簡易檢索 / 詳目顯示

研究生: Endashaw Tilahun Gizaw
Endashaw Tilahun Gizaw
論文名稱: 氮氣選擇之金屬玻璃鍍層/PAN薄膜和BMIM[BF4]離子液體溶解金屬玻璃的異常現象
Unusual Behavior of Nitrogen Selective Thin Film Metallic Glass/ Polyacrylonitrile Membrane and TFMG Dissolution in BMIM[BF4]-Ionic Liquid.
指導教授: 朱瑾
Jinn Chu
胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
吳昌謀
Chang-Mou Wu
劉英麟
Ying-Ling Liu
李魁然
Kueir-Rarn Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 136
中文關鍵詞: TFMG/PAN複合膜氮氣選擇離子液體溶解濺射沉積
外文關鍵詞: TFMG/PAN, Nitrogen selective, [BMIM][BF4], TFMG-IL solution, sputtering deposition
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先提出簡單有效的方法製備thin film metallic glass/ polyacrylonitrile氣體分離複合薄膜,Zr60Cu25Al10Ni5基金屬玻璃在不加熱的條件下以RF濺鍍方式,沉積於PAN基材膜表面形成複合薄膜,FE-SEM、XRD和TGA分別被用於鑑定薄膜的表面型態、結晶性及熱穩定性。氣體滲透裝置(GPA)與微天秤(Cahn)則用於量測薄膜的氣體透過與吸附行為,可調控單一能量慢速正電子束分析顯示TFMG選擇層厚度與層內孔洞尺寸有密切關係,氮氣透過薄膜的能力優於氧氣及二氧化碳,氮氣和孔壁間的吸附較弱和氮氣在孔洞中快速擴散造成此結果。薄膜最佳的氮氣透過係數為4288GPU,N2/CO2選擇係數接近2,本研究顯示TFMG/PAN複合薄膜在氮氣選擇的應用具有發展潛力。
    本論文第二部分探討Zr60Cu25Al10Ni5非結晶合金粉末在離子液體中的不尋常溶解行為,鋯基金屬玻璃粉末被溶解於1-Butyl-3 methyl imidazolium tetrafluoroborate ([BMIM][BF4])離子液體中,SEM、XRD、DSC、FTIR和XPS被用於鑑定所製備的材料和其特性,TFMG-IL溶液中的顆粒大小與化學偏移分別使用動態光散射(DLS)和1H及13C核磁共振量測。TFMG/BMIM[BF4]溶液中顆粒平均粒徑為100-500 nm,強酸性離子液體和靜電吸引力促使離子液體進入非結晶合金內部導致溶解行為。整體而言,本論文提出薄層金屬玻璃在不同離子液體(BMIM[BF4]和BMIM[Cl])中的不尋常溶解行為,同時亦探討了TFMG特異的氣體分離行為。


    This Ph.D thesis presents a simple and efficient method to produce a thin film metallic glass/ polyacrylonitrile composite membrane for gas separation applications. Zr60Cu25Al10Ni5 -based thin film metallic glass (TFMG) was coated on polyacrylonitrile (PAN) substrate to form composite membrane successfully using RF sputter deposition without external heating. The membranes surface morphology, crystallography, and thermal stability were characterized using FE-SEM, XRD, and TGA, respectively. Gas permeation performance ability of the membranes were investigated by gas permeation analyzer (GPA) and microbalance (Cahn) respectively. Variable monoenergy slow positron beam analysis revealed a strong correlation between the pore size and coating thickness of TFMG active layers. The resulting membranes were more permeable to N2 than to CO2 or O2 due to weaker interactions with the pore walls and faster diffusion. The best N2 performance was 4288 GPU with ideal selectivity of nearly 2.0 for N2/CO2. We demonstrated the considerable potential of TFMG/PAN composite as a membrane for nitrogen selective applications.
    In the second part of this study, the unusual dissolution behavior of an amorphous Zr60Cu25Al10Ni5 – powder alloy in ionic liquid has been investigated. Zr-based TFMG powders were dissolved in 1-Butyl-3 methyl imidazolium tetrafluoroborate ([BMIM][BF4])-ionic liquid. Material prepared and were characterized by SEM, XRD, DSC, FT-IR and XPS spectroscopy. The particle size and chemical shift present in TFMG-IL solutions were detected by dynamic light scattering (DLS) and 1H and 13C NMR. Therefore, Metallic glass powders were dissolved in BMIM[BF4], shows the formation of nanoparticles having a mean size of touching in the range of 100-500 nm. Consequently, the strong acidity nature of ILs and the Coulombic forces facilitate the solvent molecules with metallic ions out of their amorphous alloy that drive the dissolution performance. Overall, this dissertation provides, an over view of selective dissolution behavior of TFMG incorporated with widely used ionic liquids such as BMIM[BF4], BMIM[Cl] and proposes an effective way to enhance the performance of gas separation behavior of the novel material.

    Chapter 1 Introduction 1 1.1 Background of the study 1 1.2 Motivation and Objective 6 1.3. Thesis organization 8 Chapter 2 Literature Review 9 2.1 History of Metallic Glass 9 2.2 Production of Metallic Glasses 11 2.3 Bulk metallic glass (BMG) 12 2.4 Mechanical Properties of Metallic glass 15 2.5 Concept of Amorphous State/Supercooled Liquid/Crystalline Solid 19 2.6 Unique Properties of Thin Film Metallic Glass (TFMG) 21 2.6.1 TFMG and its Application 24 2.6.2 TFMG/ PAN Membrane for Oil/Water Separation 32 2.7 Gas Separation Membranes 37 2.7.1 Membrane Transport Mechanisms for Gas Separation 38 2.7.2 Selection of Membrane Materials 42 2.7.3 Polymeric Membranes 43 2.7.4 Polyacrylonitrile (PAN) 44 2.7.5 Metallic Membranes 45 2.8 Unique Property of Ionic Liquids and its Application 47 2.8.1 Selective dissolution behavior of amorphous alloy in dilute HCl solution 48 Chapter 3 Fabrication of TFMG/Polyacrylonitrile Composite Membrane for Gas Separation 51 3.1 Experimental Procedures 51 3.1.1 Materials and Methods 51 3.1.2 Preparation of TFMG/PAN Composite Membrane 51 3.2 Characterization of membrane 52 3.3 Gas transport through a membrane 52 3.4 Pore Size Analysis of Thin-Film Metallic Glasses 54 3. 5 Results and discussion-1 56 3.5.1 Membrane Surface Morphology and Roughness Analysis 56 3.5.2 Crystallinity and Thermal Behavior 61 3.5.3 Pore Size Analysis of TFMG/PAN Composite Membranes 62 3.5.4 Gas separation performance of TFMG/PAN composite membrane 65 3.5.5 Summary-1 70 Chapter 4 Unusual Dissolution Behavior of TFMGs in Ionic Liquid 71 4.1 Experimental Sections 71 4.1.1 Material and Methods 71 4.2 Instrumentation and Analysis Methods 72 4.3 Result and Discussions-2 73 4.3.1 Dissolution of TFMG under Ionic liquid 73 4.3.2 Crystallography and Chemical structures of TFMG and TFMG-IL powders. 79 4.3.3 Thermal Properties of TFMG and MG-IL powders 81 4.3.4 Determination of Particle Size of IL and TFMG-IL solutions 83 4.3.5. XPS characterization of the surface film 85 4.3.6 1H and 13C NMR study 88 4.3.7 Conductivity Behavior 91 4.4.8 Summary-2 93 Chapter 5. Conclusions 94 Chapter 6. References 96

    [1] Nunes SP, Culfaz-Emecen PZ, Ramon GZ, Visser T, Koops GH, Jin W, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science. 2020;598:117761.
    [2] Liu M, Gurr PA, Fu Q, Webley PA, Qiao GG. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A. 2018;6(46):23169-96.
    [3] Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. Journal of Membrane Science. 2010;359(1):115-25.
    [4] Hashim SS, Mohamed AR, Bhatia S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews. 2011;15(2):1284-93.
    [5] Baker RW. Future Directions of Membrane Gas Separation Technology. Industrial & Engineering Chemistry Research. 2002;41(6):1393-411.
    [6] Bazhenov SD, Borisov IL, Bakhtin DS, Rybakova AN, Khotimskiy VS, Molchanov SP, et al. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation. Green Energy & Environment. 2016;1(3):235-45.
    [7] Dorosti F, Omidkhah MR, Pedram MZ, Moghadam F. Fabrication and characterization of polysulfone/polyimide–zeolite mixed matrix membrane for gas separation. Chemical Engineering Journal. 2011;171(3):1469-76.
    [8] Liang CZ, Chung T-S, Lai J-Y. A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science. 2019;97:101141.
    [9] Bakhtin DS, Kulikov LA, Legkov SA, Khotimskiy VS, Levin IS, Borisov IL, et al. Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks. Journal of Membrane Science. 2018;554:211-20.
    [10] Lim H, Gu Y, Oyama ST. Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium- and silica-based membranes. Journal of Membrane Science. 2012;396:119-27.
    [11] Zhang K, Way JD. Palladium-copper membranes for hydrogen separation. Separation and Purification Technology. 2017;186:39-44.
    [12] Qiao A, Zhang K, Tian Y, Xie L, Luo H, Lin YS, et al. Hydrogen separation through palladium–copper membranes on porous stainless steel with sol–gel derived ceria as diffusion barrier. Fuel. 2010;89(6):1274-9.
    [13] Chin H-S, Suh J-Y, Park K-W, Lee W, Fleury E. Hydrogen permeability of glass-forming Ni-Nb-Zr-Ta crystalline membranes. Met Mater Int. 2011;17.
    [14] Barison S, Fasolin S, Boldrini S, Ferrario A, Romano M, Montagner F, et al. PdAg/alumina membranes prepared by high power impulse magnetron sputtering for hydrogen separation. International Journal of Hydrogen Energy. 2018;43(16):7982-9.
    [15] Santucci A, Tosti S, Basile A. 4 - Alternatives to palladium in membranes for hydrogen separation: nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes. In: Basile A, editor. Handbook of Membrane Reactors: Woodhead Publishing; 2013. p. 183-217.
    [16] Palumbo O, Trequattrini F, Pal N, Hulyalkar M, Sarker S, Chandra D, et al. Hydrogen absorption properties of amorphous (Ni0.6Nb0.4−yTay)100−xZrx membranes. Progress in Natural Science: Materials International. 2017;27(1):126-31.
    [17] Syrtsova DA, Borisevich OB, Shkrebko OA, Teplyakov VV, Grinshpan DD, Khotimskii VS, et al. The permeability of gases and light hydrocarbons through new polymeric composite membranes based on poly (1-trimethylsilylpropyne). Separation and Purification Technology. 2007;57(3):435-9.
    [18] Zhang G, Meng H, Ji S. Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance. Desalination. 2009;242(1):313-24.
    [19] Liang CZ, Chung T-S. Robust thin film composite PDMS/PAN hollow fiber membranes for water vapor removal from humid air and gases. Separation and Purification Technology. 2018;202:345-56.
    [20] Wu Q-Y, Liu B-T, Li M, Wan L-S, Xu Z-K. Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights. Journal of Membrane Science. 2013;437:227-36.
    [21] Wu Q-Y, Wan L-S, Xu Z-K. Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. Journal of Membrane Science. 2012;409-410:355-64.
    [22] Chuang C-Y, Lee J-W, Li C-L, Chu JP. Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass. Surface and Coatings Technology. 2013;215:312-21.
    [23] Chu JP, Liu T-Y, Li C-L, Wang C-H, Jang JSC, Chen M-J, et al. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Films. 2014;561:102-7.
    [24] Jia H, Liu F, An Z, Li W, Wang G, Chu JP, et al. Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films. 2014;561:2-27.
    [25] Kassa ST, Hu C-C, Liao Y-C, Chen J-K, Chu JP. Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane. Surface and Coatings Technology. 2019;368:33-41.
    [26] Dong F, He M, Zhang Y, Luo L, Su Y, Wang B, et al. Effects of hydrogen on the nanomechanical properties of a bulk metallic glass during nanoindentation. International Journal of Hydrogen Energy. 2017;42(40):25436-45.
    [27] Dong F, Lu S, Zhang Y, Luo L, Su Y, Wang B, et al. Effect of hydrogen addition on the mechanical properties of a bulk metallic glass. Journal of Alloys and Compounds. 2017;695:3183-90.
    [28] Lee J, Liou M-L, Duh J-G. The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application. Surface and Coatings Technology. 2017;310:214-22.
    [29] Nkou Bouala GI, Etiemble A, Der Loughian C, Langlois C, Pierson JF, Steyer P. Silver influence on the antibacterial activity of multi-functional Zr-Cu based thin film metallic glasses. Surface and Coatings Technology. 2018;343:108-14.
    [30] Chu J-H, Lee J, Chang C-C, Chan Y-C, Liou M-L, Lee J-W, et al. Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass. Surface and Coatings Technology. 2014;259:87-93.
    [31] Gizaw ET, Yeh H-H, Chu JP, Hu C-C. Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation. Separation and Purification Technology. 2020;237:116340.
    [32] Nayebossadri S, Smith D, Speight J, Book D. Amorphous Zr-based thin films fabricated by magnetron sputtering for potential application in hydrogen purification. Journal of Alloys and Compounds. 2015;645:S56-S60.
    [33] Nayebossadri S, Greenwood CJ, Speight JD, Book D. Thermal and structural stability of Zr–based amorphous thin films for potential application in hydrogen purification. Separation and Purification Technology. 2017;187:173-83.
    [34] Park K-W, Ahn J-P, Seok H-K, Kim Y-C. Relationship between activation energy for hydrogen permeation and hydrogen permeation properties of amorphous Cu50Zr50 and Cu65Zr35 membranes. Intermetallics. 2011;19(12):1887-90.
    [35] Lai T, Yin H, Lind ML. The hydrogen permeability of Cu–Zr binary amorphous metallic membranes and the importance of thermal stability. Journal of Membrane Science. 2015;489:264-9.
    [36] Aburada T, Fitz-Gerald JM, Scully JR. Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corrosion Science. 2011;53(5):1627-32.
    [37] Huang Y, Guo Y, Fan H, Shen J. Synthesis of Fe–Cr–Mo–C–B amorphous coating with high corrosion resistance. Materials Letters. 2012;89:229-32.
    [38] Lucente AM, Scully JR. Pitting and alkaline dissolution of an amorphous–nanocrystalline alloy with solute-lean nanocrystals. Corrosion Science. 2007;49(5):2351-61.
    [39] Kim B-K, Lee EJ, Kang Y, Lee J-J. Application of ionic liquids for metal dissolution and extraction. Journal of Industrial and Engineering Chemistry. 2018;61:388-97.
    [40] Verma C, Ebenso EE, Quraishi MA. Transition metal nanoparticles in ionic liquids: Synthesis and stabilization. Journal of Molecular Liquids. 2019;276:826-49.
    [41] Mansoor SS, Aswin K, Logaiya K, Sudhan SPN. [Bmim]BF4 ionic liquid: An efficient reaction medium for the one-pot multi-component synthesis of 2-amino-4,6-diphenylpyridine-3-carbonitrile derivatives. Journal of Saudi Chemical Society. 2016;20(5):517-22.
    [42] Mihaylov L, Lyubenova L, Gerdjikov T, Nihtianova D, Spassov T. Selective dissolution of amorphous Zr–Cu–Ni–Al alloys. Corrosion Science. 2015;94:350-8.
    [43] Mihailov L, Redzheb M, Spassov T. Selective dissolution of amorphous and nanocrystalline Zr2Ni. Corrosion Science. 2013;74:308-13.
    [44] Axinte E. Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals. Materials & Design. 2012;35:518-56.
    [45] Klement W, Willens RH, Duwez POL. Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nature. 1960;187(4740):869-70.
    [46] Wu Z, Lan S, Kui H. Crystallization of phase-separated Pd41.25Ni 41.25P17.5 BMGs. Metallurgical and Materials Transactions A. 2014;45.
    [47] Cheng YQ, Ma E. Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science. 2011;56(4):379-473.
    [48] Telford M. The case for bulk metallic glass. Materials Today. 2004;7(3):36-43.
    [49] Xu T, Pang S, Li H, Zhang T. Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness. Journal of Non-Crystalline Solids. 2015;410:20-5.
    [50] Watanabe LY, Roberts S, Baca N, Wiest A, Garrett S, Conner R. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments. Materials science & engineering C, Materials for biological applications. 2013;33:4021-5.
    [51] Li XP, Roberts MP, O'Keeffe S, Sercombe TB. Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties. Materials & Design. 2016;112:217-26.
    [52] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia. 2000;48(1):279-306.
    [53] Jones H. The status of rapid solidification of alloys in research and application. Journal of Materials Science. 1984;19(4):1043-76.
    [54] Eckert J. Mechanical alloying of highly processable glassy alloys. Materials Science and Engineering: A. 1997;226-228:364-73.
    [55] Dambatta MS, Izman S, Yahaya B, Lim JY, Kurniawan D. Mg-based bulk metallic glasses for biodegradable implant materials: A review on glass forming ability, mechanical properties, and biocompatibility. Journal of Non-Crystalline Solids. 2015;426:110-5.
    [56] Sun BA, Wang WH. The fracture of bulk metallic glasses. Progress in Materials Science. 2015;74:211-307.
    [57] Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia. 2007;55(12):4067-109.
    [58] Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia. 2002;50(13):3501-12.
    [59] Mukherjee S, Schroers J, Zhou Z, Johnson WL, Rhim WK. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Materialia. 2004;52(12):3689-95.
    [60] Zhang W, Guo H, Li Y, Wang Y, Wang H, Chen M, et al. Formation and properties of P-free Pd-based metallic glasses with high glass-forming ability. Journal of Alloys and Compounds. 2014;617:310-3.
    [61] Johnson WL. Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin. 2013;24(10):42-56.
    [62] Inoue A, Zhang T. Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method. Materials Transactions, JIM. 1996;37:185-7.
    [63] Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T. Ti-based amorphous alloys with a wide supercooled liquid region. Materials Letters. 1994;19(3):131-5.
    [64] Kim DH, Kim WT, Park ES, Mattern N, Eckert J. Phase separation in metallic glasses. Progress in Materials Science. 2013;58(8):1103-72.
    [65] Li HX, Lu ZC, Wang SL, Wu Y, Lu ZP. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Progress in Materials Science. 2019;103:235-318.
    [66] Kim HJ, Lee JK, Shin SY, Jeong HG, Kim DH, Bae JC. Cu-based bulk amorphous alloys prepared by consolidation of amorphous powders in the supercooled liquid region. Intermetallics. 2004;12(10):1109-13.
    [67] Qiao D, Peker A. Enhanced glass forming ability in Zr-based bulk metallic glasses with Hf Addition. Intermetallics. 2012;24:115-9.
    [68] Tulu B, Chu JP, Wang S-F. Conducting filaments in Pt/ZrCuOy/Pt resistive switching memory cells. Materials Chemistry and Physics. 2015;168:95-100.
    [69] Hunger G, Mordike BL. Mechanical properties of metallic glasses. Journal of Non-Crystalline Solids. 1983;56(1):231-6.
    [70] Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Progress in Materials Science. 2010;55(8):759-839.
    [71] Xu J, Ma E. Damage-tolerant Zr–Cu–Al-based bulk metallic glasses with record-breaking fracture toughness. Journal of Materials Research. 2014;29(14):1489-99.
    [72] Suryanarayana C. Mechanical behavior of emerging materials. Materials Today. 2012;15(11):486-98.
    [73] Zhang WG, Zhang Y, Hao GJ, Lin JP. A comparison of the nucleation and growth of shear bands in Ti and Zr-based bulk metallic glasses by in-situ tensile tests. Materials Science and Engineering: A. 2009;516(1):148-53.
    [74] Xie S, George EP. Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing. Acta Materialia. 2008;56(18):5202-13.
    [75] Khong JC, Connolley T, Mi J. The onset of plasticity of a Zr-based bulk metallic glass. International Journal of Plasticity. 2014;60.
    [76] Cheng J, Liang X, Xu B, Wu Y. Microstructure and Wear Behavior of FeBSiNbCr Metallic Glass Coatings. J Mater Sci Technol. 2009;25.
    [77] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia. 2011;59(6):2243-67.
    [78] Li L, Homer ER, Schuh CA. Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Materialia. 2013;61(9):3347-59.
    [79] Zhang M, Deng L, Yao D, Jin J, Wang X. Multilayered scale formation during Zr-based metallic glass oxidation in the supercooled liquid region. Corrosion Science. 2016;111:556-67.
    [80] Qiao JC, Pelletier JM. Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review. Journal of Materials Science & Technology. 2014;30(6):523-45.
    [81] Yu C-C, Chu JP, Lee C-M, Diyatmika W, Chang MH, Jeng J-Y, et al. Bending property enhancements of Zr55Cu30Al10Ni5 bulk metallic glass: Effects of various surface modifications. Materials Science and Engineering A. 2015;633:69-75.
    [82] Yu C-C, Lee CM, Chu JP, Greene JE, Liaw PK. Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature. APL Materials. 2016;4(11).
    [83] Korkmaz S, Kariper İA. Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review. Journal of Non-Crystalline Solids. 2020;527:119753.
    [84] Liu YH, Fujita T, Hirata A, Li S, Liu HW, Zhang W, et al. Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics. 2012;21(1):105-14.
    [85] Kuan SY, Huang JC. Improving the ductility of thin film metallic glasses via nano-twinning. Thin Solid Films. 2014;561:43-7.
    [86] Gludovatz B, Naleway SE, Ritchie RO, Kruzic JJ. Size-dependent fracture toughness of bulk metallic glasses. Acta Materialia. 2014;70:198-207.
    [87] Diyatmika W, Chu JP, Kacha BT, Yu C-C, Lee C-M. Thin film metallic glasses in optoelectronic, magnetic, and electronic applications: A recent update. Current Opinion in Solid State and Materials Science. 2015;19(2):95-106.
    [88] Kabla M, Seiner H, Musilova M, Landa M, Shilo D. The relationships between sputter deposition conditions, grain size, and phase transformation temperatures in NiTi thin films. Acta Materialia. 2014;70:79-91.
    [89] Wang C, Wang T, Cao L, Wang G, Zhang G. Solid solution or amorphous phase formation in Al-Mo alloyed films and their mechanical properties. Journal of Alloys and Compounds. 2018;746:77-83.
    [90] Diyatmika W, Wang T-Y, Chu JP, Wang S-F. Sub-10 nm multicomponent oxide with forming-free resistive switching characteristics. Thin Solid Films. 2019;688:137450.
    [91] Lee C-M, Jeng RJ, Yu C-C, Chang C-H, Li C-L, Chu JP. Mechanical property evaluations of an amorphous metallic/ceramic multilayer and its role in improving fatigue properties of 316L stainless steel. Materials Science and Engineering A. 2016;671:198-202.
    [92] Wang C, Liao Y-C, Chu JP, Hsueh C-H. Viscous flow and viscosity measurement of low-temperature imprintable AuCuSi thin film metallic glasses investigated by nanoindentation creep. Materials and Design. 2017;123:112-9.
    [93] Yu C-C, Chu JP, Jia H, Shen Y-L, Gao Y, Liaw PK, et al. Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling. Materials Science and Engineering A. 2017;692:146-55.
    [94] Li C-L, Chu JP, Lee J-W. Measuring notch toughness of thin film metallic glasses using focused ion beam-based microcantilever method: Comparison with Ti and TiN crystalline films. Materials Science and Engineering A. 2017;698:104-9.
    [95] Chu JP, Diyatmika W, Tseng Y-J, Liu Y-K, Liao W-C, Chang S-H, et al. Coating Cutting Blades with Thin-Film Metallic Glass to Enhance Sharpness. Scientific Reports. 2019;9(1):15558.
    [96] Chen J-K, Chen W-T, Cheng C-C, Yu C-C, Chu JP. Metallic glass nanotube arrays: Preparation and surface characterizations. Materials Today. 2018;21(2):178-85.
    [97] Etiemble A, Der Loughian C, Apreutesei M, Langlois C, Cardinal S, Pelletier JM, et al. Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. Journal of Alloys and Compounds. 2017;707:155-61.
    [98] Apreutesei M, Steyer P, Billard A, Joly-Pottuz L, Esnouf C. Zr–Cu thin film metallic glasses: An assessment of the thermal stability and phases’ transformation mechanisms. Journal of Alloys and Compounds. 2015;619:284-92.
    [99] Chu J, Yu C-C, Tanatsugu Y, Yasuzawa M, Shen Y-L. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Scientific Reports. 2016;6:31847.
    [100] Chu JP, Yu C-C, Tanatsugu Y, Yasuzawa M, Shen Y-L. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Scientific Reports. 2016;6(1):31847.
    [101] Chu JP, Bönninghoff N, Yu C-C, Liu Y-K, Chiang G-H. Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber. Thin Solid Films. 2019;688:137320.
    [102] Chang C-H, Li C-L, Yu C-C, Chen Y-L, Chyntara S, Chu JP, et al. Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing. Surface and Coatings Technology. 2018;344:312-21.
    [103] Chu J-H, Chen H-W, Chan Y-C, Duh J-G, Lee J-W, Jang JS-C. Modification of structure and property in Zr-based thin film metallic glass via processing temperature control. Thin Solid Films. 2014;561:38-42.
    [104] Tao M, Chokshi A, Conner R, Ravichandran G, Johnson W. Deformation and crystallization of Zr-based amorphous alloys In homogeneous flow regime. Journal of Materials Research. 2010;25.
    [105] Lee J, Duh J-G. Structural evolution of Zr-Cu-Ni-Al-N thin film metallic glass and its diffusion barrier performance in Cu-Si interconnect at elevated temperature. Vacuum. 2017;142:81-6.
    [106] Hu X, Yu Y, Zhou J, Wang Y, Liang J, Zhang X, et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science. 2015;476:200-4.
    [107] Padaki M, Surya Murali R, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, et al. Membrane technology enhancement in oil–water separation. A review. Desalination. 2015;357:197-207.
    [108] Obaid M, Tolba GMK, Motlak M, Fadali OA, Khalil KA, Almajid AA, et al. Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chemical Engineering Journal. 2015;279:631-8.
    [109] Abadi SRH, Sebzari MR, Hemati M, Rekabdar F, Mohammadi T. Ceramic membrane performance in microfiltration of oily wastewater. Desalination. 2011;265(1):222-8.
    [110] Meng C, Yang L, Wu Y, Tan J, Dang W, He X, et al. Study of the oxidation behavior of CrN coating on Zr alloy in air. Journal of Nuclear Materials. 2019;515:354-69.
    [111] Sagitha P, Reshmi CR, Sundaran SP, Sujith A. Recent advances in post-modification strategies of polymeric electrospun membranes. European Polymer Journal. 2018;105:227-49.
    [112] Liu X, Li M, Han G, Dong J. The catalysts supported on metallized electrospun polyacrylonitrile fibrous mats for methanol oxidation. Electrochimica Acta. 2010;55(8):2983-90.
    [113] Dai Z, Ansaloni L, Deng L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy & Environment. 2016;1(2):102-28.
    [114] Yeo ZY, Chew TL, Zhu PW, Mohamed AR, Chai S-P. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. Journal of Natural Gas Chemistry. 2012;21(3):282-98.
    [115] Pandey P, Chauhan RS. Membranes for gas separation. Progress in Polymer Science. 2001;26(6):853-93.
    [116] Garcia-Fayos J, Serra JM, Luiten-Olieman MWJ, Meulenberg WA. 8 - Gas separation ceramic membranes. In: Guillon O, editor. Advanced Ceramics for Energy Conversion and Storage: Elsevier; 2020. p. 321-85.
    [117] Ma X-H, Yang S-Y. Chapter 6 - Polyimide Gas Separation Membranes. In: Yang S-Y, editor. Advanced Polyimide Materials: Elsevier; 2018. p. 257-322.
    [118] Asad A, Sameoto D, Sadrzadeh M. Chapter 1 - Overview of membrane technology. In: Sadrzadeh M, Mohammadi T, editors. Nanocomposite Membranes for Water and Gas Separation: Elsevier; 2020. p. 1-28.
    [119] Koros WJ, Fleming GK. Membrane-based gas separation. Journal of Membrane Science. 1993;83(1):1-80.
    [120] Sadrzadeh M, Rezakazemi M, Mohammadi T. Fundamentals and Measurement Techniques for Gas Transport in Polymers. 2018. p. 391-423.
    [121] Ockwig NW, Nenoff TM. Membranes for Hydrogen Separation. Chemical Reviews. 2007;107(10):4078-110.
    [122] Baker RW, Low BT. Gas Separation Membrane Materials: A Perspective. Macromolecules. 2014;47(20):6999-7013.
    [123] Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science. 1991;62(2):165-85.
    [124] Lin L, Kong Y, Wang G, Qu H, Yang J, Shi D. Selection and crosslinking modification of membrane material for FCC gasoline desulfurization. Journal of Membrane Science. 2006;285(1):144-51.
    [125] Shoaib Suleman M, Lau KK, Yeong YF. Characterization and Performance Evaluation of PDMS/PSF Membrane for CO2/CH4 Separation under the Effect of Swelling2016.
    [126] Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science. 2015;43:1-32.
    [127] Yu S, Li S, Liu Y, Cui S, Shen X. High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science. 2019;573:425-38.
    [128] Sridhar S, Bee S, Bhargava S. Membrane-based Gas Separation: Principle, Applications and Future Potential2014.
    [129] Lokhandwala KA, Pinnau I, He Z, Amo KD, DaCosta AR, Wijmans JG, et al. Membrane separation of nitrogen from natural gas: A case study from membrane synthesis to commercial deployment. Journal of Membrane Science. 2010;346(2):270-9.
    [130] Chong K, Lai S, Lau WJ, Thiam H, Ismail A, Roslan R. Preparation, Characterization, and Performance Evaluation of Polysulfone Hollow Fiber Membrane with PEBAX or PDMS Coating for Oxygen Enhancement Process2018.
    [131] Ohs B, Lohaus J, Wessling M. Optimization of membrane based nitrogen removal from natural gas. Journal of Membrane Science. 2016;498:291-301.
    [132] Chong K, Lai S-O, Thiam HS, Teoh HC, Heng S. Recent progress of oxygen/nitrogen separation using membrane technology2016.
    [133] Chong K, Lai S-O, San Thiam H, Lau WJ. The Progress of Polymeric Membrane Separation Technique in O2/N2 Separation2016.
    [134] E Vinogradov N, G Kagramanov G. The development of polymer membranes and modules for air separation2018.
    [135] Ockwig NW, Nenoff TM. Membranes for Hydrogen Separation. Chemical Reviews. 2010;110(4):2573-4.
    [136] Phair JW, Donelson R. Developments and Design of Novel (Non-Palladium-Based) Metal Membranes for Hydrogen Separation. Industrial & Engineering Chemistry Research. 2006;45(16):5657-74.
    [137] Chandrasekhar N, Sholl DS. Quantitative computational screening of Pd-based intermetallic membranes for hydrogen separation. Journal of Membrane Science. 2014;453:516-24.
    [138] Gao H, Lin YS, Li Y, Zhang B. Chemical Stability and Its Improvement of Palladium-Based Metallic Membranes. Industrial & Engineering Chemistry Research. 2004;43(22):6920-30.
    [139] Yun S, Ted Oyama S. Correlations in palladium membranes for hydrogen separation: A review. Journal of Membrane Science. 2011;375(1):28-45.
    [140] Jayalakshmi S, Vasantha VS, Fleury E, Gupta M. Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications. Applied Energy. 2012;90(1):94-9.
    [141] Eliaz N, Fuks D, Eliezer D. A new model for the diffusion behavior of hydrogen in metallic glasses. Acta Materialia. 1999;47(10):2981-9.
    [142] Alentiev AY, Loza KA, Yampolskii YP. Development of the methods for prediction of gas permeation parameters of glassy polymers: polyimides as alternating co-polymers. Journal of Membrane Science. 2000;167(1):91-106.
    [143] Kohoutová M, Sikora A, Hovorka Š, Randová A, Schauer J, Tišma M, et al. Influence of ionic liquid content on properties of dense polymer membranes. European Polymer Journal. 2009;45(3):813-9.
    [144] Sahrash R, Siddiqa A, Razzaq H, Iqbal T, Qaisar S. PVDF based ionogels: applications towards electrochemical devices and membrane separation processes. Heliyon. 2018;4(11):e00847.
    [145] Setua P, Pramanik R, Sarkar S, Ghatak C, Rao VG, Sarkar N, et al. Synthesis of silver nanoparticle in imidazolium and pyrolidium based ionic liquid reverse micelles: A step forward in nanostructure inorganic material in room temperature ionic liquid field. Journal of Molecular Liquids. 2011;162(1):33-7.
    [146] Zeman P, Zítek M, Zuzjaková Š, Čerstvý R. Amorphous Zr-Cu thin-film alloys with metallic glass behavior. Journal of Alloys and Compounds. 2017;696:1298-306.
    [147] Qin F, Dan Z, Hara N, Li W, Li Y. Selective dissolution of an amorphous Mg65Cu25Y10 alloy in organic acids and dilute HCl solution. Materials Chemistry and Physics. 2016;179:27-34.
    [148] Wang WH, Dong C, Shek CH. Bulk metallic glasses. Materials Science and Engineering: R: Reports. 2004;44(2):45-89.
    [149] Chen M. A brief overview of bulk metallic glasses. NPG Asia Materials. 2011;3(9):82-90.
    [150] Lee J, Huang K-H, Hsu K-C, Tung H-C, Lee J-W, Duh J-G. Applying composition control to improve the mechanical and thermal properties of Zr–Cu–Ni–Al thin film metallic glass by magnetron DC sputtering. Surface and Coatings Technology. 2015;278:132-7.
    [151] Chen H-W, Hsu K-C, Chan Y-C, Duh J-G, Lee J-W, Jang JS-C, et al. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass. Thin Solid Films. 2014;561:98-101.
    [152] Chu J, Huang J, Jang SC, Wang Y, Liaw P. Thin film metallic glasses: Preparations, properties, and applications. Jom. 2010;62:19-24.
    [153] Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, et al. Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films. 2012;520(16):5097-122.
    [154] Sun W, Liu J, Chu H, Dong B. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes. 2013;3(3).
    [155] Wang Z-G, Wan L-S, Xu Z-K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science. 2007;304(1):8-23.
    [156] Liu J, Wei J. Knudsen diffusion in channels and networks. Chemical Engineering Science. 2014;111:1-14.
    [157] Zito PF, Caravella A, Brunetti A, Drioli E, Barbieri G. Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. Journal of Membrane Science. 2017;523:456-69.
    [158] Gilron J, Soffer A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. Journal of Membrane Science. 2002;209(2):339-52.
    [159] Isobe T, Nishimura M, Takada Y, Matsushita S, Honda S, Iwamoto Y, et al. Gas separation using Knudsen and surface diffusion II: Effects of surface modification of epoxy/porous SiO2 composite. Journal of Asian Ceramic Societies. 2014;2(3):190-4.
    [160] Sadrzadeh M, Amirilargani M, Shahidi K, Mohammadi T. Gas permeation through a synthesized composite PDMS/PES membrane. Journal of Membrane Science. 2009;342(1):236-50.
    [161] Shin JH, Yu HJ, An H, Lee AS, Hwang SS, Lee SY, et al. Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science. 2019;570-571:504-12.
    [162] Sharma SK, Pujari PK. Role of free volume characteristics of polymer matrix in bulk physical properties of polymer nanocomposites: A review of positron annihilation lifetime studies. Progress in Polymer Science. 2017;75:31-47.
    [163] Satyanarayana SV, Subrahmanyam VS, Verma HC, Sharma A, Bhattacharya PK. Application of positron annihilation: Study of pervaporation dense membranes. Polymer. 2006;47(4):1300-7.
    [164] Jean YC, Hung W-S, Lo C-H, Chen H, Liu G, Chakka L, et al. Applications of positron annihilation spectroscopy to polymeric membranes. Desalination. 2008;234(1):89-98.
    [165] Klaysom C, Hermans S, Gahlaut A, Van Craenenbroeck S, Vankelecom IFJ. Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation. Journal of Membrane Science. 2013;445:25-33.
    [166] Chu JP, Yu C-C, Tanatsugu Y, Yasuzawa M, Shen Y-L. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Scientific Reports. 2016;6:31847.
    [167] Wu H-l, Bremner DH, Li H-y, Shi Q-q, Wu J-z, Xiao R-q, et al. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization. Materials Science and Engineering: C. 2016;62:702-9.
    [168] Mohy Eldin MS, Elaassar MR, Elzatahry AA, Al-Sabah MMB. Poly (acrylonitrile-co-methyl methacrylate) nanoparticles: I. Preparation and characterization. Arabian Journal of Chemistry. 2017;10(8):1153-66.
    [169] Xue TJ, McKinney MA, Wilkie CA. The thermal degradation of polyacrylonitrile. Polymer Degradation and Stability. 1997;58(1):193-202.
    [170] White RP, Lipson JEG. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules. 2016;49(11):3987-4007.
    [171] Uedono A, Sako K, Ueno W, Kimura M. Free volumes introduced by fractures of CFRP probed using positron annihilation. Composites Part A: Applied Science and Manufacturing. 2019;122:54-8.
    [172] Nanda D, Tung K-L, Hung W-S, Lo C-H, Jean Y-C, Lee k-r, et al. Characterization of fouled nanofiltration membranes using positron annihilation spectroscopy. Fuel and Energy Abstracts. 2011;382:124-34.
    [173] C Jean Y, Chen H, Zhang S, Chen H, Lee L, Awad S, et al. Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy. Journal of Physics: Conference Series. 2011;262:012027.
    [174] Hazazi K, Ma X, Wang Y, Ogieglo W, Alhazmi A, Han Y, et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor. Journal of Membrane Science. 2019;585:1-9.
    [175] Yoshimura Y, Mori T, Kaneko K, Hattori S, Takekiyo T, Masuda Y, et al. Raman investigation on the local structure of alcohols in 1-butyl-3-methylimidazolium tetrafluoroborate. Journal of Molecular Liquids. 2019;293:111508.
    [176] Su C, An M, Yang P, Gu H, Guo X. Electrochemical behavior of cobalt from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Applied Surface Science. 2010;256(16):4888-93.
    [177] Ratti R. Ionic Liquids: Synthesis and Applications in Catalysis. Advances in Chemistry. 2014;2014:729842.
    [178] Ru J, Feng J, Jiang Y, Zhou R, Hua Y. Effects of ionic liquid additive [bmim]BF4 on fabrication of Ni-decorated Al2O3 powders by electroless deposition. Advanced Powder Technology. 2017;28(2):430-7.
    [179] Wang J, Luo J, Feng S, Li H, Wan Y, Zhang X. Recent development of ionic liquid membranes. Green Energy & Environment. 2016;1(1):43-61.
    [180] Douglass I, Harrowell P. Kinetics of Dissolution of an Amorphous Solid. The Journal of Physical Chemistry B. 2018;122(8):2425-33.
    [181] Koyuturk B, Altintas C, Kinik FP, Keskin S, Uzun A. Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance. The Journal of Physical Chemistry C. 2017;121(19):10370-81.
    [182] Deyab MA, Zaky MT, Nessim MI. Inhibition of acid corrosion of carbon steel using four imidazolium tetrafluoroborates ionic liquids. Journal of Molecular Liquids. 2017;229:396-404.
    [183] Yan M, Yu P, Kim KB, Lee JK, Schaffer GB, Qian M. The surface structure of gas-atomized metallic glass powders. Scripta Materialia. 2010;62(5):266-9.
    [184] Saihara K, Yoshimura Y, Fujimoto H, Shimizu A. Detrimental effect of glass sample tubes on investigations of BF4−-based room temperature ionic liquid–water mixtures. Journal of Molecular Liquids. 2016;219:493-6.
    [185] Shi F, Deng Y. Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2005;62(1):239-44.
    [186] Ammam M, Fransaer J. Synthesis and characterization of hybrid materials based on 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and Dawson-type tungstophosphate K7[H4PW18O62]·18H2O and K6[P2W18O62]·13H2O. Journal of Solid State Chemistry. 2011;184(4):818-24.
    [187] Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical Properties of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data. 2004;49(4):954-64.
    [188] Tchalala MR, Anjum DH, Chaieb S. Effect of Ionic Liquid (emim BF4) on the Dispersion of Gold Nanoparticles. Journal of Physics: Conference Series. 2016;758:012020.
    [189] Yang C, Zhang C, Liu L. Tuning colors in Zr-based thin film metallic glasses. Journal of Alloys and Compounds. 2017;728:289-94.
    [190] Gomez O, Sudoh I, Nakayama T, Hall S. The role of ionic liquids in the synthesis of the high-temperature superconductor YBa2Cu3O7-δ. CrystEngComm. 2018;20.
    [191] Surviliene S, Eugénio S, Vilar R. Chromium Electrodeposition from [BMim][BF4] Ionic Liquid. Journal of Applied Electrochemistry - J APPL ELECTROCHEM. 2011;41:107-14.

    無法下載圖示 全文公開日期 2025/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE