簡易檢索 / 詳目顯示

研究生: 阮大軒
Da-Hsuan Ruan
論文名稱: 鋼筋混凝土柱構件非線性分析之 軸力雙軸彎矩(PMM)塑鉸設定研究
Research of (PMM Interaction) Plastic Hinges Setting of Reinforced Concrete Members in Nonlinear Analysis
指導教授: 潘誠平
Chan-Ping Pan
口試委員: 郭世榮
Shi-Rong Guo
邱建國
Jian-Guo Qiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 160
中文關鍵詞: 有限元素法鋼筋混凝土柱塑鉸設定軸力雙軸彎矩互制行為側推分析
外文關鍵詞: Reinforced Concrete Column, PMM Interaction
相關次數: 點閱:241下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 理想背骨曲線(Backbone Curve)係為鋼筋混土柱構件塑性行為發展依據,在此所稱理想背骨曲線係指鋼筋混凝土柱構件歷經撓曲降伏後,發生塑性發展至核心混凝土碎裂,甚至鋼筋發生挫曲最後達崩壞狀態的迴圈反應。對前述行為的定義,係為數據模型執行非線性分析(側推分析)前的必要設定,其目的係為得到側推分析後的建物容量譜,以為建物耐震容量評估的依據。隨科技的進展,為執行上述程序,坊間常見套裝軟體係有ETABS(亦為本篇論文研究所使用的套裝軟體),於此套裝軟體,對於前揭背骨曲線的定義,係參照FEMA356將其行為簡化以A~E點模擬,並配合FEMA356表6-7提供默認塑鉸參數a~c,以模擬鋼筋混凝土柱構件的塑性發展。然對於上述定義雖屬美國法規建議,仍有相當聲浪質疑其適用性,另考量鋼筋混凝土柱構件於實際建物中的塑性行為判斷困難,故有眾多學者投注於此領域專研。隨相當論文研究的回饋,目前國內係有TEASPA輔助程式幫助計算塑鉸參數(a~c),其最新版次3.1係於民國108年1月經內政部營建署審認。
    TEASPA3.1中為模擬高樓建築的軸力變化,係建議設定11組軸力變化,另為模擬建物的不規則性質,係透過程式默認軸力雙軸彎矩塑鉸(PM_2 M_3)設置,配合輔助程式將其拆為2個軸力單軸彎矩塑鉸(PM_2及PM_3)替之。然考慮SERCB曾於使用手冊提及,程式雖供使用者設置多重塑鉸於同一斷面,卻有主控及捨棄機制。故於本篇論文主要係提供軸力雙軸彎矩塑鉸(PM_2 M_3)計算方式建議,並驗證塑鉸主控與捨棄機制存在與否


    In order to access the drift capacity models of buildings, defining idealized backbone models in members is a key procedure before executing a nonlinear analysis (Pushover analysis). With the progression in technology, ETABS is one of the productive finite element programs nowadays which is also the program used to make the research in this thesis. Although there are multiple types of default hinge properties in ETABS based on the FEMA356 tables for modeling nonlinear behaviors, there are still issues needed to be discussed. With accumulation in researches, suggested empirical models based on PEER database have been established; moreover, a method for calculating plastic hinge parameters for reinforced concrete column members has been suggested. Based on the calculating method, an assistant program called TEASPA was updated and even authorized by Construction and Planning Agency, Ministry of the Interior in Taiwan, in January, 2019.
    Considering the concept of that plastic hinges controlling and disserting system might exist in ETABS, this thesis mainly aims to suggest a method for calculating the (PMM interaction) plastic hinges factors; besides, to verify whether disserting system discussed above actually exists or not.

    中文摘要--------------------------------------------------I 英文摘要-------------------------------------------------II 誌謝----------------------------------------------------III 目錄-----------------------------------------------------IV 表目錄-------------------------------------------------VIII 圖目錄---------------------------------------------------XI 第壹章、緒論----------------------------------------------1 1.1 前言---------------------------------------------1 1.2 研究動機及目的------------------------------------1 1.3 研究方法及內容------------------------------------2 第貳章、文獻回顧------------------------------------------4 2.1 前言----------------------------------------------4 2.2 塑鉸及塑鉸長度定義---------------------------------4 2.3 塑鉸長度實體試驗(Sungjing Bae)---------------------5 2.4 混凝土壓應變法-------------------------------------6 2.5 影響塑鉸範圍參數探討--------------------------------8 2.5.1 軸力比影響-------------------------------------8 2.5.2 長徑比影響-------------------------------------9 2.5.3 縱向鋼筋量影響---------------------------------9 2.6 塑鉸長度經驗公式建議及驗證--------------------------10 2.7 鋼筋混凝土柱破壞行為-------------------------------11 2.7.1 剪力破壞行為----------------------------------13 2.7.1.1 剪力破壞層間位移率經驗公式建議--------------13 2.7.2 軸力破壞行為----------------------------------14 2.7.2.1 剪力破壞角定義----------------------------15 2.7.2.2 縱向鋼筋塑性強度定義-----------------------15 2.7.2.3 剪力摩擦係數定義--------------------------17 2.7.2.4 軸力破壞層間位移率經驗公式建議--------------19 2.8 破壞準則背骨曲線適用性驗證--------------------------21 2.8.1 2003年震動台試驗------------------------------21 2.8.1.1 平面構架及地震能量設定---------------------21 2.8.1.2 試驗結果觀察------------------------------21 2.8.2 2008年震動台試驗------------------------------25 2.8.2.1 平面構架及地震能量設定---------------------25 2.8.2.2 試驗結果觀察------------------------------27 2.8.2.3 FEMA過於保守證明--------------------------29 2.9 鋼筋混凝土柱超強度發展------------------------------30 2.9.1 各參數對超額彎矩強度係數發展影響----------------31 2.9.2 超額彎矩強度係數通式建議-----------------------32 第叁章、鋼筋混凝土柱構件塑鉸參數計算及設定------------------33 3.1 FEMA356參數評估表法-------------------------------33 3.2 TEASPA3.1評估法----------------------------------34 3.3 塑鉸設定程序(TEASPA3.1)---------------------------36 3.4 軸力雙軸彎矩參數計算(權衡係數法)--------------------37 第肆章、數據建模及案例分析---------------------------------39 4.1 塑鉸主控及捨棄證明---------------------------------39 4.1.1 建模設定--------------------------------------40 4.1.2 塑鉸參數計算及設定-----------------------------40 4.1.3 側推結果觀察----------------------------------41 4.2 斜向塑鉸位移發展驗證---------------------------------42 4.2.1 建模設定--------------------------------------42 4.2.2 塑鉸參數計算及設定-----------------------------43 4.2.3 側推結果觀察----------------------------------43 4.3 權衡係數法適用性證明-------------------------------44 4.3.1 建模設定--------------------------------------44 4.3.2 塑鉸參數計算及設定-----------------------------46 4.3.3 側推結果觀察----------------------------------48 第伍章、結論與建議----------------------------------------49 5.1 結論-------------------------------------------49 5.2 建議-------------------------------------------53 參考文獻------------------------------------------------54

    [1]Baker, A. L. L.(1964)「Inelastic Hyperstatic Frame Analysis Flexural Mechanics of Reinforced Concrete」,American Concrete Institute(ACI), Farmington Hills, MI, 1964, pp85-142。
    [2]Corley, W. G.(1966)「Rotational Capacity of Hinge Regions in Reinforced Concrete Beams」,Journal of Structural Division, ASCE, V.92, No.ST5, 1966, pp121-146。
    [3]Mattock, A. H.(1964)「Rotational Capacity of Hinge Regions in Reinforced Concrete Beams」,Journal of Structural Division, ASCE, V.93, No.ST2, 1967, pp519-522。
    [4]Park, R, Priestley, M. J, N, and Gill, W.D.(1982)「Ductility of Square Confined Concrete Columns」,Journal of Structural Division, ASCE, V.108, No.ST4, 1982, pp929-950。
    [5]Paulay, T. and Priestley, M. J, N.(1992)「Seismic Design of Reinforced Concrete and Masonry Buildings」,John Wiley and Sons, NY, 1992, pp767。
    [6]Sheikh, S. A. and Khoury, S. S.(1993)Confined Concrete Columns with Stubs」,American Concrete Institute(ACI):Farmington Hill, MI, 1993, pp414-431。
    [7]FEMA356(2000)「Prestandard and Commentary for the Seismic Rehabilitation of Buildings FEMA Publication No.356」,American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C.。
    [8]Panagiotakos, T. B. and Fradis, M. N.(2001)「Deformation of Reinforced Concrete Members at Yielding and Ultimate」American Concrete Institute(ACI):Farmington Hill, MI, 2001, pp98。
    [9]Lynn, A.C.(2001)「Seismic Evaluation of Existing Reinforced Concrete Building Columns」Ph.D. Thesis, Department of Civil and Environmental Engineering, University of California, Berkeley, CA.。
    [10]Elwood, K. J. and Moehle J. P.(2002)。「Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frame」,Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, CA.。
    [11]Pacific Earthquake Engineering Research Center(2003)「Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frame」,PEER Nov.2003。
    [12]Tsai, W. L.(2003)「Identification of Building Failure Mechanism During 1999 Chi-Chi Earthquake and Retrofit Recommendations」,Chan’s Arch Book: Taipei.
    [13]Berry, M, Parrish, M, and Eberhard, M,(2004)「PEER Structural Performance Database User’s Manual」,Pacific Earthquake Engineering Research Center Report, University of California, Berkeley, CA.。
    [14]Elwood, K. J. and Moehle J. P.(2005)「Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement」,Earthquake Spectra 21 2005; 21(1), pp71-89。
    [15]Bae, S.(2005)「Seismic Performance of Full-Scale Reinforced Concrete Columns」,Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, 2005, pp312。
    [16]Elwood, K. J. and Moehle J. P.(2006)「Axial Capacity Model for Shear-Damaged Columns」,ACI Structural Journal; 102(4), pp578-587。
    [17]Sezen H. and Moehle J. P.(2006)「Seismic Tests of Concrete Columns with Light Transverse Reinforcement」,ACI Structural Journal 2006; 103(6), pp842-849。
    [18]American Society of Civil Engineers(2006)「Seismic Rehabilitation of Existing Building (ASCE41-06)」,American Society of Civil Engineers, Reston Virginia, 2006。
    [19]內政部(2006)「建築物耐震設計規範及解說」,台北市。
    [20]葉祥海、蔡益超、宋裕祺、謝尚賢、盧明德、黎益肇(2006)「鋼筋混凝土建築物耐震能力評估之案例示範」,內政部營建署及內政部建築研究所。
    [21]Zhu L, Elwood K. J, and Haukaas T.(2007)「Classification and Seismic Safety Evaluation of Existing Reinforced Concrete Columns」Journal of Structure Engineering(ASCE)2007; 133(9), pp1316-1330。
    [22]American Society of Civil Engineers(2007)「Seismic Rehabilitation of Buildings」,ASCE/SEI41-06, Reston, VA.
    [23]Elwood K. J. and Moehle J. P.(2008)「Dynamic Collapse Analysis for a Concrete Frame Sustaining Shear and Axial Failure,Earthquake Engineering and Structural Dynamics 2008; DOI:10.1002/eqe.787。
    [24]Bae S. and Bayrak O.(2008)「Plastic Hinge Length of Reinforced Concrete Columns」,ACI Structural Journal 2008,105-S28。
    [25]Elwood K. J. and Moehle J. P.(2009)「Collapse of a Nonductile Concrete Frame Shaking Table Tests」,Earthquake Engineering and Structural Dynamics 2009; 38, pp205-224。
    [26]交通部(2009)「公路橋樑耐震設計規範」,台北市。
    [27]ACI Committee 318.(2011)「Building Code Requirements for Structural Concrete」,American Concrete Institute(ACI):Farmington Hill, MI, 2011。
    [28]內政部營建署(2011)「混凝土結構設計規範」,台北市。
    [29]蕭輔沛、鐘立來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、趙宜峰、翁樸文、楊耀昇、褚有倫、涂耀賢、柴駿輔、黃世建(2013)「校舍結構耐震評估與補強技術手冊第三版」,國家地震工程研究中心,NCREE-08-023。
    [30]CSI. ETABS「ETABS2016 Integrated Building Design Software User‘s Guide」,Computers and Structures, Inc., U.S.A, 2016。
    [31]毆昱辰、蔡東均(2018)「鋼筋混凝土柱最大可能彎矩強度」,結構工程期刊,第三十三卷,第一期,pp29-67。
    [32]邱聰智、蕭輔沛、鐘立來、翁建煌、李其航、劉建均、薛強、何郁珊、陳幸均、楊智斌、翁樸文、沈文成、涂耀賢、楊耀昇、李翼安、葉勇凱、黃世建(2018)「台灣結構耐震評估側推分析法TEASPA V3.1」,國家地震工程研究中心,NCREE-18-015。

    QR CODE