簡易檢索 / 詳目顯示

研究生: Kedir Ebrahim Ahmed
Kedir Ebrahim Ahmed
論文名稱: Detoxification of water contaminants using visible light responsive metal oxide, oxy chloride and oxy sulfide based photocatalysts
Detoxification of water contaminants using visible light responsive metal oxide, oxy chloride and oxy sulfide based photocatalysts
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau Kuo
陳詩芸
Shih-Yun Chen
何清華
Ching-Hwa Ho
林耀東
Yao-Tung Lin
薛人愷
Ren-Kae Shiue
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 137
中文關鍵詞: DefectParticle growthHeterojunctionDye degradationCr(VI) reductionPhotocatalyst
外文關鍵詞: Defect, Particle growth, Heterojunction, Dye degradation, Cr(VI) reduction, Photocatalyst
相關次數: 點閱:266下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同有機和無機水污染物從不同行業排出,有來自紡織工廠的染料汙染,有從皮革、電鍍、鋼鐵製造、染色和木材防腐產業所釋放具有高毒性的六價鉻。除非有效處理這些有機和無機有毒化學品,否則健康和環境問題將會惡化。光催化劑有潛力以還原或氧化反應來降解毒化學物質成毒性較小或無毒的化合物。
    論文第一部分,主要探討金屬氧化物/g-C3N4複合光催化劑,提出光催化劑表面缺陷所促進的氧吸附於光催化染料降解的研究。研究中,使用水熱法製備具氧缺陷的Sn-WO3固溶體,再將Sn-WO3和g-C3N4混合粉末在450oC空氣熱處理,實現具有吸附氧的Sn-WO3/g-C3N4光催化劑。實驗中,以不同的材料檢測技術分析,也採用陰離子型甲基橙(MO)和陽離子型羅丹B (RhB)染料的降解,來檢測可見光照射下其光催化劑活性。在所有複合光催化劑中,8-SnWg催化劑在照射時間2小時內,獲得1.42×10-2min-1的降解率,達87%MO降解。在可見光照射50分鐘內,8-SnWg催化劑有8.44×10-2 min-1的RhB降解速率,達99%RhB降解。X射線光電子能譜(XPS)分析顯示,分子氧吸附在所製備的複合光催化劑表面上。具有Sn:W比為1:2的Sn-WO3固溶體中,錫的引入以及與石墨化的氮化碳(g-C3N4)的異質界面構造對於光催化活性的增強有著至關重要的作用,係藉由通過吸附氧的活化與染料分子反應達到染料降解。
    論文第二部分,藉由電子-電洞分離的控制、氧空位形成、光催化劑的粒徑和形態等,對提高光催化劑的催化活性進行探討。研究中,BiOCl光催化劑係通過在KCl飽和水溶液中,於UV光照射的處理下,使用簡單水解方法製備沿著具反應性的(001)面成長與合成BiOCl粉體。實驗中,以不同的材料檢測技術分析,並以降解不同種類的有機染料來評價其光催化活性。實驗結果顯示,用20mmolKCl製備的20-BiOCl,在可見光照射10分鐘
    內,可降解99.9%的RhB。根據動力學數據,UV光處理的20-BiOCl分別比未UV光處理的20-BiOCl和不飽和合成的5-BiOCl,其降解RhB染料速率分別高過7倍和3倍。此外,20-BiOCl催化劑在UV光照射下進行染料降解時,幾乎可完全降解RhB、MO和MB三種染料。在可見光照射下,超氧化物(O2.-)和羥基(·OH)自由基被認為是RhB染料降解的主要活性物質。重要結論是合成BiOCl催化劑時,KCl飽和度和UV光處理二者,都對光催化劑的光催化活性起著至關重要的作用。
    論文第三部分,利用低帶隙可見光響應光催化劑與紫外光響應光催化劑結合所形成的異質結構造,可使UV光活化材料也具有可見光染料降解能力。此工作中,我們使用簡單的反應攜出法合成具異質接面結構的Bi2(O,S)3/Zn(O,S)光催化劑。實驗中,以不同的材料檢測技術分析與重金屬Cr(VI)去汙研究。所合成的複合光催化劑,在整個可見光譜中皆顯示出高的光吸收能力。通過Cr(VI)還原來評價光催化劑的還原催化活性。雖然純Zn(O,S)催化劑沒有出顯著的Cr(VI)還原能力,但在用Bi2(O,S)3的異質結構造複合之後,表現出比單個組分更高的光催化活性。 Bi/Zn摩爾百分比為20%的20-BiZnOS催化劑,在可見光照射12min內,Cr(VI)還原率達99.5%,是複合材料中表現出最佳的光催化活性。20-BiZnOS複合催化劑其Bi2(O,S)3和Zn(O,S)納米粒子之間的異質結構形成、Cr(VI)的選擇性吸附和Cr(III)的表面脫附,是複合光催化劑具有增強的光催化活性主要原因。


    Organic and inorganic water contaminants are discharged from different industries. Dyes from textile factories make their way mostly to water bodies. Highly toxic, water soluble, hexavalent chromium are also released to the environment from leather, electroplating, steel manufacturing, dyeing, and wood preservation industries. Unless there is effective way of treating these organic and inorganic toxic chemicals, the health and environmental problems are expected to be catastrophic. Photocatalysts are employed in either reduction or oxidation of these toxic chemicals to less toxic or nontoxic substances. In the first work, defect-mediated oxygen adsorption on metal oxide/g-C3N4 composites was proposed for photocatalytic dye degradation processes. Thus, oxygen deficient Sn-WO3 solid solution was first prepared using solvothermal method. Oxygen adsorbed Sn-WO3/g-C3N4 composites synthesis was experimentally achieved by annealing the mixture of Sn-WO3 and g-C3N4 powders at 450 oC under atmospheric oxygen. The materials were characterized with different techniques and photocatalytic activities were examined by the degradation of anionic methyl orange (MO) and cationic Rhodamine B (RhB) dyes under visible light. Among all the composites, the highest rate of 1.42×10-2 min-1 with 87% MO degradation was obtained by 8-SnWg catalyst within two hours of irradiation time. RhB dye removal with a rate of 8.44×10-2 min-1 and 99% degradation was also achieved within 50 minutes of visible light illumination. X-ray photoelectron spectroscopy (XPS) analysis reveals molecular oxygen adsorption on the surface of the as-prepared composite material. The introduction of tin in Sn-WO3 solid solution with a high atomic Sn:W ratio of 1:2 and the construction of interfacial heterojunction with graphitic carbon nitride (g-C3N4) plays a vital role to the enhanced
    II
    photocatalytic activity of the as-prepared composites by activating oxygen to react with dye molecules.
    On the second work, we considered the control of electron-hole separation, oxygen vacancy formation, particle size, and morphology together is supposed to boost the catalytic activity of the materials. Hence, BiOCl photocatalysts were synthesized by a systematic control of particle growth along reactive (001) plane using simple hydrolysis method in KCl saturated aqueous solution with simultaneous UV light treatment. The materials were characterized using different techniques and the photocatalytic activities were evaluated for degradation of different kinds of organic dyes. 20-BiOCl prepared with 20 mmol KCl showed 99.9% RhB degradation within 10 minutes of visible light irradiation. From kinetics data, 20-BiOCl showed 7 and 3 times higher rates on RhB dye degradation than untreated 20-BiOCl and unsaturated 5-BiOCl, respectively. Furthermore, 20-BiOCl catalyst also exhibited almost complete degradation of RhB, MO, and MB dyes under UV light irradiation. Supper oxide (O2.-) and hydroxyl (·OH) radicals are identified as the main active species on the degradation of RhB dye under visible light irradiation. Both KCl saturation and UV light treatment during synthesis of BiOCl catalysts play a crucial role to the exhibited extraordinary photocatlytic activities.
    Heterojunction construction with low band gap materials is another effective way of utilizing UV light active materials under visible light irradiation. On the last work, we report the synthesis of Bi2(O,S)3/Zn(O,S) hetrostructure using simple solvothermal method without surfactant. The catalysts were investigated with different characterization techniques. All the composite catalysts showed high light absorption capacity in the whole visible light spectrum. The catalytic activity of the catalysts was evaluated by Cr(VI) reduction. While pure Zn(O,S) catalyst showed no significant Cr(VI) reduction, higher photocatalytic activity than individual components were
    III
    exhibited after heterojunction construction with Bi2(O,S)3. 20-BiZnOS catalyst with Bi/Zn molar percentage of 20% showed the best photocatalytic activity among the composites with 99.5% Cr(VI) reduction within 12 min under visible light irradiation. Heterojunction formation between Bi2(O,S)3 and Zn(O,S) nanoparticle, selective adsorption of Cr(VI) and desorption of Cr(III) on the surface of 20-BiZnOS composite catalyst were ascribed to the enhanced photocatalytic activity of the composite catalyst.

    Abstract ...................................................................................................................................... I Acknowledgements .................................................................................................................. IV List of acronyms and symbols ................................................................................................ VIII List of figures ............................................................................................................................. X List of tables ........................................................................................................................... XV List of schemes ...................................................................................................................... XVI Chapter one .................................................................................................................................1 1. Introduction .........................................................................................................................1 1.1. Water contamination .........................................................................................................1 1.2. Wastewater treatment methods..........................................................................................4 1.3. Photocatalytic wastewater treatment methods ...................................................................5 1.3.1. Material modification .................................................................................................6 1.3.2. Doping .......................................................................................................................7 1.3.3. Heterojunction construction ........................................................................................7 1.4. Mechanism of photocatalytic reactions..............................................................................8 1.5. Motivation ...................................................................................................................... 10 1.6. Objective of the research ................................................................................................. 11 1.6.1. General Objective ..................................................................................................... 11 1.6.2. Specific Objective .................................................................................................... 11 VI Chapter two............................................................................................................................... 13 2. Literature review ................................................................................................................ 13 2.1. Catalytic methods........................................................................................................ 13 2.1.1. Photocatalysis ...................................................................................................... 14 Chapter three ............................................................................................................................. 34 3. Experimental ...................................................................................................................... 34 3.1. Chemicals ................................................................................................................... 34 3.2. Synthesis of catalysts .................................................................................................. 34 3.2.1. Preparation of Sn-WO3/g-C3N4 composites .......................................................... 34 3.2.2. Synthesis of BiOCl .............................................................................................. 36 3.2.3. Preparation of Bi2(O,S)3/Zn(O,S) composites ....................................................... 37 3.3. Characterizations ........................................................................................................ 37 3.3.1. X-rays Diffractometer .......................................................................................... 37 3.3.2. Raman spectroscopy ............................................................................................ 39 3.3.3. Field emission scanning electron microscopy ....................................................... 39 3.3.4. Transmission electron microscopy (TEM) ............................................................ 41 3.3.5. X-ray photoelectron spectroscopy (XPS) .............................................................. 42 3.3.6. UV-vis Spectroscopy Analysis ............................................................................. 43 3.3.7. Other characterizations......................................................................................... 43 3.4. Photocatalytic activity ................................................................................................. 44 VII Chapter four .............................................................................................................................. 46 4. Results and discussion........................................................................................................ 46 4.1. Sn-WO3/g-C3N4 .......................................................................................................... 46 4.1.1. Material characterizations .................................................................................... 46 4.1.2. Photocatalytic activity .......................................................................................... 53 4.1.3. Summary ............................................................................................................. 59 4.2. BiOCl ......................................................................................................................... 60 4.2.1. Material Characterizations ................................................................................... 61 4.2.2. Photocatalytic test ................................................................................................ 69 4.2.3. Summary ............................................................................................................. 75 4.3. Bi2(O,S)3/Zn(O,S) ....................................................................................................... 76 4.3.1. Material characterizations .................................................................................... 76 4.3.2. Photocatalytic activity test.................................................................................... 83 4.3.3. Summary ............................................................................................................. 89 Chapter five .............................................................................................................................. 91 5.1. Conclusions ........................................................................................................................ 91 5.2. Suggestions and Outlook .................................................................................................... 93 5. References ......................................................................................................................... 95 Appendix ................................................................................................................................ 114

    [1] Y. Wang, C.-G. Niu, L. Wang, Y. Wang, X.-G. Zhang, G.-M. Zeng, Synthesis of fern-like Ag/AgCl/CaTiO3 plasmonic photocatalysts and their enhanced visible-light photocatalytic properties, RSC Advances, 6 (2016) 47873-47882.
    [2] S. Ahuja, Chapter One - Overview: Sustaining Water, the World's Most Crucial Resource, in: Chemistry and Water, Elsevier, 2017, pp. 1-22.
    [3] V. Paramarta, A. Taufik, L. Munisa, R. Saleh, Sono- and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes, AIP Conference Proceedings, 1788 (2017) 030125.
    [4] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions, Advanced Powder Technology, 28 (2017) 122-130.
    [5] M. Naimi-Joubani, M. Shirzad-Siboni, J.-K. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, Journal of Industrial and Engineering Chemistry, 22 (2015) 317-323.
    [6] P. Karthik, R. Vinoth, S.G. Babu, M. Wen, T. Kamegawa, H. Yamashita, B. Neppolian, Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(vi) reduction, RSC Advances, 5 (2015) 39752-39759.
    [7] M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Tajassosi, Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin, Industrial & Engineering Chemistry Research, 53 (2014) 1079-1087.
    96
    [8] Y. Li, Y. Bian, H. Qin, Y. Zhang, Z. Bian, Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide, Applied Catalysis B: Environmental, 206 (2017) 293-299.
    [9] Z. He, Q. Cai, M. Wu, Y. Shi, H. Fang, L. Li, J. Chen, J. Chen, S. Song, Photocatalytic Reduction of Cr(VI) in an Aqueous Suspension of Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets, Industrial & Engineering Chemistry Research, 52 (2013) 9556-9565.
    [10] Z. Zhou, Y. Li, K. Lv, X. Wu, Q. Li, J. Luo, Fabrication of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr(VI), Materials Science in Semiconductor Processing, 75 (2018) 334-341.
    [11] N. Tripathy, R. Ahmad, H. Kuk, D.H. Lee, Y.-B. Hahn, G. Khang, Rapid methyl orange degradation using porous ZnO spheres photocatalyst, Journal of Photochemistry and Photobiology B: Biology, 161 (2016) 312-317.
    [12] T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng, W.-C. Oh, High photonic effect of organic dye degradation by CdSe–graphene–TiO2 particles, Journal of Industrial and Engineering Chemistry, 19 (2013) 797-805.
    [13] U. Tahir, A. Yasmin, U.H. Khan, Phytoremediation: Potential flora for synthetic dyestuff metabolism, Journal of King Saud University - Science, 28 (2016) 119-130.
    [14] B. Kumar, K. Smita, L. Cumbal, A. Debut, Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst, Journal of Saudi Chemical Society, 21 (2017) S293-S298.
    97
    [15] M. Mirzaie, A. Rashidi, H.-A. Tayebi, M.E. Yazdanshenas, Removal of Anionic Dye from Aqueous Media by Adsorption onto SBA-15/Polyamidoamine Dendrimer Hybrid: Adsorption Equilibrium and Kinetics, Journal of Chemical & Engineering Data, 62 (2017) 1365-1376.
    [16] M. Scholz, Chapter 3 - Sewage treatment, in: Wetland Systems to Control Urban Runoff, Elsevier, Amsterdam, 2006, pp. 11-13.
    [17] B.G. Loganathan, K.D. Hristovski, J.B. de Andrade, D.D. Dionysiou, S. Ahuja, Water Challenges and Solutions on a Global Scale, in: ACS Symposium Series, American Chemical Society, 2015
    [18] W.-K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Chinese Journal of Catalysis, 35 (2014) 1781-1792.
    [19] A.T. Le, S.-Y. Pung, S. Sreekantan, A. Matsuda, D.P. Huynh, Mechanisms of removal of heavy metal ions by ZnO particles, Heliyon, 5 (2019) e01440.
    [20] E. Lombi, R.E. Hamon, Remediation of polluted soils, in: D. Hillel (Ed.) Encyclopedia of Soils in the Environment, Elsevier, Oxford, 2005, pp. 379-385.
    [21] P.K. Dutta, S.O. Pehkonen, V.K. Sharma, A.K. Ray, Photocatalytic Oxidation of Arsenic(III): Evidence of hydroxyl radicals, environmental science & technology, 39 (2005) 1827-1834.
    [22] S. Kaizra, B. Bellal, Y. Louafi, M. Trari, Improved activity of SnO for the photocatalytic oxygen evolution, Journal of Saudi Chemical Society, 22 (2018) 76-83.
    [23] O. Morton, A new day dawning?: Silicon Valley sunrise, Nature, 443 (2006) 19-22.
    [24] C. Li, F. Wang, J.C. Yu, Semiconductor/biomolecular composites for solar energy applications, Energy & Environmental Science, 4 (2011) 100-113.
    98
    [25] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Research, 44 (2010) 2997-3027.
    [26] S.R. Salman, Electronic Spectroscopy, Study of Chemical Reactions A2 - Lindon, John C, in: G.E. Tranter, D.W. Koppenaal (Eds.) Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, Oxford, 2017, pp. 470-475.
    [27] E.L. Cates, Photocatalytic Water Treatment: So Where Are We Going with This?, Environmental Science & Technology, 51 (2017) 757-758.
    [28] A.B. Djurišić, Y.H. Leung, A.M. Ching Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Materials Horizons, 1 (2014) 400-410.
    [29] S. Chen, R. Yan, X. Zhang, K. Hu, Z. Li, M. Humayun, Y. Qu, L. Jing, Photogenerated electron modulation to dominantly induce efficient 2,4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification, Applied Catalysis B: Environmental, 209 (2017) 320-328.
    [30] F. Huang, A. Yan, H. Zhao, Influences of doping on photocatalytic properties of TiO2 photocatalyst, in: Semiconductor Photocatalysis-Materials, Mechanisms and Applications, IntechOpen, 2016.
    [31] M.S. Hamdy, R. Amrollahi, G. Mul, Surface Ti3+-Containing (blue) Titania: A Unique Photocatalyst with High Activity and Selectivity in Visible Light-Stimulated selective oxidation, ACS Catalysis, 2 (2012) 2641-2647.
    [32] P. Feng, X. Tang, J. Zhang, Y. Mei, H. Li, Persistent photocatalysis effect of black peony-like BiOCl and its potential full-time photocatalytic applications, RSC Advances, 7 (2017) 33241-33247.
    99
    [33] K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials, Journal of Materials Chemistry A, 6 (2018) 21696-21718.
    [34] A. Elaziouti, N. Laouedj, A. Bekka, R.-N. Vannier, Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation, Journal of King Saud University - Science, 27 (2015) 120-135.
    [35] Q. Gao, Z. Liu, FeWO4 nanorods with excellent UV–Visible light photocatalysis, Progress in Natural Science: Materials International, 27 (2017) 556-560.
    [36] W. Raza, S.M. Faisal, M. Owais, D. Bahnemann, M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity, RSC Advances, 6 (2016) 78335-78350.
    [37] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Advances, 4 (2014) 37003-37026.
    [38] J. Safaei, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, N.A. Ludin, M.A. Ibrahim, W.N. Roslam Wan Isahak, M.A. Mat Teridi, Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors, Journal of Materials Chemistry A, 6 (2018) 22346-22380.
    [39] Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, J. Ye, Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation, Nature Communications, 10 (2019) 2359.
    [40] J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Inorganic Photocatalysts for Overall Water Splitting, Chemistry – An Asian Journal, 7 (2012) 642-657.
    100
    [41] S. Wacławek, V.V.T. Padil, M. Černík, Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review, 25 (2018) 9.
    [42] J. Chen, J. Cen, X. Xu, X. Li, The application of heterogeneous visible light photocatalysts in organic synthesis, Catalysis Science & Technology, 6 (2016) 349-362.
    [43] O.A. Zelekew, D.-H. Kuo, J.M. Yassin, K.E. Ahmed, H. Abdullah, Synthesis of efficient silica supported TiO2/Ag2O heterostructured catalyst with enhanced photocatalytic performance, Applied Surface Science, 410 (2017) 454-463.
    [44] V.K. Yemmireddy, Y.-C. Hung, Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges, Comprehensive Reviews in Food Science and Food Safety, 16 (2017) 617-631.
    [45] W.-C. Lu, L.-C. Tseng, K.-S. Chang, Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications, ACS Combinatorial Science, 19 (2017) 585-593.
    [46] X. Lin, T. Huang, F. Huang, W. Wang, J. Shi, Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl, Journal of Materials Chemistry, 17 (2007) 2145-2150.
    [47] H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
    [48] S. Shen, J. Chen, L. Cai, F. Ren, L. Guo, A strategy of engineering impurity distribution in metal oxide nanostructures for photoelectrochemical water splitting, Journal of Materiomics, 1 (2015) 134-145.
    101
    [49] Q. Zhang, D. Thrithamarassery Gangadharan, Y. Liu, Z. Xu, M. Chaker, D. Ma, Recent advancements in plasmon-enhanced visible light-driven water splitting, Journal of Materiomics, 3 (2017) 33-50.
    [50] A.B. Djurisic, Y.H. Leung, A.M. Ching Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Materials Horizons, 1 (2014) 400-410.
    [51] M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review, Green Chemistry Letters and Reviews, 11 (2018) 86-102.
    [52] K. Manjunath, L.S. Reddy Yadav, T. Jayalakshmi, V. Reddy, H. Rajanaika, G. Nagaraju, Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity, Journal of Materials Research and Technology, 7 (2018) 7-13.
    [53] A.A. Farghali, A.H. Zaki, M.H. Khedr, Control of Selectivity in Heterogeneous Photocatalysis by Tuning TiO2 Morphology for Water Treatment Applications, Nanomaterials and Nanotechnology, 6 (2016) 12.
    [54] Y. Xia, L. Yin, Core–shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region, Physical Chemistry Chemical Physics, 15 (2013) 18627-18634.
    [55] S. Ramkumar, G. Rajarajan, A comparative study of humidity sensing and photocatalytic applications of pure and nickel (Ni)-doped WO3 thin films, Applied Physics A, 123 (2017) 401.
    [56] Y. Peng, Q.-G. Chen, D. Wang, H.-Y. Zhou, A.-W. Xu, Synthesis of one-dimensional WO3-Bi2WO6 heterojunctions with enhanced photocatalytic activity, CrystEngComm, 17 (2015) 569-576.
    102
    [57] P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications, Environmental Science: Nano, 4 (2017) 539-557.
    [58] R. Gakhar, D. Chidambaram, Photoelectrochemical performance of ZnCdSe-sensitized WO3 thin films, Solar Energy Materials and Solar Cells, 144 (2016) 707-712.
    [59] S.V.P. Vattikuti, C. Byon, I.-L. Ngo, Highly crystalline multi-layered WO3 sheets for photodegradation of Congo red under visible light irradiation, Materials Research Bulletin, 84 (2016) 288-297.
    [60] R. Solarska, K. Bienkowski, S. Zoladek, A. Majcher, T. Stefaniuk, P.J. Kulesza, J. Augustynski, Enhanced Water Splitting at Thin Film Tungsten Trioxide Photoanodes Bearing Plasmonic Gold–Polyoxometalate Particles, Angewandte Chemie International Edition, 53 (2014) 14196-14200.
    [61] Z. Liu, Z.-G. Zhao, M. Miyauchi, Efficient Visible Light Active CaFe2O4/WO3 Based Composite Photocatalysts: Effect of Interfacial Modification, The Journal of Physical Chemistry C, 113 (2009) 17132-17137.
    [62] N. Li, H. Teng, L. Zhang, J. Zhou, M. Liu, Synthesis of Mo-doped WO3 nanosheets with enhanced visible-light-driven photocatalytic properties, RSC Advances, 5 (2015) 95394-95400.
    [63] F. Mehmood, J. Iqbal, T. Jan, W. Ahmed, W. Ahmed, A. Arshad, Q. Mansoor, S.Z. Ilyas, M. Ismail, I. Ahmad, Effect of Sn doping on the structural, optical, electrical and anticancer properties of WO3 nanoplates, Ceramics International, 42 (2016) 14334-14341.
    [64] J. Cao, B. Luo, H. Lin, S. Chen, Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation, Journal of Hazardous Materials, 190 (2011) 700-706.
    103
    [65] X. Ma, W. Ma, D. Jiang, D. Li, S. Meng, M. Chen, Construction of novel WO3/SnNb2O6 hybrid nanosheet heterojunctions as efficient Z-scheme photocatalysts for pollutant degradation, Journal of Colloid and Interface Science, 506 (2017) 93-101.
    [66] J. Luo, X. Zhou, L. Ma, X. Ning, L. Zhan, X. Xu, L. Xu, L. Zhang, H. Ruan, Z. Zhang, Fabrication of WO3/Ag2CrO4 composites with enhanced visible-light photodegradation towards methyl orange, Advanced Powder Technology, 28 (2017) 1018-1027.
    [67] A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review, Carbon, 149 (2019) 693-721.
    [68] S. Patnaik, S. Martha, S. Acharya, K.M. Parida, An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications, Inorganic Chemistry Frontiers, 3 (2016) 336-347.
    [69] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation, Langmuir, 26 (2010) 3894-3901.
    [70] H. Katsumata, Y. Tachi, T. Suzuki, S. Kaneco, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts, RSC Advances, 4 (2014) 21405-21409.
    [71] L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light, Applied Surface Science, 391 (2017) 202-210.
    [72] Y. Zang, L. Li, Y. Zuo, H. Lin, G. Li, X. Guan, Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light, RSC Advances, 3 (2013) 13646-13650.
    104
    [73] L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity, Dalton Transactions, 42 (2013) 8606-8616.
    [74] X. Liu, A. Jin, Y. Jia, T. Xia, C. Deng, M. Zhu, C. Chen, X. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4, Applied Surface Science, 405 (2017) 359-371.
    [75] S. Chen, Y. Hu, S. Meng, X. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Applied Catalysis B: Environmental, 150-151 (2014) 564-573.
    [76] P. Wang, N. Lu, Y. Su, N. Liu, H. Yu, J. Li, Y. Wu, Fabrication of WO3@g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light, Applied Surface Science, 423 (2017) 197-204.
    [77] L. Ye, X. Jin, Y. Leng, Y. Su, H. Xie, C. Liu, Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation, Journal of Power Sources, 293 (2015) 409-415.
    [78] Z. Ma, P. Li, L. Ye, Y. Zhou, F. Su, C. Ding, H. Xie, Y. Bai, P.K. Wong, Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion, Journal of Materials Chemistry A, 5 (2017) 24995-25004.
    [79] X. Li, C. Zhu, Y. Song, D. Du, Y. Lin, Solvent co-mediated synthesis of ultrathin BiOCl nanosheets with highly efficient visible-light photocatalytic activity, RSC Advances, 7 (2017) 10235-10241.
    105
    [80] Q. Wang, J. Hui, Y. Huang, Y. Ding, Y. Cai, S. Yin, Z. Li, B. Su, The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes, Materials Science in Semiconductor Processing, 17 (2014) 87-93.
    [81] Y. Peng, D. Wang, H.-Y. Zhou, A.-W. Xu, Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities, CrystEngComm, 17 (2015) 3845-3851.
    [82] X. Liu, H. Yang, H. Dai, X. Mao, Z. Liang, A novel photoelectrocatalytic approach for water splitting by an I-BiOCl/bipolar membrane sandwich structure, Green Chemistry, 17 (2015) 199-203.
    [83] Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEngComm, 11 (2009) 1857-1862.
    [84] J. Geng, W.-H. Hou, Y.-N. Lv, J.-J. Zhu, H.-Y. Chen, One-Dimensional BiPO4 Nanorods and Two-Dimensional BiOCl Lamellae: Fast Low-Temperature Sonochemical Synthesis,Characterization, and Growth Mechanism, Inorganic Chemistry, 44 (2005) 8503-8509.
    [85] X. Zhang, X. Liu, C. Fan, Y. Wang, Y. Wang, Z. Liang, A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis, Applied Catalysis B: Environmental, 132-133 (2013) 332-341.
    [86] M. Li, Y. Zhang, X. Li, S. Yu, X. Du, Y. Guo, H. Huang, In-depth insight into facet-dependent charge movement behaviors and photo-redox catalysis: A case of {001} and {010} facets BiOCl, Journal of Colloid and Interface Science, 508 (2017) 174-183.
    [87] X. Hu, Y. Xu, H. Zhu, F. Hua, S. Zhu, Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets, Materials Science in Semiconductor Processing, 41 (2016) 12-16.
    106
    [88] C. Hao, Y. Xu, M. Bao, X. Wang, H. Zhang, T. Li, Hydrothermal synthesis of sphere-like
    BiOCl using sodium lignosulphonate as surfactant and its application in visible light
    photocatalytic degradation of rodamine B, Journal of Materials Science: Materials in Electronics,
    28 (2017) 3119-3127.
    [89] M. Chen, S. Yu, X. Zhang, F. Wang, Y. Lin, Y. Zhou, Insights into the photosensitivity of
    BiOCl nanoplates with exposing {001} facets: The role of oxygen vacancy, Superlattices and
    Microstructures, 89 (2016) 275-281.
    [90] M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie,
    Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth
    Oxychloride Nanosheets, Journal of the American Chemical Society, 135 (2013) 10411-10417.
    [91] D.-H. Wang, G.-Q. Gao, Y.-W. Zhang, L.-S. Zhou, A.-W. Xu, W. Chen, Nanosheetconstructed
    porous BiOCl with dominant {001} facets for superior photosensitized degradation,
    Nanoscale, 4 (2012) 7780-7785.
    [92] F.-t. Li, Y.-l. Li, M.-j. Chai, B. Li, Y.-j. Hao, X.-j. Wang, R.-h. Liu, One-step construction
    of {001} facet-exposed BiOCl hybridized with Al2O3 for enhanced molecular oxygen activation,
    Catalysis Science & Technology, 6 (2016) 7985-7995.
    [93] Y. Cai, D. Li, J. Sun, M. Chen, Y. Li, Z. Zou, H. Zhang, H. Xu, D. Xia, Synthesis of BiOCl
    nanosheets with oxygen vacancies for the improved photocatalytic properties, Applied Surface
    Science, 439 (2018) 697-704.
    [94] D. Cui, L. Wang, K. Xu, L. Ren, L. Wang, Y. Yu, Y. Du, W. Hao, Band-gap engineering of
    BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light
    irradiation, Journal of Materials Chemistry A, 6 (2018) 2193-2199.
    107
    [95] K. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic efficiency of bismuth oxyhalide (Br,
    Cl and I) nanoplates for RhB dye degradation under LED irradiation, Journal of Industrial and
    Engineering Chemistry, 34 (2016) 146-156.
    [96] L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for
    photocatalysis with black BiOCl, Physical Chemistry Chemical Physics, 14 (2012) 82-85.
    [97] Y. Jiang, J. Sun, S. Wu, BiOCl Nanosheets with Controlled Exposed Facets and Improved
    Photocatalytic Activity, Catalysis Letters, 147 (2017) 2006-2012.
    [98] A. Kanti Kole, C. Sekhar Tiwary, P. Kumbhakar, Morphology controlled synthesis of
    wurtzite ZnS nanostructures through simple hydrothermal method and observation of white light
    emission from ZnO obtained by annealing the synthesized ZnS nanostructures, Journal of
    Materials Chemistry C, 2 (2014) 4338-4346.
    [99] J.-S. Hu, L.-L. Ren, Y.-G. Guo, H.-P. Liang, A.-M. Cao, L.-J. Wan, C.-L. Bai, Mass
    Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles, Angewandte
    Chemie, 117 (2005) 1295-1299.
    [100] J. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, Synthesis of hydrophilic ZnS nanocrystals and their
    application in photocatalytic degradation of dye pollutants, China Particuology, 2 (2004) 266-
    269.
    [101] H. Abdullah, N.S. Gultom, D.-H. Kuo, A simple one-pot synthesis of a Zn(O,S)/Ga2O3
    nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New Journal
    of Chemistry, 41 (2017) 12397-12406.
    [102] X. Gao, J. Wang, J. Yu, H. Xu, Novel ZnO–ZnS nanowire arrays with heterostructures and
    enhanced photocatalytic properties, CrystEngComm, 17 (2015) 6328-6337.
    108
    [103] A.K. Abay, D.-H. Kuo, X. Chen, A.D. Saragih, A new V-doped Bi2(O,S)3 oxysulfide
    catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes, Chemosphere,
    189 (2017) 21-31.
    [104] A.L. Pacquette, H. Hagiwara, T. Ishihara, A.A. Gewirth, Fabrication of an oxysulfide of
    bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite, Journal of
    Photochemistry and Photobiology A: Chemistry, 277 (2014) 27-36.
    [105] N. Liang, J. Zai, M. Xu, Q. Zhu, X. Wei, X. Qian, Novel Bi2S3/Bi2O2CO3 heterojunction
    photocatalysts with enhanced visible light responsive activity and wastewater treatment, Journal
    of Materials Chemistry A, 2 (2014) 4208-4216.
    [106] Z. Zhang, W. Wang, L. Wang, S. Sun, Enhancement of Visible-Light Photocatalysis by
    Coupling with Narrow-Band-Gap Semiconductor: A Case Study on Bi2S3/Bi2WO6, ACS Applied
    Materials & Interfaces, 4 (2012) 593-597.
    [107] M. Li, J. Wang, P. Zhang, Q. Deng, J. Zhang, K. Jiang, Z. Hu, J. Chu, Superior adsorption
    and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and
    theory, Scientific reports, 7 (2017) 42484.
    [108] Y. Haijing, H. Jing, Z. Hua, Z. Qingfei, Z. Xinhua, Nanostructure and charge transfer in
    Bi2S3 -TiO2 heterostructures, Nanotechnology, 25 (2014) 215702.
    [109] J. Rong, T. Zhang, F. Qiu, X. Rong, X. Zhu, X. Zhang, Preparation of hierarchical
    micro/nanostructured Bi2S3-WO3 composites for enhanced photocatalytic performance, Journal
    of Alloys and Compounds, 685 (2016) 812-819.
    [110] S. Bera, S. Ghosh, R.N. Basu, Fabrication of Bi2S3/ZnO heterostructures: an excellent
    photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties,
    New Journal of Chemistry, 42 (2018) 541-554.
    109
    [111] X. Dan-Ni, H. Gui-Fang, Z. Bing-Xin, C. Shengli, W. Fei, H. Wei-Qing, Enhanced
    photocatalytic activity of hexagonal flake-like Bi2S3/ZnS composites with a large percentage of
    reactive facets, Journal of Physics D: Applied Physics, 49 (2016) 305105.
    [112] D.-N. Xiong, G.-F. Huang, B.-X. Zhou, Q. Yan, A.-L. Pan, W.-Q. Huang, Facile ionexchange
    synthesis of mesoporous Bi2S3/ZnS nanoplate with high adsorption capability and
    photocatalytic activity, Journal of Colloid and Interface Science, 464 (2016) 103-109.
    [113] Z. Wu, L. Chen, C. Xing, D. Jiang, J. Xie, M. Chen, Controlled synthesis of Bi2S3/ZnS
    microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic
    activity, Dalton Transactions, 42 (2013) 12980-12988.
    [114] X. Chen, D.-H. Kuo, Nanoflower Bimetal CuInOS Oxysulfide Catalyst for the Reduction
    of Cr(VI) in the Dark, ACS Sustainable Chemistry & Engineering, 5 (2017) 4133-4143.
    [115] M.A. Zeleke, D.-H. Kuo, Synthesis of oxy-sulfide based nanocomposite catalyst for visible
    light-driven reduction of Cr(VI), Environmental Research, 172 (2019) 279-288.
    [116] Y. Liu, P. Stradins, S.-H. Wei, Air Passivation of Chalcogen Vacancies in Two-
    Dimensional Semiconductors, Angewandte Chemie International Edition, 55 (2016) 965-968.
    [117] L. Sun, X. Zhang, F. Liu, Y. Shen, X. Fan, S. Zheng, J.T.L. Thong, Z. Liu, S.A. Yang,
    H.Y. Yang, Vacuum level dependent photoluminescence in chemical vapor deposition-grown
    monolayer MoS2, Scientific reports, 7 (2017) 16714.
    [118] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme Oxygen Sensitivity of Electronic
    Properties of Carbon Nanotubes, Science, 287 (2000) 1801-1804.
    [119] M. Yarali, J. Hao, M. Khodadadi, H. Brahmi, S. Chen, V.G. Hadjiev, Y.J. Jung, A.
    Mavrokefalos, Physisorbed versus chemisorbed oxygen effect on thermoelectric properties of
    110
    highly organized single walled carbon nanotube nanofilms, RSC Advances, 7 (2017) 14078-
    14087.
    [120] F. Liu, Y.H. Leung, A.B. Djurišić, A.M.C. Ng, W.K. Chan, Native Defects in ZnO: Effect
    on Dye Adsorption and Photocatalytic Degradation, The Journal of Physical Chemistry C, 117
    (2013) 12218-12228.
    [121] D. Wang, H. Sun, Q. Luo, X. Yang, R. Yin, An efficient visible-light photocatalyst
    prepared from g-C3N4 and polyvinyl chloride, Applied Catalysis B: Environmental, 156-157
    (2014) 323-330.
    [122] M.H. Mirfasih, C. Li, A. Tayyebi, Q. Cao, J. Yu, J.-J. Delaunay, Oxygen-vacancy-induced
    photoelectrochemical water oxidation by platelike tungsten oxide photoanodes prepared under
    acid-mediated hydrothermal treatment conditions, RSC Advances, 7 (2017) 26992-27000.
    [123] L. Su, Z. Lu, All solid-state smart window of electrodeposited wo3 and tio2 particulate
    film with ptrefg gel electrolyte, Journal of Physics and Chemistry of Solids, 59 (1998) 1175-
    1180.
    [124] A.I. Stadnichenko, S.V. Koshcheev, A.I. Boronin, Oxidation of the polycrystalline gold
    foil surface and XPS study of oxygen states in oxide layers, Moscow University Chemistry
    Bulletin, 62 (2007) 343-349.
    [125] M. Setvin, J. Hulva, G.S. Parkinson, M. Schmid, U. Diebold, Electron transfer between
    anatase TiO2 and an O2 molecule directly observed by atomic force microscopy, Proceedings of
    the National Academy of Sciences, 114 (2017) E2556-E2562.
    [126] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang,
    J. Wang, Z. Ni, Strong Photoluminescence Enhancement of MoS2 through Defect Engineering
    and Oxygen Bonding, ACS Nano, 8 (2014) 5738-5745.
    111
    [127] J. Meng, J. Pei, Z. He, S. Wu, Q. Lin, X. Wei, J. Li, Z. Zhang, Facile synthesis of g-C3N4
    nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under
    visible light irradiation, RSC Advances, 7 (2017) 24097-24104.
    [128] N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J.
    Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films,
    Journal of Colloid and Interface Science, 417 (2014) 402-409.
    [129] C. Song, X. Wang, J. Zhang, X. Chen, C. Li, Enhanced performance of direct Z-scheme
    CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light,
    Applied Surface Science, 425 (2017) 788-795.
    [130] Q.W. Cao, Y.F. Zheng, X.C. Song, Enhanced visible-light-driven photocatalytic
    degradation of RhB by AgIO3/WO3 composites, Journal of the Taiwan Institute of Chemical
    Engineers, 70 (2017) 359-365.
    [131] T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, S. Suib, Photocatalytic Water
    Splitting—The Untamed Dream: A Review of Recent Advances, Molecules, 21 (2016) 900.
    [132] Y. Yan, M. Han, A. Konkin, T. Koppe, D. Wang, T. Andreu, G. Chen, U. Vetter, J.R.
    Morante, P. Schaaf, Slightly hydrogenated TiO2 with enhanced photocatalytic performance,
    Journal of Materials Chemistry A, 2 (2014) 12708-12716.
    [133] Y. Jiang, Z. Xing, X. Wang, S. Huang, X. Wang, Q. Liu, Activity and characterization of a
    Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic
    reduction of NO with NH3, Fuel, 151 (2015) 124-129.
    [134] Y. Xu, S. Xu, S. Wang, Y. Zhang, G. Li, Citric acid modulated electrochemical synthesis
    and photocatalytic behavior of BiOCl nanoplates with exposed {001} facets, Dalton
    Transactions, 43 (2014) 479-485.
    112
    [135] Y. Huang, H. Li, M.-S. Balogun, W. Liu, Y. Tong, X. Lu, H. Ji, Oxygen Vacancy Induced
    Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior
    Photocatalytic Performance, ACS Applied Materials & Interfaces, 6 (2014) 22920-22927.
    [136] S. Kang, R.C. Pawar, Y. Pyo, V. Khare, C.S. Lee, Size-controlled BiOCl–RGO composites
    having enhanced photodegradative properties, Journal of Experimental Nanoscience, 11 (2016)
    259-275.
    [137] R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine Simple Oxides as Visible Light
    Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-
    Loaded Tungsten Oxide, Journal of the American Chemical Society, 130 (2008) 7780-7781.
    [138] B. Liu, X. Hu, X. Li, Y. Li, C. Chen, K.-h. Lam, Preparation of ZnS@In2S3 Core@shell
    Composite for Enhanced Photocatalytic Degradation of Gaseous o-Dichlorobenzene under
    Visible Light, Scientific reports, 7 (2017) 16396.
    [139] H.-P. Jiao, X. Yu, Z.-Q. Liu, P.-Y. Kuang, Y.-M. Zhang, One-pot synthesis of
    heterostructured Bi2S3/BiOBr microspheres with highly efficient visible light photocatalytic
    performance, RSC Advances, 5 (2015) 16239-16249.
    [140] G. Ahmed, M. Hanif, L. Zhao, M. Hussain, J. Khan, Z. Liu, Defect engineering of ZnO
    nanoparticles by graphene oxide leading to enhanced visible light photocatalysis, Journal of
    Molecular Catalysis A: Chemical, 425 (2016) 310-321.
    [141] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart,
    Resolving surface chemical states in XPS analysis of first row transition metals, oxides and
    hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, 257 (2011) 2717-2730.
    [142] Q. Qiao, K. Yang, L.-L. Ma, W.-Q. Huang, B.-X. Zhou, A. Pan, W. Hu, X. Fan, G.-F.
    Huang, Facile in situ construction of mediator-free direct Z-scheme g-C3N4/CeO2 heterojunctions
    113
    with highly efficient photocatalytic activity, Journal of Physics D: Applied Physics, 51 (2018)
    275302.
    [143] F. Zeng, W.-Q. Huang, J.-H. Xiao, Y.-y. Li, W. Peng, W. Hu, K. Li, G.-F. Huang, Isotype
    heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide
    nanoparticles: Generalized self-assembly and its high photocatalytic activity, Journal of Physics
    D: Applied Physics, 52 (2018) 025501.
    [144] X. Chen, D.-H. Kuo, J. Zhang, Q. Lu, J. Lin, Y. Liao, Tubular bimetal oxysulfide
    CuMgOS catalyst for rapid reduction of heavy metals and organic dyes, Applied Organometallic Chemistry, 33 (2019) e4824.

    QR CODE