. Fang, Sintering of advanced materials Fundamentals and processes, Woodhead Publishing Limited, United Kingdom, 2010.
    [47] S.-J. Kang, Sintering, Elsevier, 2005.
    [48] Y.F. Yang, M. Qian, 13 - Spark plasma sintering and hot pressing of titanium and titanium alloys, in: M. Qian, F.H. Froes (Eds.) Titanium Powder Metallurgy, Butterworth-Heinemann, Boston, 2015, pp. 219-235.
    [49] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds, 494 (2010) 175-189.
    [50] S. Grasso, Y. Sakka, G. Maizza, Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008, Science and Technology of Advanced Materials, 10 (2009) 053001.
    [51] D.S. Jung, Y.N. Ko, Y.C. Kang, S.B. Park, Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries, Advanced Powder Technology, 25 (2014) 18-31.
    [52] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
    [53] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 879.
    [54] J. Bogovic, S. Stopic, B. Friedrich, J. Schroeder, Ultrasonic spray pyrolysis, Proceedings of EMC, 2011.
    [55] D. Charlesworth, W. Marshall Jr, Evaporation from drops containing dissolved solids, AIChE Journal, 6 (1960) 9-23.
    [56] T.J. Gardner, D. Sproson, G. Messing, Precursor chemistry effects on development of particulate morphology during evaporative decomposition of solutions, MRS Online Proceedings Library Archive, 32 (1984).
    [57] W.-L. Tzeng, T.-L. Sun, S.-J. Shih, Grain boundary engineering by shape-control of SrTiO3 nanocrystals, Advanced Powder Technology, 27 (2016) 799-807.
    [58] C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, H.M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International, 34 (2008) 409-416.
    [59] S. de Souza, S.J. Visco, L.C. De Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature, Solid State Ionics, 98 (1997) 57-61.
    [60] K. Sing, The use of nitrogen adsorption for the characterisation of porous materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187 (2001) 3-9.
    [61] N. Hwang, A.R. Barron, BET surface area analysis of nanoparticles, The Connexions project, (2011) 1-11.
    [62] O.I. Olubiyi, F.-K. Lu, D. Calligaris, F.A. Jolesz, N.Y. Agar, Chapter 17 - Advances in Molecular Imaging for Surgery, in: A.J. Golby (Ed.) Image-Guided Neurosurgery, Academic Press, Boston, 2015, pp. 407-439.
    [63] E. Lau, 5 - Preformulation Studies, in: S. Ahuja, S. Scypinski (Eds.) Separation Science and Technology, Academic Press 2001, pp. 173-233.
    [64] G.S. Bumbrah, R.M. Sharma, Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian Journal of Forensic Sciences, 6 (2016) 209-215.
    [65] S. Manzoor, A. Somvanshi, S. Husain, Structural analysis of LaFeO3 thin films grown on SrTiO3 and LaAlO3 substrates, AIP Conference Proceedings, AIP Publishing, 2018, pp. 080011.
    [66] A. Khan, C. Jiménez, O. Chaix-Pluchery, H. Roussel, J.L. Deschanvres, In-situ Raman spectroscopy and X-ray diffraction studies of the structural transformations leading to the SrCu2O2 phase from strontium–copper oxide thin films deposited by metalorganic chemical vapor deposition, Thin Solid Films, 541 (2013) 136-141.
    [67] S.H. Rondahl, F. Pointurier, L. Ahlinder, H. Ramebäck, O. Marie, B. Ravat, F. Delaunay, E. Young, N. Blagojevic, J.R. Hester, Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise, Journal of radioanalytical and nuclear chemistry, 315 (2018) 395-408.
    [68] S. Šturm, A. Rečnik, C. Scheu, M. Čeh, Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO3, Journal of Materials Research, 15 (2000) 2131-2139.
    [69] W.L. Tzeng, S.J. Shih, Template‐Free Synthesis of Hollow Porous Strontium Titanate Particles, Journal of the American Ceramic Society, 98 (2015) 386-391.
    [70] B.-J. Hong, S.-J. Shih, Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis, Ceramic International, 43 (2017) S771-S775.
    [71] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceramics International, 39 (2013) 8773-8779.
    [72] E. Heifets, R. Eglitis, E. Kotomin, J. Maier, G. Borstel, Ab initio modeling of surface structure for SrTiO3 perovskite crystals, Physical Review B, 64 (2001) 235417.
    [73] A. Pojani, F. Finocchi, C. Noguera, Polarity on the SrTiO3 (111) and (110) surfaces, Surface Science, 442 (1999) 179-198.
    [74] R. Eglitis, Nanodevices and Nanomaterials for Ecological Security, (2012).
    [75] K. Szot, W. Speier, Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy, Physical Review B, 60 (1999) 5909.
    [76] T. Villaseñor, J.M. Jaeger, Data report: quantitative powder X-ray diffraction analysis from the Canterbury Basin, Expedition 317, Proc. IODP Volume, 2014, pp. 2.
    [77] K. Nonaka, S. Hayashi, K. Okada, N. Otsuka, T. Yano, Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method, Journal of materials research, 6 (1991) 1750-1756.
    [78] S. Mahshid, M. Askari, M.S. Ghamsari, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Journal of Materials Processing Technology, 189 (2007) 296-300.
    [79] M.K. Mondal, M. Lenka, Solubility of CO2 in aqueous strontium hydroxide, Fluid Phase Equilibria, 336 (2012) 59-62.
    [80] T. Moriga, R. Minakata, Y. Nomura, H. Ishikawa, K.-i. Murai, M. Mori, Stability and electrical conductivity of Nb-or Ta-doped SrTiO3 perovskites for interconnectors in solid oxide fuel cells, Journal of the Ceramic Society of Japan, 125 (2017) 223-226.
    [81] R. German, Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems, 2010.
    [82] F. Heydari, A. Maghsoudipour, M. Ostad Shabani, Z. Hamnabard, S. Farhangdoust, The effect of zirconia nanoparticles addition on thermal and electrical properties of BaO-CaO-Al2O3-B2O3-SiO2 glass for solid oxide fuel cell sealant, 2014.

    QR CODE