簡易檢索 / 詳目顯示

研究生: 潘美卉
Mei-Hui Pan
論文名稱: 奈米纖維交聯聚氨酯材料之形狀記憶研究
The study of shape memory behavior of polyurethane networks crosslinked by nanofibers
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 鄭國彬
Kuo-Bing Cheng
楊銘乾
Ming-Chien Yang
徐錦祥
Ching-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 70
中文關鍵詞: 聚氨酯中空管狀高嶺土奈米纖維素纖維交聯密度形狀記憶
外文關鍵詞: Polyurethane, Halloysite nanotubes, Cellulose nanofibers, Crosslink density, Shape memory property
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚氨酯(Polyurethane, PU)之形狀記憶行為,其機制為利用PU中軟段的PCL之熔點(Tm)及結晶溫度作為兩個相轉移溫度,並藉由軟硬鏈段的相互影響,使之擁有記憶不同形狀的功能,且最後可回復至初始形態。
    本研究分別利用中空管狀高嶺土(Halloysite nanotubes, HNTs)及奈米纖維素纖維(cellulose nanofiber, CNF)來改質PU的系統,藉此改善循環記憶效應不佳,製備出擁有高回復率及高固定率的形狀記憶高分子。本研究利用HNT表面上的羥基(-OH)與PU預聚物末端的異氰酸酯官能基(-NCO)產生共價鍵,除形成網狀交聯的結構藉以提供在材料內部儲存應力所需的硬鏈段外,更使兩物質在非晶區產生結晶,以記憶較多應力,相對地在回復時亦能釋放較多應力。利用這兩部分來改善材料回復形狀的性能,以及比較兩者對形狀記憶效應的影響;而因應相同增強硬段的概念,本研究另外選擇一具可撓性且表面同具有-OH的CNF,來比較其不同改質的特性。
    本研究分別探討0、0.5、1和3wt%的HNT及CNF對形狀記憶效果的影響。經試驗的結果得出,HNT及CNF的改質皆能有效的改善形狀記憶回復率至約90%並同時保持99%以上之固定率。


    Polyurethanes nanocomposites were synthesized with 4,4’- Methylene diphenyl diisocyanate (MDI), poly(Ɛ-caprolactone) (PCL) and nanofiller. The hydroxyl groups on halloysite (HNT) and cellulose fibers (CNF) were reacted with MDI to form a crosslinked network structure. Effects of diffrtent content on the surface morphology, mechanical, thermal, thermo-mechanical and shape memory properties were investigated by using tensile tester, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA), respectively. The crosslinking density of the polyurethanes was determined by using swelling test.
    The results showed that both PU/HNTs and PU/CNF nanocomposites exhibited a significant improvement in the thermal, mechanical and shape memory properties comparing with pristine polyurethane. The shape memory properties improvement may be attributed to appreciable crosslink density.

    摘要 Abstract I 第一章 前言 1 1.1引言 1 1.2形狀記憶材料簡介 3 1.3 研究動機 5 第二章 文獻回顧 6 2.1形狀記憶聚氨酯 6 2.2聚合方法及奈米填料添加 8 2.2.1高分子摻合(Polymer Blend) 8 2.2.2原位聚合(in situ polymerization) 8 2.2.3交聯(cross-linking) 10 2.2形狀記憶高分子循環 10 第三章、實驗 14 3.1實驗藥品 14 3.2實驗流程 15 3.3實驗試片製備流程 16 3.3.1合成步驟 16 3.3.2 PU/HNT試片製備 17 3.3.3 PU/CNF試片製備 18 3.4實驗設備與測試儀器 20 3.4.1實驗設備 20 3.4.2檢測方法 21 4.1合成及有機結構鑑定 26 4.2結晶型態及分散影像分析 28 4.2.1 POM 28 4.3.1 SEM/TEM影像 29 4.3熱性質分析 31 4.2.1 HNT對PU Tm及Tc之影響 31 4.2.2 CNF對PU Tm及Tc之影響 33 4.4 動態黏彈性質分析 35 4.4.1 PU/HNT之黏彈性質分析 35 4.4.2 PU/CNF之黏彈性質分析 38 4.5力學性質 40 4.5.1 PU/HNT力學性質影響 40 4.5.2 PU/CNF力學性質影響 42 4.6 交聯密度分析 44 4.7形狀記憶行為 46 4.7.1 PU/HNT形狀記憶效能研究 47 4.6.2 PU/CNF形狀記憶效能研究 52 第五章、結論 55 參考文獻 57

    1. Chen, H., et al., Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem., 2014. 5(17): p. 5168-5174.
    2. Du, P., et al., Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Advances, 2013. 3(35).
    3. Yu, L., et al., Multi-shape-memory effects in a wavelength-selective multicomposite. Journal of Materials Chemistry A, 2015. 3(26): p. 13953-13961.
    4. Zhao, Q., M. Behl, and A. Lendlein, Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 2013. 9(6): p. 1744-1755.
    5. Khoshroo, K., et al., Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2017. 70(Pt 1): p. 586-598.
    6. Lan, X., et al., Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Materials and Structures, 2009. 18(2): p. 024002.
    7. Lan, X., et al., Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Materials and Structures, 2009. 18(2).
    8. Leng, J., et al., Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 2011. 56(7): p. 1077-1135.
    9. Senatov, F.S., et al., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater, 2016. 57: p. 139-48.
    10. Ohki, T., et al., Mechanical and shape memory behavior of composites with shape memory polymer. Composites Part A: Applied Science and Manufacturing, 2004. 35(9): p. 1065-1073.
    11. Feng, X., et al., Self-healing elastomer assembly towards three-dimensional shape memory devices. RSC Adv., 2015. 5(86): p. 70000-70004.
    12. Hong, S.B., et al., Mechanical analysis of carbon fiber shape memory polymer composites. Proc. ASEM15, 2015.
    13. Lai, S.M. and Y.C. Lan, Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. Journal of Polymer Research, 2013. 20(5).
    14. Lee, K.-S. and Y.-W. Chang, Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 2013. 128(5): p. 2807-2816.
    15. Li, W., Y. Liu, and J. Leng, Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior. RSC Adv., 2014. 4(106): p. 61847-61854.
    16. Zhang, Z.P., M.Z. Rong, and M.Q. Zhang, Room temperature self-healable epoxy elastomer with reversible alkoxyamines as crosslinkages. Polymer, 2014. 55(16): p. 3936-3943.
    17. Zhou, J., et al., Epoxy functionalised poly(epsilon-caprolactone): synthesis and application. Chem Commun (Camb), 2008(44): p. 5806-8.
    18. Feng, X., et al., Self-healing elastomer assembly towards three-dimensional shape memory devices. RSC Advances, 2015. 5(86): p. 70000-70004.
    19. Zhang, Y., et al., High-strain shape memory polymer networks crosslinked by SiO2. Journal of Materials Chemistry, 2011. 21(25).
    20. Alexandru, M., et al., Poly(siloxane-urethane) crosslinked structures obtained by sol-gel technique. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(7): p. 1708-1718.
    21. Kim, J.T., et al., Synthesis and shape memory performance of polyurethane/graphene nanocomposites. Reactive and Functional Polymers, 2014. 74: p. 16-21.
    22. Zia, K.M., H.N. Bhatti, and I. Ahmad Bhatti, Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and Functional Polymers, 2007. 67(8): p. 675-692.
    23. Ge, Q., et al., Mechanisms of triple-shape polymeric composites due to dual thermal transitions. Soft Matter, 2013. 9(7).
    24. Huang, W.M., et al., Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Applied Physics Letters, 2005. 86(11).
    25. Wang, Y., et al., Relation between temperature memory effect and multiple-shape memory behaviors based on polymer networks. RSC Advances, 2014. 4(39).
    26. Wei, H., et al., A dual-functional polymeric system combining shape memory with self-healing properties. Composites Part B: Engineering, 2015. 83: p. 7-13.
    27. Jung, Y.C., et al., Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon, 2010. 48(5): p. 1598-1603.
    28. Chattopadhyay, D.K. and K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007. 32(3): p. 352-418.
    29. Delebecq, E., et al., On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chemical Reviews, 2013. 113(1): p. 80-118.
    30. Pokharel, P., S. Choi, and D.S. Lee, The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Composites Part A: Applied Science and Manufacturing, 2015. 69: p. 168-177.
    31. Zhang, W.D., et al., Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. Macromolecules, 2004. 37(2): p. 256-259.
    32. Dreyer, D.R., et al., The chemistry of graphene oxide. Chem Soc Rev, 2010. 39(1): p. 228-40.
    33. Georgakilas, V., et al., Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev, 2012. 112(11): p. 6156-214.
    34. Li, J., et al., In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. Journal of Materials Chemistry A, 2014. 2(48): p. 20642-20649.
    35. Jung, Y.C., N.G. Sahoo, and J.W. Cho, Polymeric Nanocomposites of Polyurethane Block Copolymers and Functionalized Multi-Walled Carbon Nanotubes as Crosslinkers. 2006. 27(2): p. 126-131.
    36. Gu, S., et al., Carbon nanotube–polyurethane shape memory nanocomposites with low trigger temperature. European Polymer Journal, 2013. 49(12): p. 3867-3877.
    37. Gong, B., et al., Synthesis and properties of a millable polyurethane elastomer with low halloysite nanotube content. RSC Advances, 2015. 5(94): p. 77106-77114.
    38. Lee, S.K. and B.K. Kim, Synthesis and properties of shape memory graphene oxide/polyurethane chemical hybrids. 2014. 63(7): p. 1197-1202.
    39. Yang, S., et al., Limitations with solvent exchange methods for synthesis of colloidal fullerenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 514: p. 21-31.
    40. Hwang, W.-G., K.-H. Wei, and C.-M. Wu, Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites. 2004. 44(11): p. 2117-2124.
    41. Czifrák, K., et al., Poly(ε-caprolactone) and Pluronic Diol-Containing Segmented Polyurethanes for Shape Memory Performance. 2014. 215(19): p. 1896-1907.
    42. Pei, A., et al., Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules, 2011. 44(11): p. 4422-4427.

    無法下載圖示 全文公開日期 2024/02/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE