簡易檢索 / 詳目顯示

研究生: 劉夢蝶
Meng Tieh Liu
論文名稱: 以混合自組裝單分子膜修飾電極與通道表面對有機薄膜電晶體電性影響研究
The Effect of Modification of Electrode and Channel Surfaces with Mixed Self assembled Monolayers on The Performance of Organic Thin Film Transistors
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 陶雨台
Yu-Tai Tao
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 有機薄膜電晶體自組裝單分子薄膜表面修飾
外文關鍵詞: Organic thin-film transistors, Self assembled monolayer, Surface modification
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究,主要探討以自組裝單分子薄膜改質有機薄膜電晶體元件中不同的表面區域對於元件電性的影響。使用電晶體的結構為頂部閘極與底部接觸結構(Top-gate, Bottom contact),其中ITO源極( Source )、汲極( Drain )與通道(Channel)上,皆以混合自組裝單分子薄膜調控表面特性。選擇兩種不同對位官能基之苯甲酸( Benzoic acid )作為混合自組裝單分子之材料,透過不同官能基之偶極矩改變ITO電極。於結果中發現,成長混合不同尾端官能基之苯甲酸溶液,修飾ITO電極,可將功函數調控至接近P型半導體的最高佔據分子軌道(HOMO),此方法可以使電晶體達到比較高的遷移率。此外,使用矽烷(Silane)的自組裝單分子薄膜,可同時修飾ITO電極與通道玻璃區域,探討通道上有無SAMs對於元件效能之影響,實驗結果發現通道改質對於元件效能影響較為顯著。


    In this study, we utilized mixed self-assembled monolayers to modify the different regions of the device substrate and discuss the impact of these modifications on the electric characteristic of the organic thin-film transistors(OTFTs). A top-gate, bottom-contact device was used with the ITO source-drain electrodes and the channel region modified with mixed SAM. We show that passivating a mixed SAM which consists of two kinds of benzoic acid which contains different dipole moment constituent over ITO electrodes surface for changing the dipole moment and work function on ITO electrodes by a different functional group of SAMs. We found that when the work function of ITO electrodes is tuned to be close to the highest occupied molecular orbital (HOMO) level of p-type semiconductor by the mixed BA-SAMs method, a higher mobility than that on unmodified ITO electrodes can be reached. On the other hand, when mixed silane SAMs having the same function groups as the benzoic acid SAMs was used to modify the ITO electrodes and channel at the same time, the SAMs on the channel area has more impact on the electric property than the SAM on the electrode in a transistor.

    中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機 第二章 有機電晶體簡介 2.1有機電晶體發展 2.2有機半導體材料介紹 2.3有機半導體傳遞機制 2.4薄膜電晶體概論 2.4.1薄膜電晶體操作原理 2.4.2薄膜電晶體之重要參數 2.5以自組裝單分子薄膜應用於有機薄膜電晶體之相關文獻 2.5.1自組裝單分子層薄膜簡介 2.5.2自組裝單分子薄膜成長方式 2.5.3自組裝單分子薄膜成長機制 2.5.4自組裝單分子薄膜應用於有機光電元件之文獻 第三章 元件製備與量測分析系統 3.1 儀器設備 3.2 實驗藥品與相關用品 3.3 實驗步驟 3.3.1基板圖案化流程 3.3.2自組裝單分子薄膜成長 3.3.3溶液配製 3.3.4有機薄膜電晶體之製備 3.4 元件電性之量測與分析 3.4.1半導體量測儀(Semiconductor Device Parameter Analyzer) 3.4.2電感電容阻抗量測儀 (Precision LCR meter) 3.4.3接觸角量測儀 (Contact Angle) 3.4.4單點式功函數量測儀 (Single point Kelvin Probe Measurement) 3.4.5原子力顯微鏡 (Atomic Force Microscope, AFM) 3.4.6 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 3.4.7 X光繞射儀 (X-ray Diffraction, XRD) 第四章 實驗結果與討論 4.1苯甲酸類單分子薄膜改質底部接觸之汲極與源極表面 4.1.1苯甲酸類(Benzoic acids)自組裝單分子薄膜之選擇性 4.1.2已改質之ITO電極接觸角與元素分析 4.1.3已改質之ITO電極功函數分析 4.2 矽烷類單分子薄膜改質底部接觸之汲極、源極與通道表面 4.2.1已改質之ITO電極與通道之接觸角與元素分析 4.2.2已改質ITO電極之功函數分析 4.3探討此兩種表面改質對於底部閘極與底部接觸元件之影響 4.3.1混合苯甲酸類SAM改質ITO電極 4.3.2混合矽烷基類SAM改質ITO汲極、源極與玻璃通道 第五章 結論與未來展望 參考文獻

    參考文獻
    1 Reese, C., Roberts, M., Ling, M. M. & Bao, Z. Organic thin film transistors. Materials today 7, 20-27 (2004).
    2 Yuan, Y., Giri, G., Ayzner, A. L., Zoombelt, A. P., Mannsfeld, S. C., Chen, J., Nordlund, D., Toney, M. F., Huang, J. & Bao, Z. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature communications 5, 3005 (2014).
    3 C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau & Alan G. MacDiarmid. Electrical conductivity in doped polyacetylene. Physical review letters 39, 1098 (1977).
    4 Eslamian, M. Inorganic and organic solution-processed thin film devices. Nano-micro letters 9, 3 (2017).
    5 Klauk, H. Organic thin-film transistors. Chemical Society Reviews 39, 2643-2666 (2010).
    6 Sharma, S., Jain, K. K. & Sharma, A. Solar cells: in research and applications—a review. Materials Sciences and Applications 6, 1145 (2015).
    7 Park, J.-S., Chae, H., Chung, H. K. & Lee, S. I. Thin film encapsulation for flexible AM-OLED: a review. Semiconductor science and technology 26, 3 (2011).
    8 Nketia-Yawson, B. & Noh, Y. Y. Organic thin film transistor with conjugated polymers for highly sensitive gas sensors. Macromolecular Research 25, 489-495 (2017).
    9 Fiore, V., Battiato, P., Abdinia, S., Jacobs, S., Chartier, I., Coppard, R., Klink, G., Cantatore, E., Ragonese, E. & Palmisano, G. An integrated 13.56-MHz RFID tag in a printed organic complementary TFT technology on flexible substrate. IEEE Transactions on Circuits and Systems I: Regular Papers 62, 1668-1677 (2015).
    10 Gruber, M., Schürrer, F. & Zojer, K. Relation between injection barrier and contact resistance in top-contact organic thin-film transistors. Organic Electronics 13, 1887-1899 (2012).
    11 Campbell, I. H., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N. & Ferraris, J. P. Controlling charge injection in organic electronic devices using self-assembled monolayers. Applied Physics Letters 71, 3528-3530 (1997).
    12 Liu, C., Xu, Y. & Noh, Y. Y. Contact engineering in organic field-effect transistors. Materials Today 18, 79-96 (2015).
    13 Tung, R. T. The physics and chemistry of the Schottky barrier height. Applied Physics Reviews 1, 011304 (2014).
    14 Campbell, I. H., , Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N. & Ferraris, J. P. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Physical Review B 54, R14321-R14324 (1996).
    15 Kim, J., Rim, Y. S., Liu, Y. S., Serino, A. C., Thomas, J. C., Chen, H., Yang, Y. & Weiss, P. S. Interface control in organic electronics using mixed monolayers of carboranethiol isomers. Nano letters 14, 2946-2951 (2014).
    16 Kim, S. H., Lee, J., Park, N., Min, H., Park, H., Kim, D. H. & Lee, H. S. Impact of energetically engineered dielectrics on charge transport in vacuum-deposited bis (triisopropylsilylethynyl) pentacene. The Journal of Physical Chemistry C 119, 28819-28827 (2015).
    17 Jadhav, S. A. Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Central European Journal of Chemistry 9, 369-378 (2011).
    18 Ulman, A. Formation and structure of self-assembled monolayers. Chemical reviews 96, 1533-1554 (1996).
    19 Shockley, W. The Theory of p‐n Junctions in Semiconductors and p‐n Junction Transistors. Bell System Technical Journal 28, 435-489 (1949).
    20 Kahng, D. & Atalla, M. IRE solid-state devices research conference. Carnegie Institute of Technology, Pittsburgh, PA (1960).
    21 Wanlass, F. M. & Sah, C. T. in Semiconductor Devices: Pioneering Papers 637-638 (1991).
    22 Pope, M., Kallmann, H. & Magnante, P. Electroluminescence in organic crystals. The Journal of Chemical Physics 38, 2042-2043 (1963).
    23 Audenaert, M., Gusman, G. & Deltour, R. Electrical conductivity of I 2-doped polyacetylene. Physical Review B 24, 7380 (1981).
    24 Tsumura, A., Koezuka, H. & Ando, T. Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 49, 1210-1212 (1986).
    25 Barbe, D. & Westgate, C. Surface state parameters of metal-free phthalocyanine single crystals. Journal of Physics and Chemistry of Solids 31, 2679-2687 (1970).
    26 Wang, C. H., Hsieh, C. Y. & Hwang, J. C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Advanced Materials 23, 1630-1634 (2011).
    27 胡文平. 有机场效应晶体管. 科学出版社 (2011).
    28 林芷瑜, 劉振良. 有機高分子材料之電子與半導體特性. 化工 第64卷 第3期 (2017).
    29 Baeg, K. J., Caironi, M. & Noh, Y. Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Advanced Materials 25, 4210-4244 (2013).
    30 Ong, B. S., Wu, Y., Liu, P. & Gardner, S. High-performance semiconducting polythiophenes for organic thin-film transistors. Journal of the American Chemical Society 126, 3378-3379 (2004).
    31 Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J. R., Dötz, F., Kastler, M. & Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679 (2009).
    32 Ha, T.-J., Sonar, P., Singh, S. P. & Dodabalapur, A. Characteristics of high-performance ambipolar organic field-effect transistors based on a diketopyrrolopyrrole-benzothiadiazole copolymer. IEEE Transactions on electron devices 59, 1494-1500 (2012).
    33 Baeg, K. J., Kim, J., Khim, D., Caironi, M., Kim, D. Y., You, I. K., Quinn, J. R., Facchetti, A. & Noh, Y. Y. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. ACS applied materials & interfaces 3, 3205-3214 (2011).
    34 Fan, J., Yuen, J. D., Wang, M., Seifter, J., Seo, J. H., Mohebbi, A. R., Zakhidov, D., Heeger, A. & Wudl, F. High‐Performance Ambipolar Transistors and Inverters from an Ultralow Bandgap Polymer. Advanced materials 24, 2186-2190 (2012).
    35 Le Comber, P. & Spear, W. Electronic transport in amorphous silicon films. Physical Review Letters 25, 509 (1970).
    36 Bigelow, W., Pickett, D. & Zisman, W. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1, 513-538 (1946).
    37 Gun, J. & Sagiv, J. On the formation and structure of self-assembling monolayers: III. Time of formation, solvent retention, and release. Journal of colloid and interface science 112, 457-472 (1986).
    38 Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 105, 4481-4483 (1983).
    39 Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 105, 1103-1170 (2005).
    40 Ulman, A. An introduction to ultrathin films. From Langmuir-Blodgett to Self-Assembly (New York: Academic) (1991).
    41 Zhao, X. & Kopelman, R. Mechanism of organosilane self-assembled monolayer formation on silica studied by second-harmonic generation. The Journal of Physical Chemistry 100, 11014-11018 (1996).
    42 Raman, A. & Gawalt, E. S. Self-assembled monolayers of alkanoic acids on the native oxide surface of SS316L by solution deposition. Langmuir 23, 2284-2288 (2007).
    43 Tao, Y. T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. Journal of the American Chemical Society 115, 4350-4358 (1993).
    44 Tao, Y. T., Lee, M. T. & Chang, S. C. Effect of biphenyl and naphthyl groups on the structure of self-assembled monolayers: packing, orientation, and wetting properties. Journal of the American Chemical Society 115, 9547-9555 (1993).
    45 Jedaa, A., Burkhardt, M., Zschieschang, U., Klauk, H., Habich, D., Schmid, G. & Halik, M. The impact of self-assembled monolayer thickness in hybrid gate dielectrics for organic thin-film transistors. Organic Electronics 10, 1442-1447 (2009).
    46 Schmaltz, T., Amin, A. Y., Khassanov, A., Meyer‐Friedrichsen, T., Steinrück, H. G., Mageri, A., Segura, J. J., Voitchovsky, K., Stellacci, F. & Halik, M. Low-Voltage Self-Assembled Monolayer Field-Effect Transistors on Flexible Substrates. Advanced Materials 25, 4511-4514 (2013).
    47 Obata, S. & Shimoi, Y. Control of molecular orientations of poly (3-hexylthiophene) on self-assembled monolayers: molecular dynamics simulations. Physical Chemistry Chemical Physics 15, 9265-9270 (2013).
    48 Bock, C., Pham, D. V., Kunze, U., Käfer, D., Witte, D. & Wöll, C. Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes. Journal of Applied Physics 100, 114517 (2006).
    49 Kymissis, I., Dimitrakopoulos, C. & Purushothaman, S. High-performance bottom electrode organic thin-film transistors. IEEE Transactions on Electron Devices 48, 1060-1064 (2001).
    50 Yip, H. L., Hau, S. K., Baek, N. S., Ma, H. & Jen, A. K. Y. Polymer solar cells that use self‐assembled‐monolayer‐modified ZnO/metals as cathodes. Advanced Materials 20, 2376-2382 (2008).
    51 Janssen, D., De Palma, R., Verlaak, S., Heremans, P. & Dehaen, W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 515, 1433-1438 (2006).
    52 Ha, Y. E., Jo, M. Y., Park, J., Kang, Y. C., Yoo, S. I. & Kim, J. H. Inverted type polymer solar cells with self-assembled monolayer treated ZnO. The Journal of Physical Chemistry C 117, 2646-2652 (2013).
    53 Sabatani, E., Cohen-Boulakia, J., Bruening, M. & Rubinstein, I. Thioaromatic monolayers on gold: a new family of self-assembling monolayers. Langmuir 9, 2974-2981 (1993).
    54 Tao, Y.-T., Wu, C. C., Eu, J. Y., Lin, W. L., Wu, K. C, & Chen, C. H. Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold. Langmuir 13, 4018-4023 (1997).
    55 Frey, S., Stadler, V., Heister, K., Eck, W., Zharnikov, M., Grunze, M., Zeysing, B. & Terfort, A. Structure of thioaromatic self-assembled monolayers on gold and silver. Langmuir 17, 2408-2415 (2001).
    56 Havare, A. K., Can, M., Demic, S., Okur, S., Kus, M., Aydin, H., Yagmurcukardes, N. & Tari, Suleyman. Modification of ITO surface using aromatic small molecules with carboxylic acid groups for OLED applications. Synthetic Metals 161, 2397-2404 (2011).
    57 莊帛縈. 選擇性成長自組裝單分子薄膜修飾薄膜電晶體元件線路之效應研究. (2019).
    58 Singh, K. A., Nelson, T. L., Belot, J. A., Dhumal, N. R., Lowalewski, T., McCullough, R. D., Nachimuthu, P., Thevuthasan, S. & Porter, L. M. Effect of Self-Assembled Monolayers on Charge Injection and Transport in Poly(3-hexylthiophene)-Based Field-Effect Transistors at Different Channel Length Scales. ACS Appl. Mater. Interfaces 3, 2973-2978 (2011).
    59 Gao, X., Han, Y. C. P3HT Stripe Structure with Oriented Nanofibrils Enabled by Controlled Inclining Evaparation. Chinese Journal of Polymer Science 31, No.
    4, 610−619 (2013)

    無法下載圖示 全文公開日期 2025/02/06 (校內網路)
    全文公開日期 2025/02/06 (校外網路)
    全文公開日期 2025/02/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE