簡易檢索 / 詳目顯示

研究生: 林柏淵
BO-YUAN LIN
論文名稱: 鈦酸鉛-鎂鈦酸鉍基鐵電陶瓷系統之膨脹係數、電性與機械性質探討
Thermal Expansion Behavior, Electrical Properties and Machinability of PbTiO3- Bi(Mg,Ti)O3 –based ferroelectric Ceramic System
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蘇裕軒
Yu-Hsuan Su
陳正劭
Cheng-Sao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 可調整熱膨脹係數陶瓷可加工陶瓷壓電陶瓷
外文關鍵詞: Adjustable thermal expansion coefficient ceramics, Machinable ceramics, Piezoelectric ceramics
相關次數: 點閱:240下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是研究與探討壓電陶瓷是否能夠經由材料改質,調整其熱膨脹係數,成為取代半導體檢測工業中最為重要的元件探針卡(Probe card)內部的陶瓷基板(Guide plate)材料。目前Guide plate所用的陶瓷材料與矽晶圓之熱膨脹係數匹配性不足,在將來半導體元件更加微小化時會遇到因熱膨脹效應的影響,造成檢測的探針無法與待測點位接觸,而導致檢測精度大幅降低,影響到產品良率。然而是否能夠成功取代,取決於熱膨脹係數的調控,電阻值與漏電流,以及機械加工成型性。由於所牽涉的特性範圍甚廣,故專注於研究壓電陶瓷的熱膨脹係數調控方法,且對於其他之性質趨勢進行討論。
    使用壓電陶瓷的(1-x)PbTiO3-xBi(Mg1/2Ti1/2)O3材料系統,其中PbTiO3為負熱膨脹效應的提供者,而Bi(Mg1/2Ti1/2)O3為正熱膨脹係數的來源,將此兩結合經由改變Bi(Mg1/2Ti1/2)O3的含量來控制熱膨脹係數,而後加入BiFeO3具有負熱膨脹加乘效果,提供額外調控方式。
    實驗結果顯示:由BMT含量的改變,能夠同時達到負熱膨脹係數(0.2BMT),零熱膨脹係數(0.4BMT)以及正熱膨脹係數0.5~0.7BMT (3x10-6/℃~7.8x10-6/℃)。在0.5PT-0.5BMT的比例下,與探針卡工作溫度區間(約-20~200℃)達到與矽晶圓有良好的匹配性,熱膨脹係數曲線非常接近,約落在3~3.5( x10-6/℃)之間。在電性方面,常溫時就得到低電阻值(<1010Ω.cm,電場強度:60kV/cm)且大的漏電流(60kV/cm約落在10-5Amp)之結果,故即使在常溫也無法承受高電場,約在70kV/cm即被擊穿,SEM觀察(1-x)PT-x BMT各成份許多大孔洞粗大晶粒4~5μm,相對密度約為92~93%之間。
    添加BiFeO3進入此系統中,一方面提供額外的熱膨脹係數調整方式,一方面提供助燒結的效果。分別以0.37PT-xBF-(0.63-x)BMT和0.5PT-xBF-(0.5-x)BMT兩種不同的PT含量進行BF的添加x=(0.1, 0.15, 0.2)。實驗結果顯示0.37PT系列添加BF後,由XRD得知c/a 比只有稍微增加,熱膨脹係數稍微下降,介於0.37PT-0.63BMT與0.4PT-0.6BMT之間。0.5PT系列添加BF後由XRD得知c/a比大幅提升從1.028增加到1.058,且熱膨脹係數有明顯的下降,從3~3.5(x10-6/℃)下降至1.5 ~ -1x(10-6/℃),且其居禮溫度從312℃提升至415℃左右。然而在燒結緻密性部分不論是0.37PT或是0.5PT此兩系列,在BF添加後都有大幅的改善。經後SEM觀察得知孔洞變少且變小,且晶粒細化約為1~2μm之間,漏電流大幅下降,電阻提升許多,即使0.5PT-0.2BF-0.3BMT該成份c/a比達到1.058,非常接近PbTiO3的理論值1.063,其燒結後的相對密度能高達97.5%。
    在機械加工成型方面,選擇BMT含量差異性較大的試片(0.2,0.4,0.6BMT)以及添加BF兩系列的0.15BF加工進行比較,使用超音波加工。實驗結果顯示:所有的試片都能達到高深寬比1:9的規格,試片燒結越緻密的越能夠維持成型的微小特徵(厚度約100μm),為齒狀結構,以BF的試片特徵維持率最高。
    故BF加入取代BMT能夠調整熱膨脹係數,以及增加燒結緻密性,提升電阻率下降漏電流,且超音波機械加工成型性良好。

    關鍵字:可調整熱膨脹係數陶瓷、可加工陶瓷、壓電陶瓷


    Probe card plays an important role in the semiconductor device quality control test. It can reduce the quality check time drastically and increases yield up to 20%. This thesis studies and discusses the possibility of materials alteration to the guide plate ceramic material. Currently thermal expansion coefficients of guide plate ceramics are not completely match with silicon wafer. Working Temperature range of a probe card is from -20℃ to 200℃. Testing probe may miss the contacting pads on the semiconductor device, if semiconductor device size is reduced and when testing temperature varies. Controlling thermal expansion coefficient of the guide plate material becomes a critical issue. Leakage current and machinability property of the developed material will be investigated as well.
    Piezoelectric ceramic of (1-x) PbTiO3-xBi (Mg1/2Ti1/2)O3 (PT-BMT)material system, in which PbTiO3 and Bi(Mg1/2Ti1/2)O3 exhibit the positive and negative thermal coefficients respectively, was developed and investigated. The experimental results show that negative (x=0.2), zero (x=0.4) and positive (x=0.5~0.7) thermal expansion can be obtained by changing BMT content. Among the PT-BMT material system with various BMT contents, the 0.5PT-0.5BMT is more suitable for the application of silicon wafer test operating at -20~200°C. The electrical properties of (1-x) PT-x BMT material system show that material resistivity is too low and leakage is too high. Leakage current is higher than 10-5 Amp and resistivity is lower than 1010 Ω.cm when we apply an electrical field of 60kV/cm at room temperature of 25℃. SEM observation of (1-x) PT-x BMT shows that materials exhibit large pores and grains size of 4 ~ 5μm with the highest relative density of about 92 ~ 93%. Therefore, it cannot withstand a high electric field even at an ambient temperature, and the specimens may be broken down at 70kV/cm.
    To resolve the problem, alloying with BiFeO3 was adopted. The addition of BiFeO3 into the system provides an additional thermal expansion and increase sintering densification. The experimental results show that after adding BF to 0.37PT series, the c/a ratio is obviously increased by XRD, and the thermal expansion coefficient is slightly decreased. The thermal expansion value falls between that of 0.37PT-0.63BMT and that of 0.4PT-0.6BMT. The addition of BF to the 0.5PT series showed that the c/a ratio increased significantly from 1.028 to 1.058 by XRD, and the coefficient of thermal expansion decreased significantly from 3 ~ 3.5 (x10-6/°C) to 1.5 ~ -1x (10-6 /°C). Curie temperature increased from 312 ° C to around 415 ° C. The sintered specimens with 0.37 PT and 0.5 PT have been greatly improved after the addition of BF. The leakage current and the resistance improved considerably. Even though the ratio of c/a of the component of 0.5PT-0.2BF-0.3BMT reaches 1.058, it is very close to the theoretical value of 1.063 of PbTiO3, and the relative density after sintering increased to 97.5%. In SEM observation, it is found that the percentage of pores is low and size decreases with grain size between 1 and 2 μm.
    Ultrasonic machining samples with 0.2, 0.4 and 0.6 BMT contents of PT-BMT system were chosen, and 0.37PT and 0.5PT specimens with 0.15BF addition were selected for test-machining. Ultrasonic machining has been performed with appropriate conditions. The experimental results show that all specimens can reach a high aspect ratio up to 1:9. Feature retention rate increased as the BMT content increases for PT-BMT material system. After addition of BF in material for PT-BMT-BF system, machining retention rate is close to 100%.
    BF addition into PT-BMT system can adjust the thermal expansion coefficient and increase sintering densification. Leakage is significantly reduced and resistivity will be increased by additional BF. Ultrasonic machining property of the material system shows an enhancement on feature retention by adding BF.

    Key word: Adjustable thermal expansion coefficient ceramics, Machinable ceramics,
    Piezoelectric ceramics

    摘要 I Abstract III 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 序論 1 1-1研究背景 1 1-2材料選擇 2 1-3研究方法 2 第二章 文獻回顧與理論基礎 3 2-1探針卡(Probe card) 3 2-2物質熱膨脹基本理論 6 2-3負熱膨脹機制 8 2-3-1 Phonon 8 2-3-2 Rigid unit Motion(RUM) 8 2-3-3 Magnetostrictive 9 2-3-4 Phase transition 10 2-4自發極化起源與壓電材料基本觀念 11 2-4-1介電陶瓷材料 11 2-4-2 介電 12 2-4-3 四種極化機制 12 2-4-4 晶體結構介紹 14 2-4-5容忍因子 15 2-5自發極化(Spontaneous Polarization ) 16 2-6 鐵電活性 17 2-7 Landau theory relationship 19 2-8各材料系統趨勢整理 20 2-9 Raman 23 2-10燒結理論 25 2-10-1傳統燒結 25 第三章 實驗方法與使用儀器 27 3-1實驗藥品 27 3-2實驗儀器 28 3-2-1 掃描式電子顯微鏡 29 3-2-2 X-ray繞射儀 29 3-2-3 鐵電遲滯曲線及應變曲線量測 30 3-3實驗步驟 31 3-3-1粉末製備 32 3-3-2成型(forming) 32 3-3-3燒結(sintering) 32 3-3-4電極處理製作 33 3-3-5基本性質量測與觀察 34 3-3-6熱膨脹係數量測: 35 3-4 電性量測 35 第四章 結果與討論 36 4-1 (1-x)PT-(x)BMT 37 4-1-1 XRD diffraction 37 4-1-2 Raman 41 4-1-3 熱膨脹係數(Thermal expansion) 47 4-1-4 SEM 49 4-1-5 相對密度 56 4-1-6 漏電流 57 4-2 0.37PT-xBF-(0.63-x)BMT 58 4-2-1 X-ray diffraction 58 4-2-2 Raman 61 4-2-3 熱膨脹係數 63 4-2-4 SEM 64 4-2-5 相對密度 68 4-2-6 漏電流(Leakage Current) 69 4-2-7 電阻率(Resistivity) 70 4-2-8 升溫S-E曲線 71 4-3 0.5PT-xBF-(0.5-x)BMT 73 4-3-1 XRD 73 4-3-2 Raman 78 4-3-3 熱膨脹係數 82 4-3-4 SEM 83 4-3-5 相對密度 87 4-3-6 電阻值 88 4-3-7 漏電流 89 4-4 各成份之加工性 90 第五章 結論 97 參考文獻 99

    [1] F.Bechtold, “A Comprehensive Overview on Today’s Ceramic Substrate Technologies,” Microelectron. Packag. Conf. Rimini, Italy, pp. 1–12, 2009.
    [2] P.Hu, J.Chen, J.Deng, andX.Xing, “Thermal Expansion, Ferroelectric and Magnetic Properties in (1 − x )PbTiO 3 − x Bi(Ni 1/2 Ti 1/2 )O 3,” J. Am. Chem. Soc., vol. 132, no. 6, pp. 1925–1928, 2010.
    [3] Zhao Pan, Jun Chen , Xingxing Jiang, Zheshuai Lin, Linxing Zhang, Longlong Fan, Yangchun Rong, Lei Hu, Hui Liu, Yang Ren, Xiaojun Kuang, and Xianran Xing, “Zero Thermal Expansion and Semiconducting Properties in PbTiO3-Bi(Co, Ti)O3Ferroelectric Solid Solutions,” Inorg. Chem., vol. 56, no. 5, pp. 2589–2595, 2017.
    [4] Penghao Hu, Jun Chen, Xueyi Sun, Jinxia Deng, Xi Chen, Ranbo Yu, Lijie Qiao and Xianran Xing, “Zero thermal expansion in (1-x)PbTiO3-xBi(Mg,Ti) 1/2O3 piezoceramics,” J. Mater. Chem., vol. 19, no. 11, pp. 1648–1652, 2009.
    [5] Jun Chen, Xianran Xing, Ce Sun, Penghao Hu, Ranbo Yu, Xiaowei Wang, andLihong Li, “Zero Thermal Expansion in PbTiO 3 -Based Perovskites,” vol. c, pp. 1144–1145, 2008.
    [6] P. Y.Yu and M.Cardona, Fundamentals of Semincondutors. 2010.
    [7] Y.Okada andY.Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys., vol. 56, no. 2, pp. 314–320, 1984.
    [8] J.Chen, L.Hu, J.Deng, andX.Xing, “Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications,” Chem. Soc. Rev., vol. 44, no. 11, pp. 3522–3567, 2015.
    [9] V. I.Nikolaev andA. M.Shipilin, “On the thermal expansion of nanoparticles,” Phys. Solid State, vol. 42, no. 1, pp. 112–113, 2000.
    [10] E.Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Phys., vol. 344, no. 12, pp. 257–306, 1912.
    [11] J. S.Dugdale andD. K. C.MacDonald, “Vibrational anharmonicity and lattice thermal properties,” Phys. Rev., vol. 96, no. 1, pp. 57–62, 1954.
    [12] K.Takenaka, “Negative thermal expansion materials: Technological key for control of thermal expansion,” Sci. Technol. Adv. Mater., vol. 13, no. 1, 2012.
    [13] C. N.Chu, N.Saka, andN. P.Suh, “Negative thermal expansion ceramics: A review,” Mater. Sci. Eng., vol. 95, no. C, pp. 303–308, 1987.
    [14] A. W.Sleight, “Negative Thermal Expansion,” Mater. Res. Soc. Symp. - Proc., vol. 755, no. January 2006, pp. 17–29, 2003.
    [15] G. K.White, “Solids: Thermal expansion and contraction,” Contemp. Phys., vol. 34, no. 4, pp. 193–204, 1993.
    [16] J. S. O.Evans, “Negative thermal expansion materials,” Journal of the Chemical Society - Dalton Transactions, no. 19. pp. 3317–3326, 1999.
    [17] W.Miller, C. W.Smith, D. S.MacKenzie, andK. E.Evans, “Negative thermal expansion: A review,” J. Mater. Sci., vol. 44, no. 20, pp. 5441–5451, 2009.
    [18] T. A.Mary, J. S.Evans, T.Vogt, andA. W.Sleight, “Negative Thermal Expansion from 0 . 3 to 1050 Kelvin in ZrW2O8,” Science (80-. )., vol. 272, no. April, pp. 90–92, 1996.
    [19] M.VanSchilfgaarde, I. A.Abrikosov, andB.Johansson, “Origin of the invar effect in iron-nickel alloys,” Nature, vol. 400, no. 6739, pp. 46–49, 1999.
    [20] Xin Peng, Yangchun Rong, Longlong Fan, Kun Lin, He Zhu, Jinxia Deng, Jun Chen and Xianran Xing, “Cation deficiency effect on negative thermal expansion of ferroelectric PbTiO3,” Inorg. Chem. Front., vol. 2, no. 12, pp. 1091–1094, 2015.
    [21] S. C.Abrahams, S. K.Kurtz, andP. B.Jamieson, “Atomic displacement relationship to curie temperature and spontaneous polarization in displacive ferroelectrics,” Phys. Rev., vol. 172, no. 2, pp. 551–553, 1968.
    [22] T.Qi, I.Grinberg, andA. M.Rappe, “Correlations between tetragonality, polarization, and ionic displacement in PbTiO3-derived ferroelectric perovskite solid solutions,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 82, no. 13, pp. 1–5, 2010.
    [23] D. J.Singh, M.Ghita, M.Fornari, andS.V.Halilov, “Role of A -Site and B -Site Ions in Perovskite Ferroelectricity,” Ferroelectrics, vol. 338, no. 1, pp. 73–79, 2006.
    [24] Yijia Gu, Fei Xue, Shiming Lei, Tom T. A. Lummen, Jianjun Wang, Venkatraman Gopalan, and Long-Qing Chen, “Monoclinic phases arising across thermal inter-ferroelectric phase transitions,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 90, no. 2, pp. 1–10, 2014.
    [25] I.Grinberg andA. M.Rappe, “First principles calculations, crystal chemistry and properties of ferroelectric perovskites,” Phase Transitions, vol. 80, no. 4–5, pp. 351–368, 2007.
    [26] I.Grinberg, M. R.Suchomel, P. K.Davies, andA. M.Rappe, “Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations,” J. Appl. Phys., vol. 98, no. 9, 2005.
    [27] Jun Chen, Fangfang Wang, Qingzhen Huang, Lei Hu, Xiping Song, Jinxia Deng, Ranbo Yu & Xianran Xing,“Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3over a giant range,” Sci. Rep., vol. 3, pp. 1–5, 2013.
    [28] G.Kresse andS. C.Parker, “Ab initio calculation of the origin of the distortion of α-pbo,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 59, no. 13, pp. 8481–8486, 1999.
    [29] T.Oguchi andQ.Matter, “First-principles study of multiferroic oxides.”
    [30] Q.Tan, Q.Wang, andY.Liu, “Magnetic properties and spontaneous polarization of La-, Mn- and N-doped tetragonal BiFeO3: A first-principles study,” Materials (Basel)., vol. 11, no. 6, pp. 17–19, 2018.
    [31] F.Wang, L.Fan, Y.Ren, J.Chen, andX.Xing, “Bi-0 covalency in PbTi03-Biln03 with enhanced ferroelectric properties: Synchrotron radiation diffraction and first-principles study,” Appl. Phys. Lett., vol. 104, no. 25, pp. 1–5, 2014.
    [32] H.Wang, H.Huang, W.Lu, H. L. W.Chan, B.Wang, andC. H.Woo, “Theoretical prediction on the structural, electronic, and polarization properties of tetragonal B12ZnTiO6,” J. Appl. Phys., vol. 105, no. 5, 2009.
    [33] C. J.Stringer, T. R.Shrout, C. A.Randall, andI. M.Reaney, “Classification of transition temperature behavior in ferroelectric PbTiO3-Bi (Me′ Me″)O3solid solutions,” J. Appl. Phys., vol. 99, no. 2, 2006.
    [34] D. M.Stein, M. R.Suchomel, andP. K.Davies, “Enhanced tetragonality in (x)PbTiO 3-(1-x)Bi(B′B″) O 3 systems: Bi(Zn 3/4W 1/4)O 3,” Appl. Phys. Lett., vol. 89, no. 13, pp. 10–13, 2006.
    [35] J.Chen, K.Nittala, J. L.Jones, P.Hu, andX.Xing, “Structural evidence for the nonmonotonic trend of TCin tetragonal PbTiO3BiScO3solid solutions,” Appl. Phys. Lett., vol. 96, no. 25, pp. 13–16, 2010.
    [36] G.Master andS.Geowissenschaften, “Nanoscale structural phenomena in perovskite-type relaxor ferroelectrics studied by resonance Raman spectroscopy,” 2015.
    [37] I.Margaritescu, “Local Structure and Dynamics of the Ferroelectric studied by Raman Spectroscopy,” 2016.
    [38] Arun Kumar Yadav, Anita, Sunil Kumar, Anjali Panchwanee, V. Raghavendra Reddy, Parasharam M. Shirage, Sajal Biring and Somaditya Sen, “Structural and ferroelectric properties of perovskite Pb (1−x) (K 0.5 Sm 0.5 ) x TiO 3 ceramics,” RSC Adv., vol. 7, no. 63, pp. 39434–39442, 2017.
    [39] D.Raman-scattering, “(TO) PbTiO3 D.,” vol. 48, no. 14, pp. 160–167, 1993.
    [40] S.Sharma, R.Rai, D. A.Hall, andJ.Shackleton, “Nonlinear ferroelectric and dielectric properties of bi(Mg0.5Ti0.5)O3-PbTiO3perovskite solid solutions,” Adv. Mater. Lett., vol. 3, no. 2, pp. 92–96, 2012.
    [41] Denis SCHÜTZ and Klaus REICHMANN, “Complex bonding in perovskite ferroelectrics,” J. Ceram. Soc. Japan, vol. 122, no. 1424, pp. 231–236, 2014.
    [42] J.Chen, P.Hu, X.Sun, C.Sun, andX.Xing, “High spontaneous polarization in PbTi O3 -BiMe O3 systems with enhanced tetragonality,” Appl. Phys. Lett., vol. 91, no. 17, pp. 2005–2008, 2007.
    [43] S.Zhang, X.Wang, andL.Li, “Raman spectra and phase transition in (1-x)BiScO3-xPbTiO3nanopowders,” Ferroelectrics, vol. 450, no. 1, pp. 28–34, 2013.
    [44] D.Schütz, M.Deluca, W.Krauss, A.Feteira, T.Jackson, andK.Reichmann, “Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate,” Adv. Funct. Mater., vol. 22, no. 11, pp. 2285–2294, 2012.
    [45] I.Grinberg andA. M.Rappe, “The origin of non-monotonic T c trends in Bi-based ferroelectric perovskite solid solutions : Supplementary Information,” pp. 1–4.
    [46] Suminar Pratapa, Malik A. Baqiya, Istianah, Rina Lestari, Riyan Angela, “A Simple Dissolved Metals Mixing Method to Produce High- Purity MgTiO 3 Nanocrystals,” vol. 39, no. 2014, 2017.

    QR CODE