簡易檢索 / 詳目顯示

研究生: 吳宗哲
Tsung-Che Wu
論文名稱: 積體化氮化鎵發光二極體與光電晶體之先期實驗結果
Preliminary experimental results of integrated GaN-based LED and phototransistor
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
蘇忠傑
Jung-Chieh Su
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 135
中文關鍵詞: 積體化氮化鎵發光二極體光電晶體
外文關鍵詞: Integrated, GaN-based, LED, Phototransistor
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文使用商用氮化鎵LED晶圓,利用矽擴散(Silicon Diffusion)製程,選擇性的將部分最上層的p-AlGaN反轉成n-AlGaN,使其結構由p-i-n變成n-p-i-n結構,在同一片晶圓完成發光二極體、p-i-n結構光偵測器以及n-p-i-n結構光電晶體三種元件,並量測發光二極體的光電特性,以及兩種光偵測器的特性包括暗電流、外部量子效率、在不同偏壓下的響應率以及響應時間。
      首先評估發光二極體在此積體化製程下的特性量測結果。在電性量測中,發光二極體的啟動電壓約為3.1 V,串聯電阻約為182 Ω。光學特性中,發光二極體在電流為10 mA下的光輸出功率為3.2 mW。證明此積體化製程是成功相容的,並不影響發光二極體的光電特性。再來比較兩種同時製作的光偵測器。p-i-n結構光偵測器的外部量子效率峰值波長約為384 nm,其外部量子效率值在不同逆向偏壓0 V、1.5 V、3 V、5 V、7 V下分別為44.3 %、51.6 %、56.1 %、56.9 %、59.5 %。n-p-i-n光電晶體元件的外部量子效率峰值波長約為384 nm,其外部量子效率值在不同逆向偏壓0 V、1.5 V、3 V、5 V、7 V下分別為32.3 %、37.3 %、39.8 %、47.9 %、74.7 %。n-p-i-n光電晶體元件逆向偏壓在5 V之前與p-i-n光偵測器有著相似的特性,並擁有p-i-n光偵測器響應速度快的優點。而元件在逆向偏壓7 V時開始有明顯的電流增益,使得n-p-i-n光電晶體的響應率與外部量子效率都高於p-i-n光偵測器,因此更適合做為UV光偵測器。


    This paper used commercial GaN LED wafers by using silicon diffusion process. Three components of light-emitting diode, p-i-n structured photodetector and n-p-i-n structured phototransistor on the same wafer. The characteristics of light-emitting diodes are measured. The characteristics of two photodetectors included dark current, external quantum efficiency, responsivity under different bias voltages, and response time.
    First, the measurement results of the light-emitting diode. In the electrical measurement, the turn on voltage of the light-emitting diode is about 3.1 V, and the series resistance is about 182 Ω. In the optical characteristics, the light output power of the light-emitting diode at a current of 10 mA is 3.2 mW. It’s proving that this integrated process is successfully compatible.
    The external quantum efficiency of p-i-n structure photodetector has a peak wavelength about 384 nm, when the bias voltage VCE is 0 V, 1.5 V, 3 V, 5 V, 7 V, the EQE of the peak is 44.3 %, 51.6 %, 56.1 %, 56.9 %, 59.5 % respectively. The external quantum efficiency of n-p-i-n structure phototransistor has a peak wavelength about 384 nm, when the bias voltage VCE is 0 V, 1.5 V, 3 V, 5 V, 7 V, the EQE of the peak is 32.3 %, 37.3 %, 39.8 %, 47.9 %, 74.7 % respectively.
    The reverse bias of n-p-i-n phototransistor device has similar characteristics to p-i-n photodetector before 5 V, and has the advantage of fast response speed of p-i-n photodetector. The responsivity and external quantum efficiency of n-p-i-n phototransistor are higher than p-i-n photodetector, so it is more suitable as a UV photodetector.

    摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 導論 1 1.1 緒論 1 1.2 文獻回顧與研究動機 3 1.3 市售UV偵測器介紹 12 第二章 光偵測器理論 16 2.1 光偵測器工作原理 16 2.2 光偵測器架構分類 19 2.2.1 p-n接面光二極體(p-n Photodiode) 20 2.2.2 p-i-n接面光電二極體(p-i-n photodiode) 23 2.2.3 蕭基位障光電二極體(Schottky Barrier Photodiode) 27 2.2.4 雪崩型光二極體(Avalanche Photodiode) 29 2.2.5異質接面光二極體(Heterojunction Photodiode) 33 2.2.6 光電晶體(Phototransistor) 35 2.2.7 光導體光偵測器(Photoconductive Detector) 37 2.3 光偵測器檢測參數 40 2.3.1 量子效率(Quantum Efficiency, QE) 40 2.3.2 響應率(Responsivity, R) 43 2.3.3 響應速度(Response Speed) 44 2.3.4 拒斥比(Rejection Ratio) 45 第三章 元件設計與製程 46 3.1 元件設計 46 3.2 元件製程 48 3.2.1 活化製程(Activation) 50 3.2.2 絕緣製程(Isolation) 51 3.2.3 高台圖型製程(MESA) 53 3.2.4矽擴散製程(Silicon diffusion) 55 3.2.5 二氧化矽絕緣層沉積 56 3.2.6 ITO透明導電層沉積 57 3.2.7 N&P型電極沉積 58 第四章 儀器介紹 59 4.1 製程儀器介紹 59 4.1.1 快速升溫退火爐(Rapid Thermal Annealing, RTA) 59 4.1.2 電漿輔助化學氣相沉積系統(Plasma-Enhanced Chemical Vapor Deposition, PECVD) 60 4.1.3 旋轉塗佈機(Spin Coater) 61 4.1.4 光罩對準機(Mask Aligner) 62 4.1.5 感應耦合電漿式離子蝕刻機(ICP-RIE) 64 4.1.6 電子束蒸鍍機(E-beam Evaporator) 66 4.1.7 射頻濺鍍機(RF Sputter) 67 4.2量測儀器介紹 69 4.2.1 表面輪廓儀(Alpha Step) 69 4.2.2 I-V與L-I量測系統 70 4.2.3 太陽模擬光源(Solar Simulator)I-V量測 71 4.2.4 光激發螢光(Photoluminescence, PL)量測系統 73 4.2.5 外部量子效率量測系統(Incident Photon to Electron Conversion Efficiency, IPCE) 74 4.2.6 響應時間(Response Time)量測系統 76 第五章 實驗結果 77 5.1 氮化鎵LED基本光電特性 79 5.2 氮化鎵p-i-n光偵測器量測結果與討論 83 5.2.1 氮化鎵p-i-n光偵測器暗電流量測 83 5.2.2 氮化鎵p-i-n光偵測器外部量子效率量測 85 5.2.3 氮化鎵p-i-n光偵測器響應速度量測 88 5.3 氮化鎵n-p-i-n光電晶體量測結果與討論 94 5.3.1 氮化鎵n-p-i-n光電晶體暗電流量測 94 5.3.2氮化鎵n-p-i-n光電晶體外部量子效率量測 97 5.3.3氮化鎵n-p-i-n光電晶體響應速度量測 100 第六章 結論與未來展望 110 6.1 結論 110 6.2 未來展望 114 參考文獻 115

    [1] E.Fred Schubert (2006). Light-emitting diode. Cambridge University Press. New York.
    [2] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, & S. L. Wu (2008). GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny–GaN buffer layer. IEEE J. Quantum Electron, 44(10), 916–921.
    [3] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka & M. Leszczynski (2009). Optimization of InGaN–GaN MQW photodetector structures for high-responsivity performance. IEEE J. Quantum Electron, 45(6), 617–622.
    [4] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, S. Krishnankutty (1997). High speed, low noise ultraviolet photodetectors based on GaN structures. Appl. Phys. Lett., 71, 2154.
    [5] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu & M. Razeghi (1996). AlGaN ultraviolet photoconductors grown on sapphire. Appl. Phys. Lett., 68, 2100.
    [6] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, K. Evans (2006). GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett., 89, 011112.
    [7] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, & H. Temkin, Visible-blind GaN Schottky barrier detectors grown on Si(111). Appl. Phys. Lett., 71, 2334.
    [8] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra (1999). High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN. Appl. Phys. Lett., 75, 247.
    [9] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, & M. Razeghi (1999). High-quality visible-blind AlGaN pin photodiodes. Appl. Phys. Lett., 74, 1171.
    [10] Y. Zhang, S.-C. Shen, H. J. Kim, S. Choi, J.-H. Ryou, R. D.Dupuis, & B. Narayan (2009). Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates. Appl. Phys. Lett., 94, 221109.
    [11] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, S. Verghese (1999). GaN avalanche photodiodes grown by hydride vaporphase epitaxy. Appl. Phys. Lett., 75, 3485.
    [12] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, I. T. Ferguson (2000). Low dark current GaN avalanche photodiodes. IEEE J. Quantum Electron., 36(12), 1389-1391.
    [13] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, K. Evans (2006). GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett., 89, 011112.
    [14] S-C. Shen, Y. Zhang, D. Yoo, J-B. Limb, J-H. Ryou, P. D. Yoder, & R. D. Dupuis (2007). Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD. IEEE Photon. Technol. Lett., 19(21), 1744-1746.
    [15] Shyh-Chiang Shen, Tsung-Ting Kao, Hee-Jin Kim, Yi-Che Lee, Jeomoh Kim, Mi-Hee Ji, Jae-Hyun Ryou, Theeradetch Detchprohm, Russell D. Dupuis (2015). GaN/InGaN avalanche phototransistors. Appl. Phys. Express, 8, 032101.
    [16] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, & Holly Marsh (1998). High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 73(7). 978-980. 
    [17] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, & I. Akasaki (2001). Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. Jpn. J. Appl. Phys., 40, 498.
    [18] M. L. Lee, J. K. Sheu, Yung-Ru Shu (2008). Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio. Appl. Phys. Lett., 92, 053506.
    [19] Tsung-Ting Kao, Jeomoh Kim, Theeradetch Detchprohm, Russell D. Dupuis, Shyh-Chiang Shen (2016). High-Responsivity GaN/InGaN Heterojunction Phototransistors. IEEE Photon Technol Lett, 28(19), 2035-2038.
    [20] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li (2017). Optimization of GaN/InGaN Heterojunction Phototransistor. IEEE Photon Technol Lett, 29(4), 373-376.
    [21] Pinghui S. Yeh, Teng-Po Hsu, Yen-Chieh Chiu, Sian Yang, Cheng-You Wu, Jung-Shan Liou (2017). III-Nitride Phototransistors Fabricated on a Light-Emitting-Diode Epitaxial Wafer. IEEE Photonics Technology Letters, 29(19), 1679-1682.
    [22] Kwai Hei Li, Yuk Fai Cheung, Wai Yuen Fu, Kenneth Kin-Yip Wong, & Hoi Wai Choi (2018). Monolithic Integration of GaN-on-Sapphire Light-Emitting Diodes, Photodetectors, and Waveguides. IEEE Journal of Selected Topics in Quantum Electronics., 24, 3801706.
    [23] M. L. Lee, J. K. Sheu, & Yung-Ru Shu (2008). Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio. Appl. Phys. Express., 92, 053506.
    [24] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, & Holly Marsh (1998). High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Express., 73, 7. 
    [25] Ariane L. Beck, Bo Yang, S. Wang, Charles J. Collins, Joe C. Campbell, Jerry M. Woodall (2004). Quasi-Direct UV/Blue GaP Avalanche Photodetectors. IEEE Journal of Quantum Electronics., 40, 1695.
    [26] Xiaping Chen, Huili Zhu, Jiafa Cai, Zhengyun Wua (2007). High-performance 4H-SiC-based ultraviolet p-i-n photodetector. Journal of Applied Physics., 102, 024505.
    [27]白世南。光電工程概論.ppt。建國科技大學電子工程系。
    [28]劉博文(2005)。光電元件導論。台北市:全威圖書有限公司。
    [29] S. O. Kasap (2001). Optoelectronics and Photonics: Principles and Practices. Peason Education Interational.
    [30] S. Nakamura, T. Mukai, M. Senoh, & N. Iwasa (1992). Thermal Annealing Effects on P-Type Mg-Doped GaN Films. Japanese Journal of Applied Physics., 31, 139-142.
    [31] H. Jiang, T. Egawa, H. Ishikawa (2006). AlGaN solar-blind Schottky photodiodes fabricated on 4H-SiC. IEEE Photon. Technol. Lett., 18(12), 1353-1355.
    [32] J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee (2010). Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells. IEEE Electron Device Lett., 31(10), 1140-1142.
    [33]施敏(2002)。半導體元件物理與製作技術。國立交通大學出版社。
    [34]林明勳(2013).自動化觸控面板製造品值預測模式之研究(碩士論文).國立中山大學資訊管理學系。
    [35]甯榮椿(2010).使用感應耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究(碩士論文).國立清華大學材料科學與工程學系。
    [36]王婉瑄(2015).以奈米壓印微影技術研製氮化鎵分佈回饋式雷射(碩士論文).國立台灣科技大學電子工程所。
    [37]林士淵(2000).電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析(碩士論文).國立成功大學機械工程學系。
    [38]廖彥超(2011).有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響(碩士論文).國立台灣科技大學電子工程所。

    QR CODE