簡易檢索 / 詳目顯示

研究生: Yitayal Admassu Workie
Yitayal Admassu Workie
論文名稱: 用於治療氣體和多種藥物遞送系統的碳聚合物納米複合材料的合成與表徵
Synthesis and Characterization of Carbon-Polymer Nanocomposites for Therapeutic Gas and Multidrug Delivery Systems
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
吳嘉文
Chia-Wen Wu
詹正雄
Jeng-Shiung Jan
何明樺
Ming-Hua Ho
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 176
中文關鍵詞: 碳聚合物靶向藥物輸送系統奈米複合材料治療氣體一氧化氮氧化石墨烯氟化聚乙二醇OH封端的樹枝狀大分子五氟丙酸抗菌活性大腸桿菌金黃色葡萄球菌載體藥物釋放單壁奈米角吉西他濱阿黴素熱重分析
外文關鍵詞: Carbon-polymer, Targeted drug delivery system, Therapeutics gas, OH terminated dendrimer, Pentafluoropropionic acid, Anti-bacterial activity, Staphylococcus aureus, Loading, Releasing, Single walled nanohorn, Gemcitabine
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靶向藥物遞送系統(Targeted drug delivery system)是一種新穎且具有用途的技術,已被用於通過增加生物利用度(bioavailability),藥物在特定部位的蓄積並減少副作用來克服當前治療的局限性。目前,迫切且未滿足的對奈米載體的需求,以有效並安全地輸送治療性氣體和藥物。這項研究評估用於治療性氣體和多種藥物的輸送系統基於碳聚合物的奈米複合材料的合成,表徵及其各自的應用。總結了三個主要的研究領域。

    在第一項研究工作中,我們準備了有效的一氧化氮(NO)節約型氧化石墨烯(GO)平台,並通過非共價官能化將其與氟化聚乙二醇(F-PEG)製成複合材料。 當研究摻雜在GO和F-PEG@GO上的NO氣體的持久性3小時後,保守的NO氣體載體分別從49.00±7.06降至2.17±1.36 nmol/mg,從58.51±6.02降至4.58±2.22 nmol/mg 。F-PEG在GO上的吸附以及NO在GO和F-PEG@GO上的摻雜可以通過GO片之間的距離增加來確定,而NO的摻雜也可以通過紅外吸收和X射線光電子能譜來闡明。守恆NO的F-PEG@GO抗菌效果比守恆NO 的GO高,並且對金黃色葡萄球菌(Staphylococcus aureus)的抗藥性相較於大腸桿菌(Escherichia coli)更有效。顯然,在GO上塗覆F-PEG對於提高NO氣體的負載效率,穩定性和生物醫學功效是優良的。
    此研究的第二部分是用單壁碳奈米角(SWCNH),氧化石墨烯(GO),氮摻雜單壁碳官能化功能化氟化聚乙二醇(F-PEG)和五氟丙酸附著的樹枝狀聚合物(F-Den)奈米角(N-SWCNH),以製備F-PEG@SWCNH,F-PEG @ GO,F-PEG@N-SWCNH,F-Den@N-SWCNH和F-PEG@F-Den@N-的複合材料SWCNH作為有效的氧氣輸送系統。測量SWCNH,F-PEG@SWCNH,GO,F-PEG@GO的氧氣保留效率24小時,最大保留量分別為26.64μg/mg,58.67μg/mg,30.16μg/mg,54.62μg/mg。此外,N-SWCNH(37.43μg/mg),F-PEG@SWCNH(59.15μg/mg),F-Den@N-SWCNH(52.44μg/mg)和F-PEG@F-Den@N-SWCNH(79.22μg/ mg)的攝氧能力在48小時的測量中觀察。參數中研究了載體(SWCNH,F-PEG@SWCNH,GO和F-PEG@GO)的體外釋氧行為。由於F-PEG的氣體溶解作用和表面形態變化的結果,複合材料F-PEG@SWCNH和F-PEG@GO顯示出較慢的氧釋放行為。所製備的製劑可能具有用於氧氣輸送系統的潛力,顯示出隨著時間的推移緩慢地存儲和釋放氣體的能力。

    在最後一項研究工作中,聚乙二醇與酸處理的單壁碳奈米角(SWCNH-COOH)共價官能化,作為吉西他濱(GCT)和阿黴素(DOX)的新型pH響應共遞送系統(co-delivery system)。有趣的是結果顯示SWCNH-COOH和PEG@SWCNH分別可以裝載GCT(32.26%和43.43%)和DOX(40.91%和59.10%)。這顯示了透過通過強大的π-π*堆積和氫鍵結合顯示出高載藥效率。(GCT@DOX)載藥SWCNH-COOH(18.41%&30.85%)和PEG@SWCNH(30.85%&40.95%)。展現SWCNH-COOH和PEG@SWCNH是共遞送系統的GCT和DOX的潛在載體。但是,由於PEG鏈上存在其他藥物,因此與SWCNH-COOH相比,複合PEG@SWCNH具有更高的載藥能力。體外藥物釋放實驗表明,SWCNH-COOH和PEG@SWCNH對GCT和DOX均表現出控制釋放的方式,並且兩種藥物在腫瘤環境(pH 5.5)和生理(pH 7.4)下同時釋放。此外,SWCNH-COOH和PEG@SWCNH的藥物釋放方式幾乎相同。因此,該共同遞送系統可以提供雙重療法與封裝的藥物協同治療癌症的協同遞送的新方法。


    Targeted drug delivery system is a new and promising technique which has been used to overcome the present therapeutic limitation by increasing bioavailability, accumulation of drug at a specific site and reduce side effect. Currently, there is an urgent and unmet need of nanocarrier for delivery of therapeutics gas and multidrug efficiently and safely. This study, evaluates synthesis, characterization and their respective application of carbon polymer based nanocomposites for therapeutics gas and multidrug delivery system. There are three major areas of study undertaken as summarized below.

    In the first work, we prepared effective nitric oxide (NO) conserving platforms of graphene oxide (GO) and it’s composite with fluorinated poly (ethylene glycol) (F-PEG) by non-covalent functionalization. When the persistence of NO gas doped on GO and F-PEG@GO was investigated for 3 h, the conserved NO gas decreased from 49.00±7.06 to 2.17±1.36 nmol/mg carrier and from 58.51± 6.02 to 4.58±2.22 nmol/mg carrier, respectively. The adsorption of F-PEG on GO and the doping of NO on GO and F-PEG@GO were declarative by the increase of distance between GO sheets, and the NO-doping was also clarified by infrared absorption and X-ray photoelectron spectroscopies. The anti-bacterial effect was higher for NO-conserved F-PEG@GO than for NO-conserved GO and more effective against Staphylococcus aureus than against Escherichia coli. It is evident that the coating of F-PEG on GO is preferable for advancing the loading efficiency, the stability and the biomedical efficacy of NO gas.

    On the second part of the study, F-PEG and fluorinated dendrimer (F-Den) were functionalized with single walled carbon nanohorn (SWCNH), graphene oxide (GO), nitrogen doped SWCNH (N-SWCNH), to prepare the composites of F-PEG@SWCNH, F-PEG@GO, F-PEG@N-SWCNH, F-Den@N-SWCNH and F-PEG@F-Den@N-SWCNH as an effective oxygen delivery system. The maximum oxygen conservation of SWCNH, F-PEG@SWCNH, GO and F-PEG@GO at 24 h was 26.64 μg/mg, 58.67 μg/mg, 30.16 μg/mg and 54.62 μg/mg respectively. Moreover, the oxygen uptake capacity of N-SWCNH (37.43 μg/mg), F-PEG@N-SWCNH (59.15μg/mg), F-Den@N-SWCNH (52.44 μg/mg) and F-PEG@F-Den@N-SWCNH (79.22 μg/mg) was observed during 48h. The existence of F-PEG and dendrimer in the composite, F-PEG@SWCNH, F-PEG@GO, F-PEG@N-SWCNH, F-Den@N-SWCNH and F-PEG@F-Den@N-SWCNH cause to intensify the oxygen uptake efficiency. The prepared formulations might be potential used for oxygen gas delivery system showing the ability to store and release gas slowly over time.

    In our last work, poly (ethylene glycol) was covalently functionalized with acid treated single wall carbon nanohorn (SWCNH-COOH) as a novel, pH responsive co-delivery system of gemcitabine (GCT) and doxorubicin (DOX). Intriguingly, SWCNH-COOH and PEG@SWCNH could load GCT (32.26% & 43.43%) and DOX (40.91% & 59.10%) respectively. These results indicated a high drug loading efficiency via by strong π-π* stacking and hydrogen bonding. The dual (GCT@DOX) drug-loaded SWCNH-COOH (18.41% & 30.85%) and PEG@SWCNH (30.85% & 40.95%) showed that SWCNH-COOH and PEG@SWCNH were potential carriers for GCT and DOX for co-delivery system. In vitro drug release experiment demonstrated that SWCNH-COOH and PEG@SWCNH exhibited a controlled release manner for both GCT and DOX, and the two drugs were released simultaneously at tumor environment pH 5.5 and physiological pH 7.4. Thus, the release manners of drugs from SWCNH-COOH and PEG@SWCNH were almost same. Therefore, this co-delivery system may provide a new approach for delivery of dual chemotherapeutics with an encapsulated drugs to treat cancer.

    Abstract..................................................................................................................................................................iv Acknowledgements ......................................................................................................................................vii Table of Contents...............................................................................................................................................x List of Abbreviations.......................................................................................................................................xvi List of Figures....................................................................................................................................................xix List of Schemes................................................................................................................................................xxv List of Tables...................................................................................................................................................xxvi Chapter 1: Introduction..................................................................................................................................1 1.1. Nanomedicine...........................................................................................................................................1 1.2. Therapeutics Gas and Drug Delivery Systems..............................................................................4 1.2.1. Therapeutics Gas Drug Delivery Systems...............................................................................6 1.2.1.1. Nitric Oxide Delivery System.......................................................................................................6 1.2.1.1.1. Nitric Oxide Based Gas Therapy.........................................................................................6 1.2.1.1.2. Physiological Role of Nitric Oxide.....................................................................................7 1.2.1.1.3. Nitric Oxide Donors................................................................................................................8 1.2.1.1.3.1. N-Diazeniumdiolates Based Nitric oxide Donor.........................................................8 1.2.1.1.3.2. S-Nitrosothiols Based Nitric Oxide Donor....................................................................9 1.2.1.2. Oxygen Delivery System...............................................................................................................9 1.2.1.2.1. Physiological Role of Oxygen.............................................................................................9 1.2.1.2.2. Oxygen Donor Biomaterials..............................................................................................11 1.2.1.2.2.1. Hyperbaric Oxygen Delivery System (HBO2)..............................................................11 1.2.1.2.2.2. Oxygen Generating Materials...........................................................................................11 1.2.1.2.2.3. Oxygen Carrying Materials................................................................................................12 1.2.2. Multi Drug Delivery Systems.....................................................................................................12 1.2.2.1. Combination Chemotherapy....................................................................................................12 1.2.2.2. Co-delivery of Gemcitabine and Doxorubicin.....................................................................13 1.3. Biomaterials...............................................................................................................................................15 1.4. Carbon Based Nanomaterials.............................................................................................................16 1.4.1. Surface Modification of Carbon Nanomaterials ................................................................17 1.4.1.1. Covalent Surface Functionalization.........................................................................................18 1.4.1.2. Non-covalent Surface Functionalization...............................................................................18 1.4.2. Graphene Oxide (GO)....................................................................................................................19 1.4.2.1. Properties of Graphene Oxide (GO)........................................................................................20 1.4.3. Single Walled carbon nanohorn (SWCNH).........................................................................21 1.4.3.1. Properties of Single Walled Carbon Nanohorn (SWCNH)............................................22 1.5. Perfluorocarbons (PFCs).....................................................................................................................23 1.5.1. Properties of Perfluorocarbons (PFCs).................................................................................24 1.6. Poly (Amido Amine) (PAMAM) Dendrimers (Den (OH)).........................................................24 1.7. Poly (Ethylene Glycol) (PEG)...............................................................................................................26 1.7.1. Properties of Poly (Ethylene Glycol).......................................................................................26 Chapter 2: Challenges and Opportunities in Therapeutic Gas and Multi-drug Delivery Systems................................................................................................................................................................27 2.1. Challenges and Opportunities in the Current Therapeutics Gas Delivery System........27 2.2. Challenges and Opportunities in the Current Multi Drug Delivery System.....................28 2.3. Objectives of the Research Work.....................................................................................................28 Chapter 3: Nitric Oxide Gas Delivery by Fluorinated Poly (Ethylene Glycol) @Graphene Oxide Carrier toward Pharmacotherapeutics......................................................................................31 3.1. Motivation.................................................................................................................................................31 3.2. Experimental.............................................................................................................................................32 3.2.1. Materials and Methods.....................................................................................................................32 3.2.1.1. Synthesis of Graphene Oxide (GO).........................................................................................33 3.2.1.2. Preparation of F-PEG@GO Composites................................................................................34 3.2.1.3. Preparation of Griess Assay Reagents....................................................................................35 3.3.1.4. Quantitative Determination of Doped NO Gas by Griess Assay Method.................36 3.2.1.5. Antibacterial Activity Test............................................................................................................37 3.3. Results and Discussion..........................................................................................................................38 3.3.1. Characterization of Composite..................................................................................................38 3.3.2. Nitric Oxide Conservation Measurement..............................................................................45 3.3.3. Brunauer−Emmett−Teller (BET) of GO and F-PEG@GO..................................................46 3.3.4. Effect of NO on FT-IR, XRD and XPS Spectra of GO and F-PEG@GO.........................47 3.3.5. Anti-Bacterial Effect of NO Doped on GO and F-PEG@GO...........................................52 3.4. Conclusions ..............................................................................................................................................54 CHAPETR 4: Fluorinated Poly (Ethylene Glycol) and Dendrimer Attached Single Walled Carbon Nanohorn and Graphene Oxide Composites as an Effective Oxygen Delivery System..................................................................................................................................................................55 4.1. Motivation..................................................................................................................................................55 4.2. Experimental..............................................................................................................................................57 4.2.1. Materials and Methods......................................................................................................................57 4.2.1.1. Synthesis of Nitrogen-Doped Single Walled Carbon Nanohorn (N-SWCNH).......58 4.2.1.2. Synthesis of F-Den@N-SWCNH Composite........................................................................58 4.2.1.3. Preparation of F-PEG@SWCNH, F-PEG@N-SWCNH and F-PEG@F-Den@N-SWCNH Composites.......................................................................................................................................59 4.2.1.4. Conservation of Oxygen...............................................................................................................60 4.3. Results and Discussion...........................................................................................................................61 4.3.1. Characterization of Composites......................................................................................................61 4.3.2.Oxygen Uptake.......................................................................................................................................68 4.3.3.Adsorption Kinetics of Oxygen on carriers..................................................................................70 4.3.3. Effect of oxygen XPS and XRD Spectra of F-PEG@SWCNH and F-PEG@GO...............75 4.3.4. Oxygen Releasing Study....................................................................................................................79 4.4. Conclusions................................................................................................................................................80 CHAPTER 5: Co-delivery of Gemcitabine and Doxorubicin by Single Wall Carbon Nanohorn Functionalized with Poly (Ethylene Glycol) for Enhanced Anti-Cancer Efficacy .................................................................................................................................................................................81 5.1. Motivation...................................................................................................................................................81 5.2. Experimental..............................................................................................................................................83 5.2.1. Materials and Methods......................................................................................................................83 5.2.1.1. Synthesis of Carboxylated Single Walled Carbon Nanohorn (SWCNH-COOH) ……………………………………………………………………………..............................................................................84 5.2.1.2. Esterification of Poly (Ethylene Glycol) with Single Walled Carbon Nanohorn ……………………………………………………………………………........................................................................…..85 5.2.1.3. In vitro Drug Loading...................................................................................................................85 5.2.1.4. In vitro Co-Drugs Loading...........................................................................................................87 5.2.1.5. In vitro Drug Release ....................................................................................................................89 5.2.1.6. In vitro Co-Drugs Release............................................................................................................90 5.3. Results and Discussion...........................................................................................................................90 5.3.1. Characterization of Composites......................................................................................................90 5.3.2. In vitro Drug Loading.......................................................................................................................103 5.3.3. In vitro Co-Drugs Loading..............................................................................................................105 5.3.4. In vitro Drug Release.........................................................................................................................111 5.4. Conclusions..............................................................................................................................................112 CHAPTER 6: General Conclusions and Future Perspectives..........................................................114 6.1. Conclusions..............................................................................................................................................114 6.2. Future Perspectives..............................................................................................................................116 References........................................................................................................................................................118 List of Publication..........................................................................................................................................146 List of Conferences........................................................................................................................................146

    1 Sharma, V.P.; Sharma, U.; Chattopadhyay, M.; Shukla, V. N. Advance Applications of Nanomaterials: A Review .Mater. Today. 2018, 5, 6376-6380. doi: 10.1016/j.matpr.2017.12.248.
    2 Devadasu, V. R.; Bhardwaj, V.; Kumar, M. N.V.R. Can controversial nanotechnology promise drug delivery?. Chem Rev. 2014, 113, 1686-1735. doi:10.1021/cr300047q.
    3 Mirza, A. Z.; Siddiqui, F. A. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014, 4,94-100. doi:10.1007/s40089-014-0094-7.
    4 Raliya, R; Tarafdar, J.C.; Gulecha, K.; Choudhary,K.; Ram, R.; Mal, P.; Saran. R. P. Review Article; Scope of Nanoscience and Nanotechnology in Agriculture. J Appl Biol Biotechnol. 2013, 1, 041-044. doi:10.7324/JABB.2013.1307.
    5 Chen,Y.; Fan,Z.; Zhang, Z.; Niu, W.; Li,C.; Yang, N.; Chen, B.; Zhang, H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem Rev. 2018, 118, 6409-6455. doi:10.1021/acs.chemrev.7b00727.
    6 Ealias, A.M.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 263, 032019-032034. doi:10.1088/1757-899X/263/3/032019.
    7 Coroş, M.; Pogăcean, F.; Măgeruşan, L.; Socaci, C.; Pruneanu, S. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front. Mater. Sci. 2019, 13, 23-32. doi:10.1007/s11706-019-0452-5.
    8 Odularu, A.T.; Ajibade, P.A. Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications. Bioinorg Chem Appl. 2019, 2019, 1-15. doi.org/10.1155/2019/8260496.
    9 Pal, S. L.; Jana, U.; Manna, P. K.; Mohanta, G. P.; Manavalan. R. Nanoparticle: An overview of preparation and characterization. J Appl Pharm Sci. 2011, 01, 228-234.
    10 Min, Y.; Caster, J.M.; Eblan, J. M.; Wang, A. Z. Clinical Translation of Nanomedicine. Chem Rev. 2015, 115, 11147-11190. doi:10.1021/acs.chemrev.5b00116.
    11 Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016, 33, 2373-2387. doi:10.1007/s11095-016-1958-5.
    12 Patra, J. K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez Torres M.P.; Acosta Torres, L.S.; Diaz Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology.2018.16, 71-104. doi:10.1186/s12951-018-0392-8.
    13 Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; José A. Garrido, J.A.; Sordan, R. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015, 7, 4598-4810. doi:10.1039/c4nr01600a.
    14 Pelaz, B.; Alexiou, C.; Ramon A. Alvarez-Puebla, R.A.; Alves, F.; Anne M. Andrews, A.M.; Ashraf, S. et al. Diverse Applications of Nanomedicine. ACS Nano. 2017, 11, 2313-2381. doi:10.1021/acsnano.6b06040.
    15 Caster, J. M.; Patel, A. N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. WIREs Nanomed Nanobiotechnol. 2017, 9. doi:10.1002/wnan.1416.
    16 Fornaguera, C.; Garcia-Celma, M. J. Personalized Nanomedicine: A Revolution at the Nanoscale. J Pers Med. 2017, 7,12-32. doi:10.3390/jpm7040012.
    17 Keskinbora, K. H.; Jameel, M. A. Nanotechnology Applications and Approaches in Medicine: A Review. J of Nanosci & Nanotech Research. 2018, 2, 6-11.
    18 Nikalje, A. P. Nanotechnology and its Applications in Medicine. Med Chem. 2015, 5,81-89. doi:10.4172/2161-0444.1000247.
    19 Mohammadi, M. R.; Nojoomi, A.; Mozafari, M.; Dubnika, A.; Inayathullah, M.; Rajadas, J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B. 2017, 5, 3995-4018. doi:10.1039/c6tb03247h.
    20 Pardo, J.; Peng, Z.; Leblanc, R. M. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules. 2018. 23, 378-398. doi:10.3390/molecules23020378.
    21 Li, L.; Liu, R.; Jiang, X.; Qiu, Y.; Song, X.; Huang, G.; Fu, N.; Lin, L.; Song, J.; Chen, X.; Yang, H. Near-Infrared Light-Triggered Sulfur Dioxide Gas Therapy of Cancer. ACS Nano. 2019, 13, 2103−2113. doi:10.1021/acsnano.8b08700
    22 Cavalli, R.; Akhter, A.K.; Bisazza, A.; Giustetto, P.; Trotta, F.; Vavia, P. Nanosponge formulations as oxygen delivery systems. Int J Pharm. 2010, 402, 254-257. doi:10.1016/j.ijpharm.2010.09.025.
    23 Mali, A.S.; Maruska, A. Therapeutic Gases Pharmacology and It’s Advanced Delivery. Pharma Tutor. 2017, 5, 37-47.
    24 Jin, Q.; Deng, Y.; Jia, F.; Tang, Z.; Ji, J. Gas Therapy: An Emerging “Green” Strategy for Anticancer Therapeutics. Adv Ther. 2018, 1, 1800084-98. doi:10.1002/adtp.201800084.
    25 Steiger, C.; Wollborn, J.; Gutmann, M.; Zehe, M.; Wunder, C.; Meinel, L. Controlled therapeutic gas delivery systems for quality-improved transplants. Eur J Pharm Biopharm.2015, 97, 96-106. doi:10.1016/j.ejpb.2015.10.009.
    26 Hetrick, E. M.; Schoenfisch, M. H. Analytical chemistry of nitric oxide. Annu Rev Anal Chem. 2009, 2, 409-433. doi:10.1146/annurev-anchem-060908-155146.
    27 Arora, D. P.; Hossain, S.; Xu, Y.; Boon, E. M. Nitric Oxide Regulation of Bacterial Biofilms. Biochemistry. 2015, 54, 3717-3728. doi:10.1021/bi501476n.
    28 Lu, Y.; Sun, B.; Li, C.; Schoenfisch, M. H. Structurally Diverse Nitric Oxide-Releasing Poly(propylene Imine) Dendrimers. Chem Mater. 2011, 23, 4227-4233. doi:10.1021/cm201628z.
    29 Jo, Y.S.; Andre. J.; Vlies, V.D.; Gantz, J.; Thacher, T.N.; Antonijevic, S.; Cavadini,S.; Demurtas, D.; Stergiopulos, N.; Hubbell, J.A. Micelles for Delivery of Nitric Oxide. J. Am. Chem. Soc. 2009, 131, 14413–14418. doi:10.1021/ja905123t
    30 Hunter, R. A.; Storm, W. L.; Coneski, P. N.; Schoenfisch, M. H. Inaccuracies of nitric oxide measurement methods in biological media. Anal Chem.2013, 85, 1957-1963. doi:10.1021/ac303787p.
    31 Saraiva, J.; Marotta-Oliveira, S. S.; Cicillini, S. A.; Eloy Jde, O.; Marchetti, J. M. Nanocarriers for nitric oxide delivery. J Drug Deliv. 2011, 1, 1-16. doi:10.1155/2011/936438.
    32 Glynn, S.A. Emerging novel mechanisms of action for nitric oxide in cancer progression. Current Opinion in Physiolog. 2019, 9:18-25. doi:10.1016/j.cophys.2019.03.010
    33 Coneski, P. N.; Nash, J. A.; Schoenfisch, M. H. Nitric oxide-releasing electrospun polymer microfibers. ACS Appl Mater Interfaces. 2011, 3, 426-432. doi:10.1021/am101010e .
    34 Zhang, X. F.; Mansouri, S.; Mbeh,D.A.; Yahia, L.H.; Sacher,E.; Veres, T. Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility. Langmuir. 2012, 28, 12879-12885. doi:10.1021/la302357h.
    35 Antosova, M.; Plevkova, J.; Strapkova, A.; Buday, T. Nitric oxide-Important messenger in human body. Open Journal of Molecular and Integrative Physiology.2012, 02, 98-106. doi:10.4236/ojmip.2012.23014.
    36 McKinlay, A. C.; Eubank,J.F.; Wuttke, S.; Xiao, B.; Wheatley, P. S.; Bazin,P.; Lavalley, J.C.; Daturi,M.; Vimont, A.; Weireld, G.D.; Horcajada, P.; Serre, C.; Morris, R.E.. Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. Chem. Mater. 2013, 25, 1592-1599. doi:10.1021/cm304037x.
    37 Tsai, K. J.; Rammou, A.; Gao, C.; Mel, A.D. Biofunctionalization of biomaterials for nitric oxide delivery: potential applications in regenerative medicine. Adv Health Care Technol. 2018, 4, 25-36. doi:10.2147/ahct.S144816.
    38 Rothrock, A.R.; Donkers, R.L.; Schoenfisch, M.H. Synthesis of Nitric Oxide-Releasing Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 9362-9363. doi:10.1021/ja052027u.
    39 Workie, Y. A.; Sabrina,; Imae, T.; Krafft, M. P. Nitric Oxide Gas Delivery by Fluorinated Poly(Ethylene Glycol)@Graphene Oxide Carrier toward Pharmacotherapeutics. ACS Biomater Sci Eng. 2019, 5, 2926-2934. doi:10.1021/acsbiomaterials.9b00474.
    40 Storm, W. L.; Schoenfisch, M. H. Nitric oxide-releasing xerogels synthesized from N-diazeniumdiolate-modified silane precursors. ACS Appl Mater Interfaces. 2013, 5, 4904-4912. doi:10.1021/am4006397.
    41 Chakrapani, H.; Showalter, B. M.; Citro, M.L.; Keefer, L.K.; Saavedra, J.E. Nitric Oxide Prodrugs :Diazeniumdiolate Anions of Hindered Secondary Amines. Org Lett. 2007, 9, 4551-4554. doi:10.1021/ol7019636
    42 Nandurdikar, R.S.; Maciag, A. E. Hong, s.y.; Chakrapani, H.; Citro, M.L.; Keefer,L.K.; Saavedra, J.E. Glycosylated PROLI/NO Derivatives as Nitric Oxide Prodrugs. Org Lett. 2010, 12, 56-59. doi:10.1021/ol902481s
    43 Zhou,Y.; Tan, J.; Dai, Y.; Yu, Y.; Zhang, Q.; Meyerhoff, M.E. Synthesis and nitric oxide releasing properties of novel fluoro S-nitrosothiols. Chem. Commun. 2019, 55, 401-404. doi:10.1039/c8cc08868c.
    44 VanWagner, M.; Rhadigan, J.; Lancina, M.; Lebovsky, A.; Romanowicz,G.; Holmes,H.; Brunette, M.A.; Snyder, K.L.; Bostwick, M.; Lee, P.B.; Frost, M.C.; Rajachar, R.M. S-nitroso-N-acetylpenicillamine (SNAP) derivatization of peptide primary amines to create inducible nitric oxide donor biomaterials. ACS Appl Mater Interfaces. 2013, 5, 8430-8439. doi:10.1021/am4017945.
    45 Komaty, S.; Anfray,C.; Zaarour, M.; Awala, H.; Ruaux, V.; Valable, S.; Mintova, S. A Facile Route toward the Increase of Oxygen Content in Nanosized Zeolite by Insertion of Cerium and Fluorinated Compounds. Molecules. 2018, 23, 37-49. doi:10.3390/molecules23020037.
    46 Yao, Y.; Zhang, M.; Liu,T.; Zhou, J.; Gao, Y.; Wen, Z.; Guan, J.; Zhu, J.; Lin, Z.; He, D. Perfluorocarbon-Encapsulated PLGA-PEG Emulsions as Enhancement Agents for Highly Efficient Reoxygenation to Cell and Organism. ACS Appl Mater Interfaces. 2015, 7, , 18369-18378. doi:10.1021/acsami.5b04226.
    47 Lim, J.O.; Huh, J.S.; Abdi, S.I.H.; Ng, S.M.; Yoo, J.J. Functionalized Biomaterials - Oxygen Releasing Scaffolds. J Biotechnol Biomater. 2015, 05,1-11. doi:10.4172/2155-952x.1000182.
    48 Nahmias, Y.; Kramvis, Y.; Barbe, L.; Casali, M.; Berthiaume, F.; Yarmush, M.L. A novel formulation of oxygen-carrying matrix enhances liver-specific function of cultured hepatocytes. FASEB J. 2006, 20, 2531-2533. doi:10.1096/fj.06-6192fje.
    49 Fan, Z.; Xu, Z.; Niu, H.; Gao, N.; Guan, Y.; Li, C.; Dang, Y.; Cui, X.; Liu, X.L.; Duan, Y.; Li, H.; Zhou, X.; Lin, P.H.; Ma, J.; Guan, J . An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction. Sci Rep. 2018, 8, 1371-1393. doi:10.1038/s41598-018-19906-w.
    50 Farris, A. L.; Rindone, A. N.; Grayson, W. L. Oxygen Delivering Biomaterials for Tissue Engineering. J Mater Chem B. 2016, 4, 3422-3432. doi:10.1039/C5TB02635K.
    51 Kimelman-Bleich, N.; Pelled, G.; Sheyn, D.; Kallai, I.; Zilberman, Y.; Mizrahi, O.; Tal, Y.; Tawackoli, W.; Gazit, Z.; Gazit, D. The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials. 2009, 30, 4639-4648. doi:10.1016/j.biomaterials.2009.05.027.
    52 Jalani, G.; Jeyachandran, D.; Church, R.B.; Cerruti, M. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery. Nanoscale. 2017, 9, 10161-10166. doi:10.1039/c7nr00378a.
    53 Camci-Unal, G.; Alemdar, N.; Annabi, N.; Khademhosseini, A. Oxygen Releasing Biomaterials for Tissue Engineering. Polym Int. 2013, 62, 843-848. doi:10.1002/pi.4502.
    54 Hayward, J.A.; Levine, D. M.; Neufeld, L.; Simon, S.R..; Johnston, D.S.; Chapman, D. Polymerized liposomes as stable oxygen-carriers. FEBS Letters. 1985, 2, 261-266.
    55 Delpuech, J.J.; Hamza, M.A.; Serratrice, G.; Stebe, M.J. Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. J. Chern. Phys , 1979, 70, 2680-2687. doi:org/10.1063/1.437853.
    56 Haiss, F.; Jolivet, R.; Wyss, M.T.; Reichold, J.; Braham, N.B.; Scheffold, F.; Krafft, M.P.; Weber, B. Improved in vivo two-photon imaging after blood replacement by perfluorocarbon. J Physiol. 2009, 587, 3153-3158. doi:10.1113/jphysiol.2009.169474.
    57 Krafft, M. P.; Riess, J. G. Perfluorocarbons, life sciences and biomedical uses. J. Polymer Sci. Part A: Polymer Chem. 2007, 45, 1185-1198. doi:10.1002/pola.21937
    58 Tan, B. L.; Norhaizan, M.E. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules. 2019, 24, 2527-2548. doi:10.3390/molecules24142527.
    59 Lu, Z. R.; Qiao, P. Drug Delivery in Cancer Therapy, Quo Vadis. Mol Pharm. 2018, 15, 3603-3616. doi:10.1021/acs.molpharmaceut.8b00037.
    60 Hu, Q.; Sun, W.; Wang, C.; Gu, Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev.2016, 98, 19-34. doi:10.1016/j.addr.2015.10.022.
    61 Mokhtari, R.B.; Homayouni, T. S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget. 2017, 8, 38022-38043.
    62 Lammers, T.; Subr c, V.; Ulbrich, K.; Peschke, P.; Huber, P.E.; Hennink, W.E.; Storm, G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials. 2009, 30, 3466-3475. doi:10.1016/j.biomaterials.2009.02.040.
    63 Vogus, D. R.; Pusuluri, A.; Chen, R.; Mitragotri, S. Schedule dependent synergy of gemcitabine and doxorubicin: Improvement of in vitro efficacy and lack of in vitro-in vivo correlation. Bioeng Transl Med. 2018, 3, 49-57. doi:10.1002/btm2.10082.
    64 Wang, C.; Zhang, G.; Liu, G.; Hu, J.; Liu, S. Photo and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J Control Release. 2017, 259, 149-159. doi:10.1016/j.jconrel.2016.11.007.
    65 Nahire, R.; Haldar, M.K.; Paul, S.; Ambre, A.H.; Meghnani, V.; Layek, B.; KattiKara, K.S.; Jagdish, N.G.; Sarkar, K.; Mallik, S. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials. 2014, 35, 6482-6497. doi:10.1016/j.biomaterials.2014.04.026.
    66 Winkler, T.; Sass, F. A.; Duda, G. N.; Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res. 2018, 7, 232-243. doi:10.1302/2046-3758.73.BJR-2017-0270.R1.
    67 Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules. 2018, 23, 2661-2727. doi:10.3390/molecules23102661.
    68 Cha, C.; Shin, S. R.; Annabi, N.; Dokmeci, M. R.; Khademhosseini, A. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano.2013, 7, 2891-2897. doi:10.1021/nn401196a.
    69 Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev. 2015, 115, 10816-10906. doi:10.1021/acs.chemrev.5b00008.
    70 Zhang, B. T.; Zheng, X.; Li, H. F.; Lin, J. M. Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta. 2013, 784, 1-17. doi:10.1016/j.aca.2013.03.054.
    71 Patel, K. D.; Singh, R. K.; Kim, H. W. Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons. 2019, 6, 434-469. doi:10.1039/c8mh00966j.
    72 Smith, S. C.; Rodrigues, D. F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon. 2015, 91, 122-143. doi:10.1016/j.carbon.2015.04.043.
    73 Cha, C.; Shin, S. R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano.2013, 7 2891–2897. doi:10.1021/nn401196a.
    74 Nasir, S.; Hussein, M. Z.; Zainal,Z.;Yusof, N. A. Carbon-Based Nanomaterials Allotropes A Glimpse of Their Synthesis, Properties and Some Applications. Materials. 2018, 11, 295-307. doi:10.3390/ma11020295.
    75 Sanchez, V. C.; Jachak, A.; Hurt, R. H.; Kane, A. B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012, 25, 15-34. doi:10.1021/tx200339h.
    76 Shi, S.; Chen, F.; Ehlerding, E. B.; Cai, W. Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug Chem. 2014, 25, 1609-1619. doi:10.1021/bc500332c.
    77 Georgakilas, V. Tiwari,J.N.; Kemp, K.C.; Perman,J.A.; Bourlinos,A.B.; Kim, K.S.; Zboril; R.Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem Rev. 2016, 116, 5464-5519. doi:10.1021/acs.chemrev.5b00620.
    78 Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics.2012, 2, 283-294. doi:10.7150/thno.3642.
    79 Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong,B.H.; Min, D.H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. doi:10.1021/ar300159f.
    80 Ghosal, K.; Sarkar, K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater Sci Eng. 2018, 4, 2653-2703. doi:10.1021/acsbiomaterials.8b00376.
    81 Tadyszak, K.; Wychowaniec, J. K.; Litowczenko, J. Biomedical Applications of Graphene Based Structures. Nanomaterials. 2018, 8, 944-965. doi:10.3390/nano8110944.
    82 Zhang, B.; Wang, Y.; Zhai, G. Biomedical applications of the graphene-based materials. Mater Sci Eng C Mater Biol Appl. 2016, 61, 953-964. doi:10.1016/j.msec.2015.12.073.
    83 Allen, M. J.; Tung, V. C. Kaner. R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. doi:10.1021/cr900070d
    84 Panzarasa, G.; Consolati, G.; Scavini, M.; Longhi, M.; Quasso, F. Convenient Preparation of Graphene Oxide from Expandable Graphite and Its Characterization by Positron Annihilation Lifetime Spectroscopy. J of Carbon Research. 2019, 5, 6-16. doi:10.3390/c5010006
    85 Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromol. Symp. 2017, 376, 1700006- 1700011. doi:10.1002/masy.201700006.
    86 Hu, M.; Xianqin, W. Graphene-Based Nanomaterials for Catalysis. Ind. Eng. Chem. Res. 2017, 56, 3477−3502. doi:10.1021/acs.iecr.6b05048.
    87 Nanda, S. S.; Papaefthymiou, G. C.; Yi, D. K. Functionalization of Graphene Oxide and its Biomedical Applications. Crit Rev Solid State. 2015, 40, 291-315. doi:10.1080/10408436.2014.1002604.
    88 Priyadarsini, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem. 2018, 8, 123-137. doi:10.1007/s40097-018-0265-6.
    89 Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, R.J.; Ruof, R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010, 22, 3906-3924. doi:10.1002/adma.201001068.
    90 Siriviriyanun, A.; Popova, M.; Imae, T.; Kiew, L. V.; Looi, C. Y.; Wong, W. F.; Lee, H. B.; Chung, L. Y. Preparation of graphene oxide/dendrimer hybrid carriers for delivery of doxorubicin. Chem. Eng. J. 2015, 281, 771-781. doi:10.1016/j.cej.2015.07.024.
    91 Thesing, A.; Loguercio, L.F.; Noremberg, B.S.; Alano, J.H.; Silva, R.M.; Orlandi, M.O.; Jacqueline, C.M.; Santos, L.; Carren˜o, N.L.F. Tunable graphene oxide inter-sheet distance to obtain graphene oxide–silver nanoparticle hybrids. New J. Chem. 2019, 43, 1285-1290. doi:10.1039/c8nj04316g.
    92 Singh, D. P. Herrera, C.E.; Singh, B.; Singh, S.; Singh, R.K.; Kumar, R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018, 6, 173-197. doi:10.1016/j.msec.2018.01.004.
    93 Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J Chem Eng Data. 2019, 64, 833-867. doi:10.1021/acs.jced.8b01057.
    94 Siriviriyanun, A.; Imae, T.; Caldero, G.; Solans, C. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids. Colloids Surf B Biointerfaces. 2014, 121, 469-473. doi:10.1016/j.colsurfb.2014.06.010.
    95 Hawelek, L.; Schiavon, M.; Szade, J.; Wlodarczyk, P. ; Jurkiewicz, K.; Fische, H.E.; Kolano-Burian, A.; Burian, A. The atomic scale structure of dahlia-like single wall carbon nanohorns produced by direct vaporization of graphite. Diam. Relat. Mater. 2017, 72, 26-31. doi:10.1016/j.diamond.2016.12.015.
    96 Minfang Zhang, T. Y.; Iijima,S.; Yudasaka, M. Individual Single-Wall Carbon Nanohorns Separated from Aggregates. J. Phys. Chem. Lett. 2009, 113, 11184-11186. doi:10.1021/jp9037705 CCC.
    97 Karousis, N.; Suarez-Martinez, I.; Ewels, C. P.; Tagmatarchis, N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev. 2016, 116, 4850-4883. doi:10.1021/acs.chemrev.5b00611.
    98 He, B.; Shi, Y.; Liang, Y.; Yang, A.; Fan, Z.; Yuan, L.; Zou, X.; Chang, X.; Zhang,H.; Wang, X.; Dai, W.; Wang, Y.; Zhang, Q.Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat Commun. 2018, 9, 2393-2414. doi:10.1038/s41467-018-04700-z.
    99 Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon. 2010, 48, 1580-1585. doi:10.1016/j.carbon.2009.12.055.

    100 Nakamura, M.; Tahara, Y.; Ikehara1, Y.; Murakami, T.; Tsuchida, K.; Iijima, S.; Waga. I.; Yudasaka, M. Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology. 2011, 22, 465102. doi:10.1088/0957-4484/22/46/465102.
    101 Cui, L.; Liub, Y.; Wub, X.; Hub, Z.; Shib, Z.; Li, H. Fe3O4-decorated single-walled carbon nanohorns with extraordinary microwave absorption property. RSC Advances. 2015, 5, 75817-75822. doi:10.1039/c5ra13077h.
    102 Tanigaki, N.; Murata, K.; Hayashi, T.; Kaneko, K. Mild oxidation-production of subnanometer-sized nanowindows of single wall carbon nanohorn. J Colloid Interface Sci. 2018, 529, 332-336. doi:10.1016/j.jcis.2018.06.023.
    103 Shi, Y.; Shi, Z.; Zhang, Y.; Peng, D.; He, B.; Xueqing, M. The interactions of single-wall carbon nanohorns with polar epithelium. Int J Nanomedicine. 2017, 12, 4177-4194. doi:10.2147/IJN.S133295.
    104 Wu, W.; Zhao, Y.; Wu, C.; Guan, L. Single-walled carbon nanohorns with unique horn-shaped structures as a scaffold for lithium–sulfur batteries. RSC Adv. 2014, 4, 28636-28639. doi:10.1039/c4ra03693j.
    105 Miyawaki, J.; Azami, T.; Kubo,Y.; Iijima, S. Toxicity of Single-Walled Carbon Nanohorns. ACS Nano. 2008, 2, 213–226. doi:10.1021/nn700185t.
    106 Zhu, S.; Xu, G. Single-walled carbon nanohorns and their applications. Nanoscale. 2010, 2, 2538-2549. doi:10.1039/c0nr00387e.
    107 Sano, N.; Yamada, K.; Suntornlohanakul, T.; Tamon, H. Low temperature oxidation of Fe-included single-walled carbon nanohorns in water by ozone injection to enhance porous and magnetic properties. Chem Eng J. 2016, 283, 978-981. doi:10.1016/j.cej.2015.08.050.
    108 Riess, J. G. Oxygen Carriers (“Blood Substitutes”)Raison d'Etre, Chemistry, and Some PhysiologyBlut ist ein ganz besondrer Saft. Chem Rev. 2001, 101, 2797-2920. doi:10.1021/cr970143c.
    109. Araújo, R.V.; Santos, S.S.; Ferreira, E.I.; Giarolla, J. New Advances in General Biomedical Applications of PAMAM Dendrimers. Molecules. 2018, 23, 2849-2876. doi:10.3390/molecules23112849.
    110. Mintzer, M.A.; Grinstaff, M.W. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011, 40, 179-190. doi:10.1039/b901839p.
    111. Luna, B.N.; Godínez,L.A.; Rodríguez, F.J.; Rodríguez, A.; Larrea, G.Z.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Applications of Dendrimers in Drug Delivery Agents, Diagnosis, Therapy, and Detection. J of Nanomaterials. 2014, 2014, 1-19. doi.org/10.1155/2014/507273.
    112. Pourianazar, N.T.; Gunduz, U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J. Nanoparticle Res. 2014, 14, 2342-2380. doi:10.1007/s11051-014-2342-1.
    113. Vohsa, V.K.; Fahlman, B.D. Advances in the controlled growth of nanoclusters using a dendritic architecture. New J Chem. 2007, 31, 1041–1051. doi:10.1039/b616472m
    114. Bunker, A. Poly(Ethylene Glycol) in Drug Delivery, Why Does it Work, and Can We do Better? All Atom Molecular Dynamics Simulation Provides Some Answers. Physics Procedia. 2012, 34, 24-33. doi:10.1016/j.phpro.2012.05.004.
    115. D'Souza A, A.; Shegokar, R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016, 13, 1257-1275. doi:10.1080/17425247.2016.1182485.
    116 Banerjee, S. S.; Aher, N.; Patil, R.; Khandare, J. Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. J Drug Deliv 2012, 103973, doi:10.1155/2012/103973.
    117 Katelaris, P.; Naganathan, V.; Liu, K.; Krassas, G.; Gullotta, J. Comparison of the effectiveness of polyethylene glycol with and without electrolytes in constipation: a systematic review and network meta-analysis. BMC Gastroenterol. 2016, 16, 42-67. doi:10.1186/s12876-016-0457-9.
    118 Campos, E. V. R.; Oliveira, J. L.; Fraceto, L. F. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications. Front Chem. 2017, 5, 93-112. doi:10.3389/fchem.2017.00093.
    119 Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014, 114, 10869-10939. doi:10.1021/cr400532z.
    120 Shin, J. H.; Metzger, S. K.; Schoenfisch, M. H. Synthesis of Nitric Oxide-Releasing Silica Nanoparticles. J. Am. Chem. Soc. 2007, 129, 4612-4619. doi: 10.1021/ja0674338.
    121 Friedman, A. J.; Han, G.; Navati, M. S.; Chacko, M.; Gunther, L.; Alfieri, A.; Friedman, J. M. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide. 2008, 19 (1), 12-20. doi:10.1016/j.niox.2008.04.003.
    122 Chakrapani, H.; Maciag, A. E.; Citro, M. L.; Keefer, L. K.; Saavedra, J. E. Cell-Permeable Esters of Diazeniumdiolate-Based Nitric Oxide Prodrugs. Org. Lett. 2008, 22, 5155-5158. doi: 10.1021/ol8020989.
    123 Lutzke, A.; Tapia, J. B.; Neufeld, M. J.; Reynolds, M. M. Sustained Nitric Oxide Release from a Tertiary S-Nitrosothiol-based Polyphosphazene Coating. ACS Appl. Mater. Interfaces. 2017, 9 (3), 2104-2113. doi:10.1021/acsami.6b12888.
    124 Luo, R.; Liu, Y.; Yao, H.; Jiang, L.; Wang, J.; Weng, Y.; Zhao, A.; Huang, N. Copper-Incorporated Collagen/Catechol Film for in Situ Generation of Nitric Oxide. ACS Biomater. Sci. Eng. 2015, 1 (9), 771-779. doi:10.1021/acsbiomaterials.5b00131.
    125 Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci Rep. 2016, 6, 36143. doi:10.1038/srep36143.
    126 Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong,J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano. 2011, 5, 6971-6980. doi:10.1021/nn202451x.
    127 Chen, J.; Liu, H.; Zhao, C.; Qin, G.; Xi, G.; Li, T.; Wang, X.; Chen, T. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials. 2014, 35 (18), 4986-95. doi:10.1016/j.biomaterials.2014.02.032.
    128 Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116 (9), 5464-519. doi:10.1021/acs.chemrev.5b00620.
    129 Nanda, S. S.; Papaefthymiou, G. C.; Yi, D. K. Functionalization of Graphene Oxide and its Biomedical Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40 (5), 291-315. doi:10.1080/10408436.2014.1002604.
    130 Kiew, S. F.; Kiew, L. V.; Lee, H. B.; Imae, T.; Chung, L. Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control Release. 2016, 226, 217-228. doi:10.1016/j.jconrel.2016.02.015.
    131 Hsu, Y. H.; Hsieh, H. L.; Viswanathan, G.; Voon, S. H.; Kue, C. S.; Saw, W. S.; Yeong, C. H.; Azlan, C. A.; Imae, T.; Kiew, L. V.; Lee, H. B.; Chung, L. Y. Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. J. Nanopart. Res. 2017, 19 (11). 359-378. doi.org/10.1007/s11051-017-4054-9.
    132 Kiew, S. F.; Ho, Y. T.; Kiew, L. V.; Kah, J. C. Y.; Lee, H. B.; Imae, T.; Chung, L. Y. Preparation and characterization of an amylase-triggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability. Int. J. Pharm. 2017, 534 (1-2), 297-307. doi:10.1016/j.ijpharm.2017.10.045.
    133 Krafft, M. P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 2001, 47, 209-228. doi.org/10.1016/S0169-409X(01)00107-7.
    134 Maio, A.; Scaffaro, R.; Lentini, L.; Piccionello, A. P.; Pibiri, I. Perfluorocarbons–graphene oxide nanoplatforms as biocompatible oxygen reservoirs. Chem. Eng. J. 2018, 334, 54-65. doi:10.1016/j.cej.2017.10.032.
    135 Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances. 2012, 2 (10), 4498–4506. doi:10.1039/c2ra01367c.
    136 S Hetrick, E. M.; Schoenfisch, M. H. Analytical chemistry of nitric oxide. Annu. Rev. Anal. Chem. 2009, 2, 409-33. doi:10.1146/annurev-anchem-060908-155146.
    137 Ignarro, L. J.; Fukuto, J. M.; Griscavage, J. M.; Rogers, N. E.; Byrns, R. E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. 1993, 90, 8103-8107. doi.org/10.1073/pnas.90.17.8103.
    138 Nims, R.W.; Darbyshire, J. F.; Saavedra, J. E.; Christodoulou, D.; Hanbauer, I.; Cox, G. W.; Grisham, M. B.; Laval, F.; Cook, J. A.; Krishna, M. C.; Wink, D. A. Colorimeteric methods for the determination of Nitric oxide concentration in neutral aqueous solutions. A compansion to methods in Enzymology.1995, 7, 48-54. doi.org/10.1006/meth.1995.1007.
    139 Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6 (2), 71-79.doi.org/10.1016/j.jpha.2015.11.005.
    140 Diez-Pascual, A. M.; Diez-Vicente, A. L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interfaces. 2016, 8 (28), 17902-14. doi:10.1021/acsami.6b05635.
    141 Fanrong, A.; Yu, Z.; Xiaowu, H.; Xiluan, Y. Characterization on the Exfoliation Degree of Graphite Oxide into Graphene Oxide by UV-visible Spectroscopy. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2016, 31, 515-118. doi:0.1007/s11595-016-1401-0
    142 Mo, Y.; Wan, Y.; Chau, A.; Huang, F. Graphene/Ionic liquid composite films and ion exchange. Sci Rep. 2014, 4, 5466-5474. doi:10.1038/srep05466.
    143 Kebede, M. A.; Imae, T.; Sabrina; Wu, C. M.; Cheng, K. B. Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity. Chem. Eng. J. 2017, 311, 340-347. doi:10.1016/j.cej.2016.11.107.
    144 Paulchamy, B.; Arthi, G.; Lignesh, B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J. Nanomed. Nanotechnol. 2015, 06 (01), 1-4. doi:10.4172/2157-7439.1000253.
    145 Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X. Graphene oxide stabilized polyethylene glycol for heat storage. Phys.Chem. Chem. Phys. 2012, 14 (38), 13233-8. doi:10.1039/c2cp41988b.
    146 León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P. A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7 (12), 49-58. doi:10.3390/app7010049.
    147 Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008, 8, 36- doi:41. 10.1021/nl071822y.
    148 Yamini, D.; Venkatasubbu, G. D.; Kumar, J.; Ramakrishnan, V. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2014, 117, 299-303. doi:10.1016/j.saa.2013.07.064.
    149 Efa M. T.; Imae, T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes, J. Taiwan Ins. Chem. Eng. 2018, 92, 112-117. doi:10.1016/j.jtice.2018.02.007.
    150 Jankovský, O.; Simek, P.; Sedmidubsky, D.; Matejkova, S.; Janousek, Z.; Sembera, F.; Pumera, M.; Sofer, Z. Water-soluble highly fluorinated graphite oxide. RSC Adv. 2014, 4(3), 1378-1387. doi:10.1039/c3ra45183f.
    151 Yu, B,; Wang, X,; Qian, X,; Xing, W,; Yang, H,; Ma, L,; Lin, Y,; Jiang, S,; Song, L,; Hu, Y,; Lob, S. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014, 4, 31782–31794. doi:10.1039/c3ra45945d.
    152 Bukhtiyarov, A. V.; Kvon, R. I.; Nartova, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I. In-situ XPS investigation of nitric oxide adsorption on (111), (310), and (533) gold single crystal faces. Surf. Sci. 2012, 606 (3-4), 559-563. doi:10.1016/j.susc.2011.11.032.
    153 Ranke, W. UPS and XPS reference data of O, N, NO, (NO2)2, NH3, H2O, OH, H2S, SH and S on Ge surfaces. J. Electron. Spectrosc. Relat. Phenom. 1993, 61, 231-240. doi.org/10.1016/0368-2048(93)80053-O.
    154 Schairer, D. O.; Chouake, J. S.; Nosanchuk, J. D.; Friedman, A. J. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012, 3 (3), 271-9. doi:10.4161/viru.20328.
    155 Cardozo, V. F.; Lancheros, C. A. C.; Narciso, A. M.; Valereto, E. C. S.; Kobayashi, R. K. T.; Seabra, A. B.; Nakazato, G. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int. J. Pharm. 2014, 473 (1-2), 20-9. doi:10.1016/j.ijpharm.2014.06.051.
    156 Hetrick, E. M.; Shin, J. H.; Stasko, N. A.; Johnson, C. B.; Wespe, D. A.; Holmuhamedov, E.; Schoenfisch, M. H. Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano. 2008, 2, 235–246. doi: 10.1021/nn700191f
    157 Martinez, L.R.; Han, G.; Chacko, M.; Mihu, M.R.; Jacobson, M.; Gialanella, P.; Friedman, A.J.; Nosanchuk, J.D.; Friedman, M.J. Antimicrobial and healing efficacy of sustained release Nitric Oxide nanoparticles against staphylococcus aureus skin infection. J. Investig. Dermatol. 2009, 129, 2463–2469.doi:10.1038/jid.2009.95.
    158 Neidrauer, M.; Ercan, U.K.; Bhattacharyya, A.; Samuels, J.; Sedlak, J.; Trikha, R.; Barbee, K.A.; Weingarten, M.S.; Joshi, S.G. Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites. J. Med. Microbiol. 2014, 63, 203–209. doi:10.1099/jmm.0.067322-0.
    159 Pitarresi, G.; Piccionello, A. P.; Calabrese, R.; Pace, A.; Buscemi, S.; Giammona, G. Fluorinated derivatives of a polyaspartamide bearing polyethylene glycol chains as oxygen carriers. J Fluor Chem. 2008, 129, 1096-1103. doi:10.1016/j.jfluchem.2008.07.024
    160 Gholipourmalekabadi, M.; Zhao, S.; Harrison, B. S.; Mozafari, M.; Seifalian, A. M. Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering. Trends Biotechnol. 2016, 34, 1010-1021. doi:10.1016/j.tibtech.2016.05.012.
    161 Yeh, C.N.; Huang, H.; Tarianna, A.; Lim, O.; Jhang, R.H.; Chen, C.H.; Huang, J. Binder-free graphene oxide doughs. Nat. Commun. 2019, 10, 422-433. doi.org/10.1038/s41467-019-08389-6.
    162 Fan, L.; Li, B.; Zhang, N.; Sun, K. Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties. Sci. Rep. 2015, 5, 12154-12163. doi:10.1038/srep12154.
    163 Siriviriyanun, A.; Tsai, Y.J.; Voon, S.H.; Kiew, S.F.; Imae, T.; Kiew, L.V.; Looi, C.Y.; Wong,W.F.; Chung, L.Y. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng C Mater Biol Appl. 2018, 89, 307-315. doi:10.1016/j.msec.2018.04.020.
    164 Angelopoulou, A.; Voulgari, E.; Diamanti, E. K.; Gournis, D.; Avgoustakis, K. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Eur J Pharm Biopharm. 20215, 93, 18-26. doi:10.1016/j.ejpb.2015.03.022.
    165 Ajima, K.; Murakami, T.; Maigne´, A.; Shiba, K.; Iijima, S. Carbon Nanohorns as Anticancer Drug Carriers. Mol Pharm. 2005, 2, 475-480. doi:10.1021/mp0500566.
    166 Gadipelli, S.; Guo, Z. X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1-60. doi:10.1016/j.pmatsci.2014.10.004.
    167 Gatica, S. M., Nekhai, A. & Scrivener, A. Adsorption and Gas Separation of Molecules by Carbon Nanohorns. Molecules 21, doi:10.3390/molecules21050662 (2016).
    168 Riess, J.R.; Krafft, M. P. Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials. 1998, 19, 1529-1539. doi.org/10.1016/S0142-9612(98)00071-4.
    169 Riess, J. G. Highly fluorinated systems for oxygen transport, diagnosis and drug delivery. Colloid Surf A Physicochem Eng Asp. 1994, 84, 33-48. doi.org/10.1016/0927-7757(93)02696-C
    170 Barbosa1, F.T.; Juca, M. J.; Castro, a.a.; Duarte, j.l.; Barbosa, L.T. Artificial oxygen carriers as a possible alternative to red cells in clinical practice. Sao Paulo Med J. 2009, 127, 97-100. doi.org/10.1590/S1516-31802009000200008.
    171 Dias, A. M. A.; Gonçalves, C. M. B.; Legido, J. L.; Coutinho, J. A. P.; Marrucho, I. M. Solubility of oxygen in substituted perfluorocarbons. Fluid Phase Equilibria. 2005, 238, 7-12. doi:10.1016/j.fluid.2005.09.011.
    172 Modery-Pawlowski, C. L.; Tian, L. L.; Pan, V.; Sen Gupta, A. Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromolecules. 2013, 14, 939-948. doi:10.1021/bm400074t.
    173 Farris, A.L.; Rindone, A.N.; Grayson, W.L. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B, 2016, 4, 3422-3432. doi: 10.1039/c5tb02635k.
    174 Riess, J.G.; Krafft, M. P. Fluorinated phosphocholine-based amphiphiles as components of fluorocarbon emulsions and fluorinated vesicles. Chem Phys Lipids. 1995, 75, 1-14. doi.org/10.1016/0009-3084(94)02402-Q.
    175 Riess, J. G. Oxygen Carriers (“Blood Substitutes”)sRaison d’Etre, Chemistry, and Some Physiology. Chem. Rev. 2001, 101, 2797−2919. doi:10.1021/cr970143c.
    176 Shah, K. J.; Imae, T. Analytical investigation of specific adsorption kinetics of CO2 gas on dendrimer loaded in organoclays. Chem. Eng. J. 2016, 283, 1366-1373. doi:10.1016/j.cej.2015.08.113.
    177 Shah, K. J.; Imae, T.; Ujihara, M.; Huang, S.J.; Wu, P.H.; Liu, S.B. Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3 and CO2. Chem Eng J. 2017, 312, 118-125. doi:10.1016/j.cej.2016.11.125.
    178 Cuia, L.; Liu, Y.; Wu, X.; Hu, Z.; Shi, Z.; Li, H. Fe3O4-decorated single-walled carbon nanohorns with extraordinary microwave absorption property. RSC Adv. 2015, 5, 75817–75822. doi:10.1039/x0xx00000x.
    179 Lodermeyer, F.; Costa, R. D.; Guldi, D. M. Implementation of Single-Walled Carbon Nanohorns into Solar Cell Schemes. Adv. Energy Mater. 2017, 7, 1601883-1601902. doi:10.1002/aenm.201601883.
    180 Aryee, E.; Dalai, A. K.; Adjaye, J. Functionalization and Characterization of Carbon Nanohorns (CNHs) for Hydrotreating of Gas Oils. Topics in Catalysis. 2013, 57, 796-805. doi:10.1007/s11244-013-0236-6.
    181 Hoenigman, J. R. An XPSs study of the adsorption of oxygen and water vapor on clean lithium films. Appl. Surf. Sci.1984, 18, 207-222. doi.org/10.1016/0378-5963(84)90045-X.
    182 Jones, T. E.; Rocha, T.C.R.; Gericke, A.K.; Stampfl, C.; Schlögl, R.; Piccinin, S. Insights into the Electronic Structure of the Oxygen Species Active in Alkene Epoxidation on Silver. ACS Catal. 2015, 5, 5846-5850. doi:10.1021/acscatal.5b01543.
    183 Peuckert, M. On the adsorption of oxygen and potassium hydroxide on silver. Surf. Sci. 1984, 146, 329-340. doi.org/10.1016/0039-6028(84)90434-5.
    184 Mekuria, S. L.; Debele, T. A., Tsai, H. C. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv. 2016, 6, 63761-63772. doi:10.1039/c6ra12895e.
    185 Pan, J.; Rostamizadeh, K.; Filipczak, N.; Torchilin, V. P. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules . 2019, 24. doi:10.3390/molecules24061035.
    186 Yang, J.; Su, H.; Sun, W.; Cai,J.; Liu, S.; Chai, Y.; Zhang, C. Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases. Theranostics. 2018, 8, 1966-1984. doi:10.7150/thno.23848.
    187 Wang, Y.; Zhang, H.; Hao, Z.; Li, B.; Li, M.; Xiuwen, W. Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv. 2016, 23, 1398-1403.doi:10.3109/10717544.2015.1055619.
    188 Zhang, Y.; Yang, C.; Wang, W.; Liu, J.; Liu, Q.; Huang, F.; Chu, L.; Gao, H.; Li, C.; Kong, D.; Liu, Q.; Liu, J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016, 6, 21225-21236. doi:10.1038/srep21225.
    199 Cui, T.; Zhang, S.; Sun, H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep. 2017, 37, 1253-1260. doi:10.3892/or.2017.5345.
    190 Khare, V.; Sakarchi, W. A.; Gupta, P. N.; Curtis, A. D. M.; Hoskins, C. Synthesis and characterization of TPGS–gemcitabine prodrug micelles for pancreatic cancer therapy. RSC Advances. 2016, 6, 60126-60137. doi:10.1039/c6ra09347g.
    191 Ni, S.; Qiu, L.; Zhang, G.; Zhou, H.; Han, Y. Lymph cancer chemotherapy: delivery of doxorubicin-gemcitabine prodrug and vincristine by nanostructured lipid carriers. Int J Nanomedicine. 2017, 12, 1565-1576. doi:10.2147/IJN.S120685.
    192 Liu, Y.; Fang, J.; Kim, Wong, M. K.; Wang, P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm. 2014, 11, 1651-1661. doi:10.1021/mp5000373.
    193 Devadas, B.; Changa, C.C.; Imae, T. Hydrogen evolution reaction efficiency of carbon nanohorn incorporating molybdenum sulfide and polydopamine/palladium nanoparticles. J Taiwan Inst Chem E. 2019, 102, 378–386. doi:org/10.1016/j.jtice.2019.05.014
    194 Poonjarernsilp, C.; Sano, N.; Tamon, H. Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Appl Catal B-Environ. 147, 726-732, doi:10.1016/j.apcatb.2013.10.006 (2014).
    195 Murakami, T.; Fan,J.; Yudasaka, M.; Iijima, S.; Shiba, K. Solubilization of Single-Wall Carbon Nanohorns Using a PEG-Doxorubicin Conjugate. Mol Pharm. 2006, 4, 407-414. doi:10.1021/mp060027a.
    196 Murakami, T.; Sawada, H.; Tamura, G.; Yudasaka, M.; Iijima, S.; Tsuchida, K. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine. 2008, 3, 453–463. doi.org/10.2217/17435889.3.4.453
    197 Miyawaki, J.; Yudasaka, M.; Azami, T.; Kubo, Y.; Iijima, S. Toxicity of Single-Walled Carbon Nanohorns. ACS Nano. 2008, 2, 213–226. doi.org/10.1021/nn700185t.
    198 Lin, B.; Zhou, S. Poly(ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings. Prog Org Coat. 2017, 106, 145-154. doi:10.1016/j.porgcoat.2017.02.008.
    199 Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev. 2012, 41, 4218-4244. doi:10.1039/c2cs15359a.
    200 Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010, 49, 6288-6308. doi:10.1002/anie.200902672.
    201 Voon, S. H.; Kue, C.H.; Imae, T.; Saw, W.S.; Lee, H.B.; Kiew, L.V.; Chung, L.Y.; Yusa, S. Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. Int J Pharm. 2017, 534, 136-143. doi:10.1016/j.ijpharm.2017.10.023.
    202 Massoumi, B.; Jafarpour, P.; Jaymand, M.; Entezami, A. A. Functionalized multiwalled carbon nanotubes as reinforcing agents for poly(vinyl alcohol) and poly(vinyl alcohol)/starch nanocomposites: synthesis, characterization and properties. Polym. Int. 2015, 64, 689-695. doi:10.1002/pi.4867.
    203 Abuilaiwi, A.J.; Laoui, T.; Al-Harthi, M.; Atieh, M.A. Modification and Functionalization of Multiwalled Carbon Nanotube (MWCNH) Via Fischer Esterification. Arab J Sci Eng. 2010, 35, 37-48. doi:10.13140/2.1.3447.3925.
    204 Yu, Z.; Sheng, X.C.; Qiang, L.M.; Xun, D.J.; Guang, Y.C.; Li, Z.X.; Si, C.X. Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Sci China Chem. 2014, 57, 624-632. doi:10.1007/s11426-014-5078-y. Sci
    205 Zhao, Q.; Li, N.; Shu, C.; Li, R.; Ma, X.; Li, X.; Wang, R.; Zhong, W.; Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity. J. Nanoparticle Res. 2015, 17, 207-221. doi:10.1007/s11051-015-3015-4.
    206 Chang, C. C.; Imae, T. Synergistic Performance of Composite Supercapacitors between Carbon Nanohorn and Conducting Polymer. ACS Sustain Chem Eng. 2018, 6, 5162-5172. doi:10.1021/acssuschemeng.7b04813.
    207 Danmaigoro, A.; Selvarajah, G. T.; Noor, M. H. M.; Mahmud, R.; Zakaria, M. Z. A. B. Development of Cockleshell (Anadara granosa) Derived CaCO3 Nanoparticle for Doxorubicin Delivery. J Comput Theor Nanos. 2017, 14, 5074-5086. doi:10.1166/jctn.2017.6920.

    無法下載圖示 全文公開日期 2024/10/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE