簡易檢索 / 詳目顯示

研究生: Mulu Alemayehu Abate
Mulu Alemayehu Abate
論文名稱: 水相合成三元(I-III-VI2)量子點於量子點敏化太陽能電池
Aqueous synthesis of ternary (I-III-VI2) quantum dots for quantum dots-sensitized solar cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 葉旻鑫
Min-Hsin Yeh
王丞浩
Chen-Hao Wang
江志強
Jyh-Chiang Jiang
林正嵐
Cheng-Lan Lin
黃志清
Chih-Ching Huang
張家耀
Jia-Yaw Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 174
中文關鍵詞: Quantum dotsQuantum dot sensitized solar cellsDouble passivation shellAgInSe2Lattice mismatchAgInSe2CuInS2CuInSe2Intermediate band
外文關鍵詞: Quantum dot sensitized solar cells, Double passivation shell, Lattice mismatch, AgInSe2, CuInSe2, Intermediate band
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於現今量子點敏化太陽能電池(QDSSCs)之研究中,設計出一高效能太陽能電池其元件組成間之界面反應為最重要的因素,其元件主要分為三個部分–光電極、背電極及電解液,而本研究主要針對元件之光電極進行改善,研究內容會分為三個部分進行探討。
    第一部分是探討AgInSe2 (AISe)量子點與雙鈍化層(CdS、ZnS)之間的晶格不匹配程度與光電轉換效率之關係。本實驗主要在AISe量子點與ZnS鈍化層中嵌入一CdS鈍化層並形成AISe/CdS/ZnS (core/shell/shell)雙鈍化層的形式,並藉此CdS鈍化層不僅可逐步改善原本AISe/ZnS間晶格不匹配程度高之原因,亦可大幅降低量子點的導帶上的電子被電解液的氧化還原電位所捕獲(逆電流)。而此AISe/CdS/ZnS雙鈍化層之太陽能電池其效率(PCE)為6.27 %,是目前量子點敏化劑以銀為主的QDSSCs中最高之效率。
    第二部分是在量子點敏化劑中利用錳(Mn)摻雜於銅銦硒(CuInSe2, CISe)量子點,並探討其Mn濃度與PCE的變化。在QDSSCs中的光電極部分,其量子點敏化劑會因Mn的摻雜並在TiO2與CISe量子點的導帶間產生中間能階,再分別利用IMPS和IMVS檢測可發現Mn摻雜不僅可縮短受光激發後電子注入TiO2的時間,並加快其注入的速率以利電子傳導至導電玻璃,以避免受光激發至量子點導帶的電子再與量子點價帶之電洞再結合,因此亦同時可發現其電子-電洞再結合之時間有增長的現象,且其最高光電轉換效率為6.28 %。
    第三部分是比較不同鈍化層披覆量子點表面並觀察PCE之變化。利用新穎的三元素CdZnS鈍化層披覆於量子點表面,不僅可有效抑制光電極與電解液之界面間的電子電洞再結合,還可提升光子捕獲的機率,使其QDSSCs之PCE從沒有鈍化層的3.99 %提升至8.83 %。


    In the present study, Interfacial engineering of the photoanode has been one of the most important strategies in designing high-performance quantum dot (QD)-sensitized solar cells (QDSSCs). In this work, we demonstrated a promising route to enhance the photovoltaic performance by inserting an additional CdS inner shell between AgInSe2 (AISe) QDs and a ZnS outer shell to obtain an AISe/CdS/ZnS core/shell/shell QDSSC. These double passivation shells not only provided a gradual stepwise change in the lattice parameter to suppress the interface strain but also acted as a stepped potential barrier to prevent current leakage from the QDs to the electrolyte. As a result, the AISe QDSSC with CdS/ZnS double passivation shells exhibited a remarkably high conversion efficiency (6.27%), which is significantly higher than those of devices without a passivation shell (1.02%) and with CdS (4.37%) or ZnS (5.23%) single passivation shells. To the best of the authors’ knowledge, this efficiency is one of the highest values obtained for an Ag-based QDSSC.
    The second part of this thesis presents, herein, we present a direct aqueous synthesis of manganese (Mn) doped CuInSe2 (Mn-CISe) quantum dots (QDs) under microwave irradiation to improve photochemical properties of the solar cells. As a result of Mn doping, the narrower bandgap energy in Mn-CISe leads to higher visible light absorption. The Mn-CISe QDs are then used as photosensitizers in quantum dot- sensitized solar cells (QDSSCs), exhibiting an enhanced performance that is dependent on the Mn concentration. To the best of our knowledge, this is the first time to construct an Mn-CISe sensitized-TiO2 photoanode to boost the photovoltaic performance in QDSSCs. The incorporation of Mn into CISe increases short-circuit current which is ascribed to effective injection of excited electrons from QDs to TiO2 and the consequent higher electron lifetime, likely through a newly formed Mn midgap in the CISe band structure. Compare to the undoped QDs, Mn-CISe QDSSCs show a shorter electron transport time (τt) and a longer electron recombination time (τr) which are studied by the intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS), respectively. Actually, a combination of higher light-harvesting efficiency, slower charge recombination, and longer electron lifetime give rise to the maximum photovoltaic performance of 6.28%.
    The third part of this thesis presents, the proper use of surface passivation layer in quantum dot (QD)-sensitized solar cells (QDSSCs) plays a crucial role in preventing surface charge recombination and, thus, improving the overall power conversion efficiency (PCE). In this work, we introduced a novel and facile ternary (CdZnS) passivation layer to enhance the photovoltaic performance of QDSSCs. Consequently, the device exhibits remarkably enhanced short-circuit current (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE). The QDSSCs with a CdZnS passivation layer confirmed strongly inhibited interfacial charge recombination and greatly enhanced light harvesting, resulting in a PCE of up to 8.83%, which is appreciably higher than 7.17% for the solar cells with a ZnS passivation layer and 3.99% for the solar cells without a passivation layer.

    CHINESE ABSTRACT i ABSTRACT iii ACKNOWLEDGMENTS v TABLE OF CONTENTS vi LIST OF FIGURES xi LIST OF TABLES xv LIST OF SCHEMES xvi LIST OF ABBREVIATIONS xvii CHAPTER-ONE 1 INTRODUCTION 1 1.1. GENERAL INTRODUCTION 2 1.2. OBJECTIVE OF THE STUDY 5 1.3. STRUCTURE OF THE DISSERTATION 6 CHAPTER-TWO 8 LITERATURE REVIEW 8 2.1. NANOPARTICLES 9 2.2. Semiconductor Quantum dots (QDs) 10 2.3. Unique properties of quantum dots (QDs) 13 2.3.1. Quantum confinement effect 13 2.3.2. Multiple Exciton Generation (MEG) 15 2.4. Quantum Dot Sensitized Solar Cells (QDSSCs) 17 2.5. Recent progress in photoanodes, counter electrodes, and electrolytes of QDSSCs 20 2.5.1. Photoanodes 20 2.5.2. Counter electrodes (CEs) 22 2.5.3. Polysulfide electrolytes 25 2.6. Working mechanism of QDSSCs 28 2.7. QDSSCs photovoltaic performance measurements 29 2.8. Deposition of QD films and core/shell structure of QDs 32 2.8.1. Doctor blading, Screen printing and Spin coating 33 2.8.2. Chemical bath deposition (CBD) 35 2.8.3. Successive ionic layer deposition (SILAR) 36 2.8.4. Electrophoretic deposition (EPD) 37 2.8.5. Linker-molecule assisted self-assembly 38 2.9. Core/shell structure of QDs 43 2.10. Synthesis of I-III-VI2 QDs 44 2.10.1. Nucleation and growth 46 2.10.2. Hot injection method 48 2.10.3. Non-injection (heating up) approach 49 2.10.4. Solvothermal approach 50 2.10.5. Hydrothermal approach 51 2.10.6. Microwave irradiation approach 52 CHAPTER-THREE 55 Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture 55 3.1. INTRODUCTION 56 3.2. EXPERIMENTAL SECTION 60 3.2.1. Materials 60 3.2.2. Preparation of mesoporous TiO2 60 3.2.3. Preparation of AISe QDs 61 3.2.4. Photoanode sensitization 61 3.2.5. Device fabrication 62 3.2.6. Sample characterization 63 3.3. RESULTS AND DISCUSSION 64 3.4. SUMMARY 80 CHAPTER-FOUR 81 Aqueous synthesis of Mn-doped CuInSe2 quantum dots to enhance the performance of quantum dot sensitized solar cells 81 4.1. INTRODUCTION 82 4.2. EXPERIMENTAL SECTION 85 4.2.1. Materials 85 4.2.2. Preparation of mesoporous TiO2 85 4.2.3. Preparation of CISe and Mn-CISe QDs 86 4.2.4. Photoanode sensitization 86 4.2.5. Device fabrication 87 4.2.6. Sample characterization 87 4.3. RESULTS AND DISCUSSION 89 4.4. SUMMARY 100 CHAPTER-FIVE 101 Novel ternary passivation layer for the Cu-based (CuInS2 and CuInSe2) quantum dots to enhance the performance of quantum dot sensitized solar cells 101 5.1. INTRODUCTION 102 5.2. EXPERIMENTAL SECTION 105 5.2.1. Materials 105 5.2.2. Fabrication of TiO2 photoanode 106 5.2.3. Preparation of CIS QDs 106 5.2.4. Photoanode sensitization 107 5.2.5. Device fabrication 107 5.2.6. Sample characterization 108 5.3. RESULTS AND DISCUSSION 109 5.4. SUMMARY 120 CHAPTER-SIX 121 CONCLUSIONS AND FUTURE OUTLOOKS 121 6.1. Conclusions 122 6.2. Future outlooks 124 REFERENCES 126 APPENDIX 146 CURRICULUM VITA 153

    [1] D. Esparza, I. Zarazúa, T. López-Luke, A. Cerdán-Pasarán, A. Sánchez-Solís, A. Torres-Castro, I. Mora-Sero, E. De la Rosa, Effect of different sensitization technique on the photoconversion efficiency of CdS quantum dot and CdSe quantum rod sensitized TiO2 solar cells, The Journal of Physical Chemistry C, 119 (2015) 13394-13403.
    [2] D. Esparza, I. Zarazúa, T. López-Luke, R. Carriles, A. Torres-Castro, E. De la Rosa, Photovoltaic properties of Bi2S3 and CdS quantum dot sensitized TiO2 solar cells, Electrochim. Acta, 180 (2015) 486-492.
    [3] D. Esparza, J. Oliva, T. López-Luke, R. Carriles, I. Zarazúa, E. De la Rosa, Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer, RSC Advances, 5 (2015) 36140-36148.
    [4] N. Lior, Energy resources and use: The present situation and possible paths to the future, Energy, 33 (2008) 842-857.
    [5] O. Morton, Solar energy: A new day dawning?: Silicon Valley sunrise, in, Nature Publishing Group, 2006.
    [6] N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proceedings of the National Academy of Sciences, 103 (2006) 15729-15735.
    [7] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev. (Washington, DC, U. S.), 110 (2010) 6595-6663.
    [8] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells, Chem. Rev. (Washington, DC, U. S.), 115 (2015) 2136-2173.
    [9] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev., 46 (2017) 5975-6023.
    [10] E. Centurioni, D. Iencinella, Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance, IEEE Electron Device Lett., 24 (2003) 177-179.
    [11] D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, A. Tiwari, Microstructural and chemical studies of interfaces between Cu (In, Ga) Se 2 and In 2 S 3 layers, J. Appl. Phys., 97 (2005) 084908.
    [12] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res., 42 (2009) 1788-1798.
    [13] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications, Chem. Rev. (Washington, DC, U. S.), 109 (2009) 5868-5923.
    [14] G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells, Chem. Rev. (Washington, DC, U. S.), 115 (2015) 12732-12763.
    [15] G. Hodes, Perovskite-based solar cells, Science, 342 (2013) 317-318.
    [16] M. Hanna, A. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 100 (2006) 074510.
    [17] A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells, Chem. Rev. (Washington, DC, U. S.), 110 (2010) 6873-6890.
    [18] O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science, 334 (2011) 1530-1533.
    [19] F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review, J. Aerosol Sci., 29 (1998) 511-535.
    [20] D.A. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, C. Burrus, Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect, Phys. Rev. Lett., 53 (1984) 2173.
    [21] X. Dong, J. Chen, Y. Ma, J. Wang, M.B. Chan-Park, X. Liu, L. Wang, W. Huang, P. Chen, Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water, Chem. Commun. (Cambridge, U. K.), 48 (2012) 10660-10662.
    [22] M. Green, Solution routes to III-V semiconductor quantum dots, Current opinion in solid state & materials science, 4 (2002) 355-363.
    [23] X. Lan, S. Masala, E.H. Sargent, Charge-extraction strategies for colloidal quantum dot photovoltaics, Nat. Mater., 13 (2014) 233.
    [24] P. Zrazhevskiy, M. Sena, X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery, Chem. Soc. Rev., 39 (2010) 4326-4354.
    [25] I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, J. Bisquert, Recombination in quantum dot sensitized solar cells, Acc. Chem. Res., 42 (2009) 1848-1857.
    [26] M. Kouhnavard, S. Ikeda, N.A. Ludin, N.A. Khairudin, B. Ghaffari, M. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells, Renewable and Sustainable Energy Reviews, 37 (2014) 397-407.
    [27] A. Nozik, Quantum dot solar cells, Physica E: Low-dimensional Systems and Nanostructures, 14 (2002) 115-120.
    [28] H. Gerischer, M. Michel-Beyerle, F. Rebentrost, H. Tributsch, Sensitization of charge injection into semiconductors with large band gap, Electrochim. Acta, 13 (1968) 1509-1515.
    [29] K. Kalyanasundaram, Photoelectrochemical cell studies with semiconductor electrodes? A classified bibliography (1975? 1983), Solar Cells, 15 (1985) 93-156.
    [30] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, nature, 353 (1991) 737.
    [31] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater., 2 (2003) 402.
    [32] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater., 4 (2005) 455.
    [33] X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8 (2008) 323-327.
    [34] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Cover Picture: Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?(Angew. Chem. Int. Ed. 1/2009), Angewandte Chemie International Edition, 48 (2009) 1-1.
    [35] A. Mishra, M.K. Fischer, P. Bäuerle, Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules, Angewandte Chemie International Edition, 48 (2009) 2474-2499.
    [36] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chem., 6 (2014) 242.
    [37] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chem., 6 (2014) 242.
    [38] G. Hodes, Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquid junction solar cells, The Journal of Physical Chemistry C, 112 (2008) 17778-17787.
    [39] P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells, Chem. Rev. (Washington, DC, U. S.), 110 (2010) 6664-6688.
    [40] P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, The Journal of Physical Chemistry C, 112 (2008) 18737-18753.
    [41] S. Rühle, M. Shalom, A. Zaban, Quantum‐dot‐sensitized solar cells, ChemPhysChem, 11 (2010) 2290-2304.
    [42] I. Mora-Seró, J. Bisquert, Breakthroughs in the development of semiconductor-sensitized solar cells, The journal of physical chemistry letters, 1 (2010) 3046-3052.
    [43] Z. Yang, C.-Y. Chen, P. Roy, H.-T. Chang, Quantum dot-sensitized solar cells incorporating nanomaterials, Chem. Commun. (Cambridge, U. K.), 47 (2011) 9561-9571.
    [44] I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, J. Bisquert, Recombination in Quantum Dot Sensitized Solar Cells, Acc. Chem. Res., 42 (2009) 1848-1857.
    [45] K. Zhao, Z. Pan, X. Zhong, Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells, The Journal of Physical Chemistry Letters, 7 (2016) 406-417.
    [46] J. Tian, G. Cao, Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells, The Journal of Physical Chemistry Letters, 6 (2015) 1859-1869.
    [47] P.V. Kamat, Boosting the Efficiency of Quantum Dot Sensitized Solar Cells through Modulation of Interfacial Charge Transfer, Acc. Chem. Res., 45 (2012) 1906-1915.
    [48] J. Tian, E. Uchaker, Q. Zhang, G. Cao, Hierarchically Structured ZnO Nanorods–Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 6 (2014) 4466-4472.
    [49] M. Seol, H. Kim, Y. Tak, K. Yong, Novel nanowire array based highly efficient quantum dot sensitized solar cell, Chem. Commun. (Cambridge, U. K.), 46 (2010) 5521-5523.
    [50] H.-L. Feng, W.-Q. Wu, H.-S. Rao, L.-B. Li, D.-B. Kuang, C.-Y. Su, Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 14826-14832.
    [51] W. Zhang, X. Zeng, H. Wang, R. Fang, Y. Xu, Y. Zhang, W. Chen, High-yield synthesis of “oriented attachment” TiO 2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells, RSC Advances, 6 (2016) 33713-33722.
    [52] Z. Du, H. Zhang, H. Bao, X. Zhong, Optimization of TiO 2 photoanode films for highly efficient quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 13033-13040.
    [53] J. Jean, S. Chang, P.R. Brown, J.J. Cheng, P.H. Rekemeyer, M.G. Bawendi, S. Gradečak, V. Bulović, ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells, Adv. Mater. (Weinheim, Ger.), 25 (2013) 2790-2796.
    [54] K. Mahmood, B.S. Swain, A. Amassian, Core–shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells, Nanoscale, 7 (2015) 12812-12819.
    [55] J. Tian, Q. Zhang, L. Zhang, R. Gao, L. Shen, S. Zhang, X. Qu, G. Cao, ZnO/TiO 2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells, Nanoscale, 5 (2013) 936-943.
    [56] J. Dong, Y. Zhu, S. Jia, Z. Zhu, Blocking the back reaction in quantum dot sensitized solar cells via surface modification with organic molecules, RSC Advances, 6 (2016) 14224-14228.
    [57] H.-M. Cheng, K.-Y. Huang, K.-M. Lee, P. Yu, S.-C. Lin, J.-H. Huang, C.-G. Wu, J. Tang, High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles, Phys. Chem. Chem. Phys., 14 (2012) 13539-13548.
    [58] D. Wu, J. He, S. Zhang, K. Cao, Z. Gao, F. Xu, K. Jiang, Multi-dimensional titanium dioxide with desirable structural qualities for enhanced performance in quantum-dot sensitized solar cells, J. Power Sources, 282 (2015) 202-210.
    [59] C. Cui, Y. Qiu, J. Zhao, B. Lu, H. Hu, Y. Yang, N. Ma, S. Xu, L. Xu, X. Li, A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes, Electrochim. Acta, 173 (2015) 551-558.
    [60] B.B. Jin, Y.F. Wang, J.H. Zeng, Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode, Chem. Phys. Lett., 660 (2016) 76-80.
    [61] F. Zhao, G. Tang, J. Zhang, Y. Lin, Improved performance of CdSe quantum dot-sensitized TiO2 thin film by surface treatment with TiCl4, Electrochim. Acta, 62 (2012) 396-401.
    [62] Y. Chen, Q. Lu, X. Yan, Q. Mo, Y. Chen, B. Liu, L. Teng, W. Xiao, L. Ge, Q. Wang, Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere, Nanoscale research letters, 11 (2016) 60-60.
    [63] G. Zhu, Z. Cheng, T. Lv, L. Pan, Q. Zhao, Z. Sun, Zn-doped nanocrystalline TiO 2 films for CdS quantum dot sensitized solar cells, Nanoscale, 2 (2010) 1229-1232.
    [64] L. Jiang, T. You, W.-Q. Deng, Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode, Nanotechnology, 24 (2013) 415401.
    [65] L. Li, X. Yang, W. Zhang, H. Zhang, X. Li, Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells, J. Power Sources, 272 (2014) 508-512.
    [66] H. Zhao, F. Huang, J. Hou, Z. Liu, Q. Wu, H. Cao, Q. Jing, S. Peng, G. Cao, Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles, ACS Appl. Mater. Interfaces, 8 (2016) 26675-26682.
    [67] T. Kawawaki, T. Tatsuma, Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles, Phys. Chem. Chem. Phys., 15 (2013) 20247-20251.
    [68] T.R. Chetia, M.S. Ansari, M. Qureshi, Graphitic carbon nitride as a photovoltaic booster in quantum dot sensitized solar cells: a synergistic approach for enhanced charge separation and injection, Journal of Materials Chemistry A, 4 (2016) 5528-5541.
    [69] J. Chen, C. Li, G. Eda, Y. Zhang, W. Lei, M. Chhowalla, W.I. Milne, W.-Q. Deng, Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods, Chem. Commun. (Cambridge, U. K.), 47 (2011) 6084-6086.
    [70] M.R. Golobostanfard, H. Abdizadeh, S. Mohajerzadeh, Incorporation of carbon nanotubes in a hierarchical porous photoanode of tandem quantum dot sensitized solar cells, Nanotechnology, 25 (2014) 345402.
    [71] S. Wang, J. Tian, Recent advances in counter electrodes of quantum dot-sensitized solar cells, RSC Advances, 6 (2016) 90082-90099.
    [72] M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo, C. Lin, Quantum‐Dot Sensitized Solar Cells Employing Hierarchical Cu2S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes, Advanced Energy Materials, 4 (2014) 1301564.
    [73] C. Chen, M. Ye, N. Zhang, X. Wen, D. Zheng, C. Lin, Preparation of hollow Co 9 S 8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 6311-6314.
    [74] F. Liu, J. Zhu, Y. Li, J. Wei, M. Lv, Y. Xu, L. Zhou, L. Hu, S. Dai, Earth-abundant Cu2SnSe3 thin film counter electrode for high-efficiency quantum dot-sensitized solar cells, J. Power Sources, 292 (2015) 7-14.
    [75] C.V. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Facile fabrication of highly efficient carbon nanotube thin film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot-sensitized solar cells, J. Power Sources, 311 (2016) 111-120.
    [76] A. Sahasrabudhe, S. Kapri, S. Bhattacharyya, Graphitic porous carbon derived from human hair as ‘green’counter electrode in quantum dot sensitized solar cells, Carbon, 107 (2016) 395-404.
    [77] J. Wei, C. Zhang, Z. Du, H. Li, W. Zou, Modification of carbon nanotubes with 4-mercaptobenzoic acid-doped polyaniline for quantum dot sensitized solar cells, Journal of Materials Chemistry C, 2 (2014) 4177-4185.
    [78] D.H. Youn, M. Seol, J.Y. Kim, J.W. Jang, Y. Choi, K. Yong, J.S. Lee, TiN Nanoparticles on CNT–Graphene Hybrid Support as Noble‐Metal‐Free Counter Electrode for Quantum‐Dot‐Sensitized Solar Cells, ChemSusChem, 6 (2013) 261-267.
    [79] X. Meng, C. Yu, B. Lu, J. Yang, J. Qiu, Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells, Nano Energy, 22 (2016) 59-69.
    [80] X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low‐cost copper zinc tin sulfide counter electrodes for high‐efficiency dye‐sensitized solar cells, Angewandte Chemie International Edition, 50 (2011) 11739-11742.
    [81] J.S. Tsai, K. Dehvari, W.C. Ho, K. Waki, J.Y. Chang, In Situ Microwave‐Assisted Fabrication of Hierarchically Arranged Metal Sulfide Counter Electrodes to Boost Stability and Efficiency of Quantum Dot‐Sensitized Solar Cells, Advanced Materials Interfaces, 6 (2019) 1801745.
    [82] H. Geng, L. Zhu, W. Li, H. Liu, Embedding iron sulfide (Fe-S) nanosheets into carbon electrode for efficient quantum dots-sensitized solar cells, Solar Energy, 147 (2017) 61-67.
    [83] S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, X. Zhong, Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%, The Journal of Physical Chemistry Letters, 8 (2017) 559-564.
    [84] M. Wu, X. Lin, Y. Wang, T. Ma, Counter electrode materials combined with redox couples in dye-and quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 19638-19656.
    [85] J. Duan, H. Zhang, Q. Tang, B. He, L. Yu, Recent advances in critical materials for quantum dot-sensitized solar cells: a review, Journal of Materials Chemistry A, 3 (2015) 17497-17510.
    [86] I. Hod, A. Zaban, Materials and Interfaces in Quantum Dot Sensitized Solar Cells: Challenges, Advances and Prospects, Langmuir, 30 (2014) 7264-7273.
    [87] H.-Y. Chen, L. Lin, X.-Y. Yu, K.-Q. Qiu, X.-Y. Lü, D.-B. Kuang, C.-Y. Su, Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells, Electrochim. Acta, 92 (2013) 117-123.
    [88] H. Wei, G. Wang, J. Shi, H. Wu, Y. Luo, D. Li, Q. Meng, Fumed SiO 2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability, Journal of Materials Chemistry A, 4 (2016) 14194-14203.
    [89] J. Du, X. Meng, K. Zhao, Y. Li, X. Zhong, Performance enhancement of quantum dot sensitized solar cells by adding electrolyte additives, Journal of Materials Chemistry A, 3 (2015) 17091-17097.
    [90] G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, X. Zhong, Poly (vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells, Journal of Materials Chemistry A, 4 (2016) 11416-11421.
    [91] C.-Y. Chou, C.-P. Lee, R. Vittal, K.-C. Ho, Efficient quantum dot-sensitized solar cell with polystyrene-modified TiO2 photoanode and with guanidine thiocyanate in its polysulfide electrolyte, J. Power Sources, 196 (2011) 6595-6602.
    [92] M. Chen, H. Chen, D. Shu, A. Li, D. Finlow, Effects of preparation condition and particle size distribution on fumed silica gel valve-regulated lead–acid batteries performance, J. Power Sources, 181 (2008) 161-171.
    [93] G. Chen, J. Seo, C. Yang, P.N. Prasad, Nanochemistry and nanomaterials for photovoltaics, Chem. Soc. Rev., 42 (2013) 8304-8338.
    [94] S. Emin, S.P. Singh, L. Han, N. Satoh, A. Islam, Colloidal quantum dot solar cells, Solar Energy, 85 (2011) 1264-1282.
    [95] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%, Japanese Journal of Applied Physics, 45 (2006) L638-L640.
    [96] L. El Chaar, L.A. lamont, N. El Zein, Review of photovoltaic technologies, Renewable and Sustainable Energy Reviews, 15 (2011) 2165-2175.
    [97] A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition, ACS Nano, 4 (2010) 5962-5968.
    [98] P.V. Kamat, Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics, The Journal of Physical Chemistry Letters, 4 (2013) 908-918.
    [99] C. Li, L. Yang, J. Xiao, Y.-C. Wu, M. Søndergaard, Y. Luo, D. Li, Q. Meng, B.B. Iversen, ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells, Phys. Chem. Chem. Phys., 15 (2013) 8710-8715.
    [100] L. Li, P. Zhu, S. Peng, M. Srinivasan, Q. Yan, A.S. Nair, B. Liu, S. Samakrishna, Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells, The Journal of Physical Chemistry C, 118 (2014) 16526-16535.
    [101] C. Justin Raj, S.N. Karthick, S. Park, K.V. Hemalatha, S.-K. Kim, K. Prabakar, H.-J. Kim, Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell, J. Power Sources, 248 (2014) 439-446.
    [102] D. Liu, P.V. Kamat, Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films, The Journal of Physical Chemistry, 97 (1993) 10769-10773.
    [103] H. Chen, W. Li, H. Liu, L. Zhu, A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition, Solar Energy, 84 (2010) 1201-1207.
    [104] V. Senthamilselvi, K. Saravanakumar, N. Jabena Begum, R. Anandhi, A.T. Ravichandran, B. Sakthivel, K. Ravichandran, Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques—a comparative study, J. Mater. Sci.: Mater. Electron., 23 (2012) 302-308.
    [105] F. Huang, J. Hou, Q. Zhang, Y. Wang, R.C. Massé, S. Peng, H. Wang, J. Liu, G. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer, Nano Energy, 26 (2016) 114-122.
    [106] X.-Y. Yu, J.-Y. Liao, K.-Q. Qiu, D.-B. Kuang, C.-Y. Su, Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition, ACS Nano, 5 (2011) 9494-9500.
    [107] D.H. Jara, S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dot-Sensitized Solar Cells, Chem. Mater., 26 (2014) 7221-7228.
    [108] W. Li, X. Zhong, Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells, The Journal of Physical Chemistry Letters, 6 (2015) 796-806.
    [109] D.F. Watson, Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum Dot−Substrate Architectures, The Journal of Physical Chemistry Letters, 1 (2010) 2299-2309.
    [110] J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells, J. Am. Chem. Soc., 135 (2013) 15913-15922.
    [111] S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, J. Bisquert, Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells, ACS Nano, 9 (2015) 908-915.
    [112] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability, ACS Nano, 7 (2013) 5215-5222.
    [113] Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, X. Zhong, Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%, Chem. Mater., 27 (2015) 8398-8405.
    [114] Z. Ren, Z. Wang, R. Wang, Z. Pan, X. Gong, X. Zhong, Effects of metal oxyhydroxide coatings on photoanode in quantum dot sensitized solar cells, Chem. Mater., 28 (2016) 2323-2330.
    [115] N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, R. Gómez, CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment, The Journal of Physical Chemistry C, 113 (2009) 4208-4214.
    [116] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture, Nano Lett., 1 (2001) 207-211.
    [117] L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt, L. Sun, Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte, J. Am. Chem. Soc., 133 (2011) 8458-8460.
    [118] D. Lawless, S. Kapoor, D. Meisel, Bifunctional capping of CdS nanoparticles and bridging to TiO2, The Journal of Physical Chemistry, 99 (1995) 10329-10335.
    [119] Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua, X. Zhong, Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells, ACS Nano, 6 (2012) 3982-3991.
    [120] J.R. Mann, D.F. Watson, Adsorption of CdSe Nanoparticles to Thiolated TiO2 Surfaces:  Influence of Intralayer Disulfide Formation on CdSe Surface Coverage, Langmuir, 23 (2007) 10924-10928.
    [121] J.-Y. Chang, C.-H. Li, Y.-H. Chiang, C.-H. Chen, P.-N. Li, Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance, ACS Appl. Mater. Interfaces, 8 (2016) 18878-18890.
    [122] P.-N. Li, A.V. Ghule, J.-Y. Chang, Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell, J. Power Sources, 354 (2017) 100-107.
    [123] K. Kim, H. Lee, J. Ahn, S. Jeong, Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS, Appl. Phys. Lett., 101 (2012) 073107.
    [124] P. Reiss, M. Protière, L. Li, Core/Shell Semiconductor Nanocrystals, Small, 5 (2009) 154-168.
    [125] A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. Weller, Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide, The Journal of Physical Chemistry, 98 (1994) 934-941.
    [126] D. Battaglia, J.J. Li, Y. Wang, X. Peng, Colloidal two‐dimensional systems: CdSe quantum shells and wells, Angewandte Chemie International Edition, 42 (2003) 5035-5039.
    [127] X. Zhong, R. Xie, Y. Zhang, T. Basche, W. Knoll, High-quality violet-to red-emitting ZnSe/CdSe core/shell nanocrystals, Chem. Mater., 17 (2005) 4038-4042.
    [128] L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, V.I. Klimov, Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission, J. Am. Chem. Soc., 133 (2011) 1176-1179.
    [129] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system, Chem. Mater., 18 (2006) 3330-3335.
    [130] B. Mao, C.-H. Chuang, F. Lu, L. Sang, J. Zhu, C. Burda, Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals, The Journal of Physical Chemistry C, 117 (2012) 648-656.
    [131] D. Che, X. Zhu, H. Wang, Y. Duan, Q. Zhang, Y. Li, Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging, J. Colloid Interface Sci., 463 (2016) 1-7.
    [132] C. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115 (1993) 8706-8715.
    [133] C.B. Murray, a.C. Kagan, M. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annual review of materials science, 30 (2000) 545-610.
    [134] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, Synthesis of Cu− In− S ternary nanocrystals with tunable structure and composition, J. Am. Chem. Soc., 130 (2008) 5620-5621.
    [135] R.P. Raffaelle, S.L. Castro, A.F. Hepp, S.G. Bailey, Quantum dot solar cells, Progress in Photovoltaics: Research and Applications, 10 (2002) 433-439.
    [136] S. Liu, H. Zhang, Y. Qiao, X. Su, One-pot synthesis of ternary CuInS 2 quantum dots with near-infrared fluorescence in aqueous solution, Rsc Advances, 2 (2012) 819-825.
    [137] S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor, The Journal of Physical Chemistry B, 108 (2004) 12429-12435.
    [138] M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, B.A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu (In x Ga1-x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics, J. Am. Chem. Soc., 130 (2008) 16770-16777.
    [139] R. Xie, M. Rutherford, X. Peng, Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors, J. Am. Chem. Soc., 131 (2009) 5691-5697.
    [140] H. Zhong, S.S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li, G.D. Scholes, Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties, ACS Nano, 4 (2010) 5253-5262.
    [141] H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, Y. Li, Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals, Chem. Mater., 20 (2008) 6434-6443.
    [142] J.J. Nairn, P.J. Shapiro, B. Twamley, T. Pounds, R. Von Wandruszka, T.R. Fletcher, M. Williams, C. Wang, M.G. Norton, Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors, Nano Lett., 6 (2006) 1218-1223.
    [143] S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors, Chem. Mater., 15 (2003) 3142-3147.
    [144] R. Xie, M. Rutherford, X. Peng, Formation of high-quality I− III− VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors, J. Am. Chem. Soc., 131 (2009) 5691-5697.
    [145] T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F. Marchal, B. Dubertret, Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity, ACS Nano, 4 (2010) 2531-2538.
    [146] M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, H. Maeda, Synthesis of Cu In S 2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect, The Journal of chemical physics, 129 (2008) 134709.
    [147] Y.-K. Kim, S.-H. Ahn, K. Chung, Y.-S. Cho, C.-J. Choi, The photoluminescence of CuInS 2 nanocrystals: effect of non-stoichiometry and surface modification, J. Mater. Chem., 22 (2012) 1516-1520.
    [148] Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito, K. Sumiyama, Defect-induced photoluminescence and third-order nonlinear optical response of chemically synthesized chalcopyrite CuInS2 nanoparticles, Chem. Phys. Lett., 466 (2008) 176-180.
    [149] V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., 72 (1950) 4847-4854.
    [150] P.M. Allen, M.G. Bawendi, Ternary I− III− VI quantum dots luminescent in the red to near-infrared, J. Am. Chem. Soc., 130 (2008) 9240-9241.
    [151] M.A. Hines, P. Guyot-Sionnest, Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals, The Journal of Physical Chemistry B, 102 (1998) 3655-3657.
    [152] L.S. Li, N. Pradhan, Y. Wang, X. Peng, High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors, Nano Lett., 4 (2004) 2261-2264.
    [153] M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size‐tunable near‐infrared emission: observation of post‐synthesis self‐narrowing of the particle size distribution, Adv. Mater. (Weinheim, Ger.), 15 (2003) 1844-1849.
    [154] J. Park, S.-W. Kim, CuInS 2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence, J. Mater. Chem., 21 (2011) 3745-3750.
    [155] H. Kim, J.Y. Han, D.S. Kang, S.W. Kim, D.S. Jang, M. Suh, A. Kirakosyan, D.Y. Jeon, Characteristics of CuInS2/ZnS quantum dots and its application on LED, J. Cryst. Growth, 326 (2011) 90-93.
    [156] Y.C. Cao, J. Wang, One-pot synthesis of high-quality zinc-blende CdS nanocrystals, J. Am. Chem. Soc., 126 (2004) 14336-14337.
    [157] C. Xia, L. Cao, W. Liu, G. Su, R. Gao, H. Qu, L. Shi, G. He, One-step synthesis of near-infrared emitting and size tunable CuInS 2 semiconductor nanocrystals by adjusting kinetic variables, CrystEngComm, 16 (2014) 7469-7477.
    [158] W. Zhang, X. Zhong, Facile synthesis of ZnS− CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst, Inorg. Chem., 50 (2011) 4065-4072.
    [159] M. Dai, S. Ogawa, T. Kameyama, K.-i. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, T. Torimoto, Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS 2 nanoparticles, J. Mater. Chem., 22 (2012) 12851-12858.
    [160] T. Kameyama, Y. Douke, H. Shibakawa, M. Kawaraya, H. Segawa, S. Kuwabata, T. Torimoto, Widely Controllable Electronic Energy Structure of ZnSe–AgInSe2 Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells, The Journal of Physical Chemistry C, 118 (2014) 29517-29524.
    [161] R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials, Chem. Soc. Rev., 31 (2002) 230-238.
    [162] H. Chen, S.-M. Yu, D.-W. Shin, J.-B. Yoo, Solvothermal synthesis and characterization of chalcopyrite CuInSe 2 nanoparticles, Nanoscale research letters, 5 (2010) 217.
    [163] W.-C. Huang, C.-H. Tseng, S.-H. Chang, H.-Y. Tuan, C.-C. Chiang, L.-M. Lyu, M.H. Huang, Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application, Langmuir, 28 (2012) 8496-8501.
    [164] K.-C. Cheng, W.-C. Law, K.-T. Yong, J.S. Nevins, D.F. Watson, H.-P. Ho, P.N. Prasad, Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications, Chem. Phys. Lett., 515 (2011) 254-257.
    [165] X. Tang, K. Yu, Q. Xu, E.S.G. Choo, G.K. Goh, J. Xue, Synthesis and characterization of AgInS 2–ZnS heterodimers with tunable photoluminescence, J. Mater. Chem., 21 (2011) 11239-11243.
    [166] W. Chung, H. Jung, C.H. Lee, S.H. Kim, Extremely high color rendering white light from surface passivated carbon dots and Zn-doped AgInS 2 nanocrystals, Journal of Materials Chemistry C, 2 (2014) 4227-4232.
    [167] D. Yao, H. Liu, Y. Liu, C. Dong, K. Zhang, Y. Sheng, J. Cui, H. Zhang, B. Yang, Phosphine-free synthesis of Ag–In–Se alloy nanocrystals with visible emissions, Nanoscale, 7 (2015) 18570-18578.
    [168] M.Z. Fahmi, J.-Y. Chang, Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting, Nanoscale, 5 (2013) 1517-1528.
    [169] Y. Chen, S. Li, L. Huang, D. Pan, Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots, Inorg. Chem., 52 (2013) 7819-7821.
    [170] W.-W. Xiong, G.-H. Yang, X.-C. Wu, J.-J. Zhu, Aqueous Synthesis of Color-Tunable CuInS2/ZnS Nanocrystals for the Detection of Human Interleukin 6, ACS Appl. Mater. Interfaces, 5 (2013) 8210-8216.
    [171] X. Gao, Z. Liu, Z. Lin, X. Su, CuInS 2 quantum dots/poly (l-glutamic acid)–drug conjugates for drug delivery and cell imaging, Analyst, 139 (2014) 831-836.
    [172] J. Weng, X. Song, L. Li, H. Qian, K. Chen, X. Xu, C. Cao, J. Ren, Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging, Talanta, 70 (2006) 397-402.
    [173] C. Wang, X. Gao, X. Su, In vitro and in vivo imaging with quantum dots, Anal. Bioanal. Chem., 397 (2010) 1397-1415.
    [174] A. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmüller, H. Weller, Synthesis and characterization of thiol‐stabilized CdTe nanocrystals, Berichte der Bunsengesellschaft für physikalische Chemie, 100 (1996) 1772-1778.
    [175] J. Song, T. Jiang, T. Guo, L. Liu, H. Wang, T. Xia, W. Zhang, X. Ye, M. Yang, L. Zhu, Facile synthesis of water-soluble Zn-doped AgIn5S8/ZnS core/shell fluorescent nanocrystals and their biological application, Inorg. Chem., 54 (2015) 1627-1633.
    [176] C. Wang, S. Xu, Y. Shao, Z. Wang, Q. Xu, Y. Cui, Synthesis of Ag doped ZnlnSe ternary quantum dots with tunable emission, Journal of Materials Chemistry C, 2 (2014) 5111-5115.
    [177] J.S. Gardner, E. Shurdha, C. Wang, L.D. Lau, R.G. Rodriguez, J.J. Pak, Rapid synthesis and size control of CuInS 2 semi-conductor nanoparticles using microwave irradiation, Journal of Nanoparticle Research, 10 (2008) 633-641.
    [178] C.-C. Wu, C.-Y. Shiau, D.W. Ayele, W.-N. Su, M.-Y. Cheng, C.-Y. Chiu, B.-J. Hwang, Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation, Chem. Mater., 22 (2010) 4185-4190.
    [179] R. Hoogenboom, U.S. Schubert, Microwave‐assisted polymer synthesis: Recent developments in a rapidly expanding field of research, Macromol. Rapid Commun., 28 (2007) 368-386.
    [180] H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J.r. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc., 131 (2009) 16000-16001.
    [181] J.M. Collins, N.E. Leadbeater, Microwave energy: a versatile tool for the biosciences, Org. Biomol. Chem., 5 (2007) 1141-1150.
    [182] W.-W. Xiong, G.-H. Yang, X.-C. Wu, J.-J. Zhu, Microwave-assisted synthesis of highly luminescent AgInS 2/ZnS nanocrystals for dynamic intracellular Cu (ii) detection, Journal of Materials Chemistry B, 1 (2013) 4160-4165.
    [183] M. Mousavi-Kamazani, M. Salavati-Niasari, A simple microwave approach for synthesis and characterization of Ag2S–AgInS2 nanocomposites, Composites Part B: Engineering, 56 (2014) 490-496.
    [184] J.-Y. Chang, G.-R. Chen, J.-D. Li, Synthesis of magnetofluorescence Gd-doped CuInS 2/ZnS quantum dots with enhanced longitudinal relaxivity, Phys. Chem. Chem. Phys., 18 (2016) 7132-7140.
    [185] F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers, ACS Appl. Mater. Interfaces, 8 (2016) 34482-34489.
    [186] I.P. Liu, L.-Y. Chen, Y.-L. Lee, Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells, J. Power Sources, 325 (2016) 706-713.
    [187] F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, G. Cao, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells, Nano Energy, 32 (2017) 433-440.
    [188] P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%, J. Am. Chem. Soc., 134 (2012) 2508-2511.
    [189] P. Lam, J. Wu, M. Tang, D. Kim, S. Hatch, I. Ramiro, V.G. Dorogan, M. Benamara, Y.I. Mazur, G.J. Salamo, J. Wilson, R. Allison, H. Liu, InAs/InGaP quantum dot solar cells with an AlGaAs interlayer, Sol. Energy Mater. Sol. Cells, 144 (2016) 96-101.
    [190] T. Zhao, E.D. Goodwin, J. Guo, H. Wang, B.T. Diroll, C.B. Murray, C.R. Kagan, Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer, ACS Nano, 10 (2016) 9267-9273.
    [191] M.D. Regulacio, M.-Y. Han, Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications, Acc. Chem. Res., 49 (2016) 511-519.
    [192] G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng, Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects, Nano Energy, 35 (2017) 17-25.
    [193] B. Mao, C.-H. Chuang, J. Wang, C. Burda, Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States, The Journal of Physical Chemistry C, 115 (2011) 8945-8954.
    [194] J. Yang, J.-Y. Kim, J.H. Yu, T.-Y. Ahn, H. Lee, T.-S. Choi, Y.-W. Kim, J. Joo, M.J. Ko, T. Hyeon, Copper–indium–selenide quantum dot-sensitized solar cells, Phys. Chem. Chem. Phys., 15 (2013) 20517-20525.
    [195] X. Kang, Y. Yang, L. Huang, Y. Tao, L. Wang, D. Pan, Large-scale synthesis of water-soluble CuInSe 2/ZnS and AgInSe 2/ZnS core/shell quantum dots, Green Chem., 17 (2015) 4482-4488.
    [196] C.-C. Chang, J.-K. Chen, C.-P. Chen, C.-H. Yang, J.-Y. Chang, Synthesis of Eco-Friendly CuInS2 Quantum Dot-Sensitized Solar Cells by a Combined Ex Situ/in Situ Growth Approach, ACS Appl. Mater. Interfaces, 5 (2013) 11296-11306.
    [197] Z. Pan, X. Zhong, A ZnS and metal hydroxide composite passivation layer for recombination control in high efficiency quantum dot sensitized solar cells, Journal of Materials Chemistry A, 4 (2016) 18976-18982.
    [198] X. Kang, Y. Yang, L. Huang, Y. Tao, L. Wang, D. Pan, Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots, Green Chem., 17 (2015) 4482-4488.
    [199] W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang, Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots, Journal of Materials Chemistry B, 5 (2017) 6193-6216.
    [200] K.-W. Cheng, C.-H. Yeh, Ternary AgInSe2 film electrode created using selenization of RF magnetron sputtered Ag–In metal precursor for photoelectrochemical applications, Int. J. Hydrogen Energy, 37 (2012) 13638-13644.
    [201] M.A. Mahdy, I. El Zawawi, The correlation of γ-irradiation, particle size and their effects on physical properties of AgInSe2 nanostructure thin films, Mater. Sci. Semicond. Process., 56 (2016) 43-51.
    [202] H. Mustafa, D. Hunter, A.K. Pradhan, U.N. Roy, Y. Cui, A. Burger, Synthesis and characterization of AgInSe2 for application in thin film solar cells, Thin Solid Films, 515 (2007) 7001-7004.
    [203] Z. Liu, X. Yang, Z. Wang, H. Qi, L. Ji, X. Li, C. Ma, Z. Deng, J. Deng, Shape-controlled synthesis of water-soluble AgInSe2 nanocrystals by a convenient solvothermal approach, Mater. Lett., 161 (2015) 442-446.
    [204] W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, X. Zhong, Alloying Strategy in Cu–In–Ga–Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 9 (2017) 5328-5336.
    [205] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, J. Am. Chem. Soc., 138 (2016) 4201-4209.
    [206] S.M. Kobosko, D.H. Jara, P.V. Kamat, AgInS2–ZnS Quantum Dots: Excited State Interactions with TiO2 and Photovoltaic Performance, ACS Appl. Mater. Interfaces, 9 (2017) 33379-33388.
    [207] C. Cai, L. Zhai, Y. Ma, C. Zou, L. Zhang, Y. Yang, S. Huang, Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells, J. Power Sources, 341 (2017) 11-18.
    [208] G. Halder, S. Bhattacharyya, Zinc-diffused silver indium selenide quantum dot sensitized solar cells with enhanced photoconversion efficiency, Journal of Materials Chemistry A, 5 (2017) 11746-11755.
    [209] C. Liu, L. Mu, J. Jia, X. Zhou, Y. Lin, Boosting the cell efficiency of CdSe quantum dot sensitized solar cell via a modified ZnS post-treatment, Electrochim. Acta, 111 (2013) 179-184.
    [210] C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control, Nanoscale, 7 (2015) 12552-12563.
    [211] Y.-S. Lee, C.V.V.M. Gopi, A. Eswar Reddy, C. Nagaraju, H.-J. Kim, High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer, New J. Chem., 41 (2017) 1914-1917.
    [212] A. Tubtimtae, K.-Y. Cheng, M.-W. Lee, Ag2S quantum dot-sensitized WO3 photoelectrodes for solar cells, J. Solid State Electrochem., 18 (2014) 1627-1633.
    [213] I. Hwang, K. Yong, Environmentally benign and efficient Ag2S‐ZnO nanowires as photoanodes for solar cells: Comparison with CdS‐ZnO nanowires, ChemPhysChem, 14 (2013) 364-368.
    [214] W.J. Mir, A. Swarnkar, R. Sharma, A. Katti, K.V. Adarsh, A. Nag, Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell, The Journal of Physical Chemistry Letters, 6 (2015) 3915-3922.
    [215] A. Tubtimtae, M.-W. Lee, G.-J. Wang, Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting, J. Power Sources, 196 (2011) 6603-6608.
    [216] W.-C. Yang, M.-W. Lee, Enhanced photovoltaic performance in AgSbS2 liquid-junction semiconductor-sensitized solar cells, J. Electrochem. Soc., 161 (2014) H92-H96.
    [217] P.-C. Huang, W.-C. Yang, M.-W. Lee, AgBiS2 Semiconductor-Sensitized Solar Cells, The Journal of Physical Chemistry C, 117 (2013) 18308-18314.
    [218] J.-J. Wu, R.-C. Chang, D.-W. Chen, C.-T. Wu, Visible to near-infrared light harvesting in Ag 2 S nanoparticles/ZnO nanowire array photoanodes, Nanoscale, 4 (2012) 1368-1372.
    [219] B. Liu, D. Wang, Y. Zhang, H. Fan, Y. Lin, T. Jiang, T. Xie, Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices, Dalton Trans., 42 (2013) 2232-2237.
    [220] I. Hwang, M. Seol, H. Kim, K. Yong, Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS, Appl. Phys. Lett., 103 (2013) 023902.
    [221] K.-C. Cheng, W.-C. Law, K.-T. Yong, J.S. Nevins, D.F. Watson, H.-P. Ho, P.N. Prasad, Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications, Chem. Phys. Lett., 515 (2011) 254-257.
    [222] T. Sasamura, K.-i. Okazaki, A. Kudo, S. Kuwabata, T. Torimoto, Photosensitization of ZnO rod electrodes with AgInS2 nanoparticles and ZnS-AgInS2 solid solution nanoparticles for solar cell applications, RSC Advances, 2 (2012) 552-559.
    [223] K.P. Kadlag, P. Patil, M.J. Rao, S. Datta, A. Nag, Luminescence and solar cell from ligand-free colloidal AgInS 2 nanocrystals, CrystEngComm, 16 (2014) 3605-3612.
    [224] Y. Wang, Q. Zhang, Y. Li, H. Wang, Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance, Nanoscale, 7 (2015) 6185-6192.
    [225] L.-C. Chen, Y.-C. Ho, R.-Y. Yang, J.-H. Chen, C.-M. Huang, Electrodeposited AgInSe2 onto TiO2 films for semiconductor-sensitized solar cell application: The influence of electrodeposited time, Appl. Surf. Sci., 258 (2012) 6558-6563.
    [226] Z.-C. Wang, S.-H. Xu, C.-l. Wang, L. Zhu, F. Bo, X.-Y. Lin, Z.-Y. Wang, Y.-P. Cui, Application of aqueous Ag:ZnInSe quantum dots to non-toxic sensitized solar cells, RSC Advances, 5 (2015) 46186-46191.
    [227] S. Zhou, J. Yang, W. Li, Q. Jiang, Y. Luo, D. Zhang, Z. Zhou, X. Li, Preparation and photovoltaic properties of ternary AgBiS2 quantum dots sensitized TiO2 nanorods photoanodes by electrochemical atomic layer deposition, J. Electrochem. Soc., 163 (2016) D63-D67.
    [228] B.T. Sneed, A.P. Young, C.-K. Tsung, Building up strain in colloidal metal nanoparticle catalysts, Nanoscale, 7 (2015) 12248-12265.
    [229] X. Yang, M. Yanagida, L. Han, Reliable evaluation of dye-sensitized solar cells, Energy & Environmental Science, 6 (2013) 54-66.
    [230] H.J. Lee, J. Bang, J. Park, S. Kim, S.-M. Park, Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes, Chem. Mater., 22 (2010) 5636-5643.
    [231] H. Wei, G. Wang, J. Shi, H. Wu, Y. Luo, D. Li, Q. Meng, Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability, Journal of Materials Chemistry A, 4 (2016) 14194-14203.
    [232] G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, X. Zhong, Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells, Journal of Materials Chemistry A, 4 (2016) 11416-11421.
    [233] H.N. Ghosh, S. Maiti, J. Dana, Correlating Charge Carrier Dynamics with Efficiency in Quantum Dot Solar Cells: Can Excitonics Lead to Highly Efficient Devices?, Chemistry–A European Journal, (2018).
    [234] Y.-H. Chiang, K.-Y. Lin, Y.-H. Chen, K. Waki, M.A. Abate, J.-C. Jiang, J.-Y. Chang, Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 6 (2018) 9629-9641.
    [235] R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett., 5 (2005) 865-871.
    [236] B.-R. Hyun, Y.-W. Zhong, A.C. Bartnik, L. Sun, H.D. Abruna, F.W. Wise, J.D. Goodreau, J.R. Matthews, T.M. Leslie, N.F. Borrelli, Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles, ACS Nano, 2 (2008) 2206-2212.
    [237] Y. Liu, D. Kim, O.P. Morris, D. Zhitomirsky, J.C. Grossman, Origins of the Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and Defects, ACS Nano, 12 (2018) 2838-2845.
    [238] S. Jiao, J. Wang, Q. Shen, Y. Li, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%, Journal of Materials Chemistry A, 4 (2016) 7214-7221.
    [239] J. Hou, H. Zhao, F. Huang, L. Chen, Q. Wu, Z. Liu, S. Peng, N. Wang, G. Cao, Facile one-step fabrication of CdS 0.12 Se 0.88 quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells, Journal of Materials Chemistry A, 6 (2018) 9866-9873.
    [240] K. Veerathangam, M.S. Pandian, P. Ramasamy, Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells, J. Mater. Sci.: Mater. Electron., 29 (2018) 7318-7324.
    [241] S. Yang, P. Zhao, X. Zhao, L. Qu, X. Lai, InP and Sn: InP based quantum dot sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 21922-21929.
    [242] B.B. Srivastava, S. Jana, N. Pradhan, Doping Cu in semiconductor nanocrystals: some old and some new physical insights, J. Am. Chem. Soc., 133 (2010) 1007-1015.
    [243] K. Veerathangam, M.S. Pandian, P. Ramasamy, Photovoltaic performance of Ag-doped CdS quantum dots for solar cell application, Mater. Res. Bull., 94 (2017) 371-377.
    [244] A. Attar-Lamraski, M. Mousavi-Kamazani, F. Beshkar, Facile hydrothermal synthesis of CuInTe 2 quantum dots using reseda as a green capping agent for increasing the efficiency of dye sensitized solar cells, J. Mater. Sci.: Mater. Electron., 28 (2017) 6366-6372.
    [245] M.G. Panthani, C.J. Stolle, D.K. Reid, D.J. Rhee, T.B. Harvey, V.A. Akhavan, Y. Yu, B.A. Korgel, CuInSe2 quantum dot solar cells with high open-circuit voltage, The journal of physical chemistry letters, 4 (2013) 2030-2034.
    [246] M.-A. Langevin, T. Pons, A.M. Ritcey, C.N. Allen, Near-infrared emitting AgInTe 2 and Zn-Ag-In-Te colloidal nanocrystals, Nanoscale research letters, 10 (2015) 255.
    [247] J. Feng, X. Yang, Tunable fluorescence emission of ternary nonstoichiometric Ag–In–S alloyed nanocrystals, Journal of Nanoparticle Research, 14 (2012) 1044.
    [248] W. Li, Z. Pan, X. Zhong, CuInSe 2 and CuInSe 2–ZnS based high efficiency “green” quantum dot sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 1649-1655.
    [249] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%, J. Am. Chem. Soc., 138 (2016) 4201-4209.
    [250] W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong, Cosensitized quantum dot solar cells with conversion efficiency over 12%, Adv. Mater. (Weinheim, Ger.), 30 (2018) 1705746.
    [251] L. Zhang, Z. Pan, W. Wang, J. Du, Z. Ren, Q. Shen, X. Zhong, Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency, Journal of Materials Chemistry A, 5 (2017) 21442-21451.
    [252] J. Tian, L. Lv, C. Fei, Y. Wang, X. Liu, G. Cao, A highly efficient (> 6%) Cd 1− x Mn x Se quantum dot sensitized solar cell, Journal of Materials Chemistry A, 2 (2014) 19653-19659.
    [253] C.V. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots, Dalton Trans., 44 (2015) 630-638.
    [254] K. Veerathangam, M.S. Pandian, P. Ramasamy, Photovoltaic performance of Pb-doped CdS quantum dots for solar cell application, Mater. Lett., 220 (2018) 74-77.
    [255] S.V. Nistor, M. Stefan, L.C. Nistor, D. Ghica, I.D. Vlaicu, A.C. Joita, Doping ultrasmall cubic ZnS nanocrystals with Mn2+ ions over a broad nominal concentration range, The Journal of Physical Chemistry C, 119 (2015) 23781-23789.
    [256] W. Chen, A.G. Joly, J.-O. Malm, J.-O. Bovin, Upconversion luminescence of Eu 3+ and Mn 2+ in ZnS: Mn 2+, Eu 3+ codoped nanoparticles, J. Appl. Phys., 95 (2004) 667-672.
    [257] G. Huang, C. Wang, S. Xu, Z. Qi, C. Lu, Y. Cui, Ag-and Mn-doped ZnInS/ZnS dual-emission quantum dots with zone tunability in the color coordinate, Nanotechnology, 27 (2016) 185602.
    [258] N.S. Karan, D. Sarma, R. Kadam, N. Pradhan, Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals, The Journal of Physical Chemistry Letters, 1 (2010) 2863-2866.
    [259] P.-Y. Lai, C.-C. Huang, T.-H. Chou, K.-L. Ou, J.-Y. Chang, Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging, Acta biomaterialia, 50 (2017) 522-533.
    [260] T.P. Nguyen, T.T. Ha, T.T. Nguyen, N.P. Ho, T.D. Huynh, Q.V. Lam, Effect of Cu 2+ ions doped on the photovoltaic features of CdSe quantum dot sensitized solar cells, Electrochim. Acta, (2018).
    [261] M. Dissanayake, T. Jaseetharan, G. Senadeera, C. Thotawatthage, A novel, PbS: Hg quantum dot-sensitized, highly efficient solar cell structure with triple layered TiO2 photoanode, Electrochim. Acta, 269 (2018) 172-179.
    [262] N. Firoozi, H. Dehghani, M. Afrooz, Cobalt-doped cadmium sulfide nanoparticles as efficient strategy to enhance performance of quantum dot sensitized solar cells, J. Power Sources, 278 (2015) 98-103.
    [263] N.S. Sabri, M.S.M. Deni, A. Zakaria, M.K. Talari, Effect of Mn Doping on Structural and Optical Properties of SnO2 Nanoparticles Prepared by Mechanochemical Processing, Physics Procedia, 25 (2012) 233-239.
    [264] S. Jana, G. Manna, B.B. Srivastava, N. Pradhan, Tuning the Emission Colors of Semiconductor Nanocrystals Beyond their Bandgap Tunability: All in the Dope, Small, 9 (2013) 3753-3758.
    [265] T. Shen, J. Tian, L. Lv, C. Fei, Y. Wang, T. Pullerits, G. Cao, Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell, Electrochim. Acta, 191 (2016) 62-69.
    [266] P.K. Santra, Y.-S. Chen, Role of Mn2+ in doped quantum dot solar cell, Electrochim. Acta, 146 (2014) 654-658.
    [267] J. Albero, J.N. Clifford, E. Palomares, Quantum dot based molecular solar cells, Coord. Chem. Rev., 263 (2014) 53-64.
    [268] J. Yang, M.K. Choi, D.H. Kim, T. Hyeon, Designed assembly and integration of colloidal nanocrystals for device applications, Adv. Mater. (Weinheim, Ger.), 28 (2016) 1176-1207.
    [269] Q. Cao, O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, D.B. Mitzi, Defects in Cu (In, Ga) Se2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance, Advanced Energy Materials, 1 (2011) 845-853.
    [270] K.E. Roelofs, T.P. Brennan, S.F. Bent, Interface engineering in inorganic-absorber nanostructured solar cells, The journal of physical chemistry letters, 5 (2014) 348-360.
    [271] J.R. Swierk, T.E. Mallouk, Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells, Chem. Soc. Rev., 42 (2013) 2357-2387.
    [272] M.R. Kim, D. Ma, Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges, The Journal of Physical Chemistry Letters, 6 (2015) 85-99.
    [273] M.C. Beard, Multiple Exciton Generation in Semiconductor Quantum Dots, The Journal of Physical Chemistry Letters, 2 (2011) 1282-1288.
    [274] M. Deng, S. Shen, X. Wang, Y. Zhang, H. Xu, T. Zhang, Q. Wang, Controlled synthesis of AgInS 2 nanocrystals and their application in organic–inorganic hybrid photodetectors, CrystEngComm, 15 (2013) 6443-6447.
    [275] H. Zhong, Z. Bai, B. Zou, Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications, The journal of physical chemistry letters, 3 (2012) 3167-3175.
    [276] J. Huang, B. Xu, C. Yuan, H. Chen, J. Sun, L. Sun, H. Ågren, Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation, ACS Appl. Mater. Interfaces, 6 (2014) 18808-18815.
    [277] J.B. Sambur, B.A. Parkinson, CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces, J. Am. Chem. Soc., 132 (2010) 2130-2131.
    [278] L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized Ti O 2 inverse opal solar cells, Appl. Phys. Lett., 91 (2007) 023116.
    [279] S. Verma, S. Kaniyankandy, H.N. Ghosh, Charge separation by indirect bandgap transitions in CdS/ZnSe type-II core/shell quantum dots, The Journal of Physical Chemistry C, 117 (2013) 10901-10908.
    [280] M. Hamada, N. Takenokoshi, K. Matozaki, Q. Feng, N. Murase, S.-i. Wakida, S. Nakanishi, V. Biju, In situ photochemical surface passivation of CdSe/ZnS quantum dots for quantitative light emission and enhanced photocurrent response in solar cells, The Journal of Physical Chemistry C, 118 (2013) 2178-2186.
    [281] K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells, The Journal of Physical Chemistry C, 117 (2013) 5584-5592.
    [282] F. Huang, Q. Zhang, B. Xu, J. Hou, Y. Wang, R.C. Massé, S. Peng, J. Liu, G. Cao, A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells, Journal of Materials Chemistry A, 4 (2016) 14773-14780.
    [283] Y.-S. Lee, C.V. Gopi, A.E. Reddy, C. Nagaraju, H.-J. Kim, High performance of TiO 2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer, New J. Chem., 41 (2017) 1914-1917.
    [284] Y. Xu, W. Chen, X. Ding, X. Pan, L. Hu, S. Yang, J. Zhu, S. Dai, An ultrathin SiO 2 blocking layer to suppress interfacial recombination for efficient Sb 2 S 3-sensitized solar cells, Inorganic Chemistry Frontiers, 5 (2018) 1370-1377.
    [285] X. Wang, R. Liu, T. Wang, B. Wang, Y. Xu, H. Wang, Dual roles of ZnS thin layers in significant photocurrent enhancement of ZnO/CdTe nanocable arrays photoanode, ACS Appl. Mater. Interfaces, 5 (2013) 3312-3316.
    [286] M.A. Abate, J.-Y. Chang, Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture, Sol. Energy Mater. Sol. Cells, 182 (2018) 37-44.
    [287] A. Shabaev, M. Mehl, A.L. Efros, Energy band structure of CuInS 2 and optical spectra of CuInS 2 nanocrystals, Physical Review B, 92 (2015) 035431.
    [288] D. Patidar, N. Saxena, T. Sharma, Structural, optical and electrical properties of CdZnS thin films, J. Mod. Opt., 55 (2008) 79-88.

    無法下載圖示 全文公開日期 2024/10/31 (校內網路)
    全文公開日期 2024/10/31 (校外網路)
    全文公開日期 2024/10/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE