簡易檢索 / 詳目顯示

研究生: Jemal Yimer Damte
Jemal Yimer Damte
論文名稱: 铱和铂电池对B,N共掺杂石墨烯表面甲烷的吸附和脱氢:DFT研究
Adsorption and Dehydrogenation of Methane on B, N-Codoped Graphene Surface Decorated by Iridium and PlatinumClusters: A DFT Study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 陳秀美
Hsiu-Mei chen
蔡大翔
Dah-Shyang Tsai
郭哲來
Jer-Lai Kuo
蔡明剛
Cai Minggang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 152
中文關鍵詞: AdsorptionIridiumPlatinumMethaneGraphene
外文關鍵詞: Adsorption, Iridium, Platinum, Methane, Graphene
相關次數: 點閱:255下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    為了設計出有效轉化甲烷的催化劑,研究甲烷在金屬簇表面上的化學性質是一種可以選擇的解決方案。在本論文中,採用了密度泛函理論研究甲烷在Pt4金屬簇、Ir4金屬簇及Ir13金屬簇修飾於硼氮摻雜石墨烯表面上的吸附、分解和可能的偶聯反應。在催化甲烷轉化時需要活化及可能分離的過程,Pt4金屬簇、Ir4金屬簇及Ir13金屬簇修飾於硼氮摻雜石墨烯表面針對甲烷的脫氫反應具有較高的催化活性。首先,先研究了Pt4金屬簇、Ir4金屬簇及Ir13金屬簇在硼氮摻雜石墨烯表面上最穩定的結構及碳氫化合物的吸附能。另外我們也藉由電子密度差異等值線圖和態密度討論金屬團簇和吸附物間的相互作用,發現甲烷透過agostic相互作用在金屬團簇上進行分子性吸附。接著並研究甲烷在所有表面上的脫氫反應。結果顯示在低溫條件下,甲烷活化在Pt4金屬簇上比在Pt4金屬簇上更容易以及在熱力學上更適合,且其第一步的脫氫反應也被發現具有低動力學屏障(0.17eV)和高吸附能(-0.58eV),這表明了甲烷分解比直接脫附更容易;第二及第三步脫氫反應則分別是在Pt4金屬簇以及Pt4金屬簇於硼氮摻雜石墨烯表面上的速率決定步驟。此外,為了除去沉積在表面上的碳,氧氣會解離性吸附在兩金屬簇上並將碳氧化成二氧化碳,氫原子重組來產生氫氣也被考慮在兩個金屬簇上,結果證實在溫和的溫度條件下可以形成氫氣並且可以容易地從表面脫附。

    甲烷的活化和抑制後續脫氫進而研究偶聯反應被認為是潛在催化劑設計中最重要的過程。在本研究中,我們預測Ir13金屬簇可以有效地活化甲烷並促進碳-碳偶聯反應,在銥金屬簇上,頂部位置被認為是甲烷最穩定的吸附位置且具有-0.45eV的吸附能,甲烷以0.16eV較低活化能障被活化、反應熱為-0.54eV,這是最容易的步驟並且在熱力學上最適合的且可能在低溫條件下發生;第四步脫氫反應為速率決定步驟,其在Ir13金屬簇上脫氫反應中需較高活化能障(1.24eV),碳-碳偶聯反應已經被研究透過控制反應溫度來抑制甲烷後續脫氫反應。基於計算結果,在Ir13金屬簇上甲烷選擇性脫氫成甲基之後再形成乙烷具有較低動力學屏障,此外,氫氣的生成也被考慮在金屬簇上且發現是可行的

    另外,我們發現在Ir13金屬簇上,甲烷在低氧覆蓋率比高氧覆蓋率具有更高的吸附能和分解時更低的活化能障,結果顯示甲烷在低氧覆蓋下的吸附能為-0.44 eV,第二步脫氫反應為速率決定步驟(1.24 eV)且低於高氧覆蓋率下,因此,通過控制反應溫度,甲基和亞甲基物質是在Ir13金屬簇上氧預覆蓋中最豐富的物質,並且考慮了碳-氧偶聯反應。基於密度泛函理論的計算,在低氧覆蓋率下形成具有較低活化能障的甲醇和甲醛,此外,氫原子的再結合也被考慮並證實可以在表面上形成氫氣。因此,低氧預覆蓋在Ir13金屬簇修飾於硼氮摻雜石墨烯表面上是大有可為的催化劑且用於將甲烷選擇性轉化為甲醇、甲醛和氫氣的產生。


    Abstract

    To design an efficient catalyst for methane conversion, studying the chemical nature of methane on metal cluster surface is an alternative solution. Catalytic conversion of methane requires processes such as activation and possibly dissociation. Boron nitrogen co-doped graphene surface decorated by Irand Pt cluster exhibited higher catalytic activity for dehydrogenation of methane. In this thesis, we have investigated adsorption, dissociation of methane and possibly the coupling reactions on boron nitrogen co-doped graphene surface decorated by Ir4 cluster, Pt4 cluster and Ir13 cluster using density functional theory (DFT) methods. The most stable adsorption configuration and adsorption energies of CHX (0-4) on boron nitrogen co-doped graphene surface decorated by Ir4 cluster, Pt4 cluster and Ir13 cluster have been investigated. Moreover, the interactions between the surface and adsorbate discussed by the electron density difference contour plot (EDD) and density of sates (DOS). Methane molecularly adsorbs on the surface through agostic interactions anddehydrogenation of methaneinall surfaces have been also studied via precursor mediated mechanism. The result reveals that activation of methane on BNG-Ir4 cluster, which occurs at low temperature condition, is more facile and thermodynamically favorable than that of BNG-Pt4 cluster. The first dehydrogenation step of methane on BNG-Ir4 cluster has been found to have low kinetic barrier (0.17 eV) and high adsorption energy of methane (-0.58 eV), indicating easier methane dissociation than direct desorption. The third and the second dehydrogenation step is the rate determining step on BNG-Ir4 cluster and BNG-Pt4 cluster, respectively.
    The results reveals that the coupling barriers of CH3/CH3 and CH2/CH2 on BNG-Ir4 cluster are 1.23 eV and 0.64 eV, respectively, indicating that the formation of ethane and ethylene is possible on BNG-Ir4 cluster. However, the desorption energies of ethane and ethylene are 0.53 eV and 2.00 eV, where the desorption of ethylene is very difficult on BNG-Ir4 cluster. Thus by controlling the reaction temperatures, producing of ethane is possible on BNG-Ir4 cluster.Furthermore, recombination of hydrogen to produce hydrogen molecule has been considered on both clusters and the result confirms that hydrogen molecule can be formed on BNG-Ir4 clusterand BNG-Pt4 cluster at mild temperature conditions and can easily be desorbed from the surface.
    In the present study, we predict that BNG-Ir13 cluster can efficiently activate methane and promote the C-C coupling reactions. Top site of Ir on BNG-Ir13 cluster is considered as the most stable adsorption site of methane with the stable adsorption energy of -0.45 eV. Methane is activated with lower activation energy barrier of 0.16 eV and the reaction energy is -0.54 eV. It is the most facile step and is thermodynamically favorable, which is likely to occur at low temperature conditions. By controlling the reaction temperature, which inhibit further dehydrogenation of methane, the C-C coupling reactions have been studied on BNG-Ir13 cluster. Based on the DFT calculations, selective conversion of methane and self-coupling reactions of methyl formed ethane with a lower kinetic barrier, which is likely to occur on BNG-Ir13 cluster.
    Furthermore, we found out low oxygen coverage of BNG-Ir13 cluster has higher adsorption energy of methane and lower activation energy barrier of methane dissociation throughout the calculations compared to high oxygen coverage of BNG-Ir13 cluster. The result reveals that the adsorption energy of methane in low oxygen coverage of BNG-Ir13 cluster is -0.44 eV and the second dehydrogenation of methane is the rate determining step (1.24 eV), which is lower than that of high oxygen coverage of BNG-Ir13 cluster. As a result, by controlling the reaction temperature, CH3 and CH2 species are the most abundant species in oxygen pre-covered BNG-Ir13 cluster and the C-O coupling reactions have been considered. Based on the DFT calculations, methanol and formaldehyde are formed with lower activation energy barrier in low oxygen coverage of BNG-Ir13 cluster (BNG-Ir13O cluster) and can be occurred at moderate temperature conditions compared to high oxygen coverage of BNG-Ir13 cluster. Low oxygen pre-covered BNG-Ir13 cluster is a promising catalyst for selective conversion of methane to methanol, formaldehyde and production of hydrogen.

    Table of Contents Abstract i Acknowledgment iv List of Tables x List of Figures xiii Chapter 1. Introduction 1 1.1 Natural gas 1 1.2 Methane Conversions 3 1.2.1 Oxidative and Non-Oxidative Coupling of Methane 5 1.2.2 Partial Oxidation of Methane to C1-Oxygenates 7 1.3 Hydrogen 8 1.4 Graphene 9 1.5 Iridium and Platinum Clusters 11 1.6 The Scope of the research 13 Chapter 2. Density Functional Theory Methods 15 2.1 Ab Initio Calculation 15 2.2 Quantum Chemistry 17 2.3 The Born-Oppenheimer Approximation 18 2.4 Density Functional Theory 20 2.4.1 The Hohenberg-Kohn Theorems and the Kohn-Sham Equations 21 2.4.2 Exchange-Correlation Functionals 24 2.4.3 Supercell Approach 26 2.4.4 Plane Wave Basis Set 27 2.4.5 Pseudopotential 28 2.4.6 Ultra-soft-Pseudopotential 31 2.4.7 Projected Augmented Wave (PAW) 32 2.4.8 Brillouin Zone Sampling 34 2.4.9 Optimization Methods 35 2.4.10 Nudged Elastic Band Method (NEB) 37 2.5 Computational Details 39 2.5.1 Methods 39 2.5.2 Surface Model 40 Chapter 3. Adsorption and Dehydrogenation of Methane on B, N- Codoped Graphene Surface Decorated by Ir4 Cluster and Pt4 Cluster 45 3.1 Adsorption of CHx (x = 0-4) on BNG-Ir4 Cluster and BNG-Pt4 Cluster 45 3.2 Methane Dehydrogenation on BNG-Ir4 Cluster and BNG-Pt4 Cluster 54 3.3 C-C Coupling Reactions and Recombination of hydrogen on BNG-Ir4 Cluster and BNG-Pt4 Cluster 58 3.4 Carbon Oxidation and Coupling reaction in oxygen pre-covered BNG-Ir4 cluster and BNG-Pt4 cluster 61 3.5 Summary 68 Chapter 4. Adsorption and Dehydrogenation of Methane on B, N- Codoped Graphene Surface Decorated by Ir13 Cluster 70 4.1 Adsorption of Intermediates on BNG-Ir13 Cluster 70 4.2 Dehydrogenation of Methane on BNG-Ir13 Cluster 77 4.3 C–C Coupling Reactions on BNG-Ir13 Cluster 80 4.4 Summary 83 Chapter 5. Partial Oxidation of Methane to Methanol and Formaldehyde on B, N Co-doped Graphene Surface Decorated by Oxygen Pre-covered Ir13 Cluster 85 5.1 Adsorption and Dissociation of Water on BNG- Ir13 Cluster 85 5.2 Adsorption of Intermediatesat Different Oxygen Coverage on BNG-Ir13 Cluster 87 5.3 Dissociation of Methaneat Different Oxygen Coverage on BNG-Ir13 Cluster 93 5.4 C-O Coupling Reactions in Oxygen Pre-covered BNG-Ir13 Cluster 100 5.5 Summary 103 Chapter 6. Conclusions 105 References 108

    References

    1. Kayadelen, H. K. Effect of Natural Gas Components on Its Flame Temperature, Equilibrium Combustion Products and Thermodynamic Properties. J. Nat. Gas Sci. Eng.2017, 45, 456-473.
    2. Yang, X.; Li, H.; Wallin, F.; Yu, Z.; Wang, Z. Impacts of Emission Reduction and External Cost on Natural Gas Distribution. Appl. Energy 2017, 63, 230-241.
    3. Al-Mohannadi, D. M.; Abdulaziz, K.; Alnouri, S. Y.; Linke, P. On the Synthesis of Carbon Constrained Natural Gas Monetization Networks. J. Cleaner Prod. 2017, 168, 735-745.
    4. Lee, I.; Moon, I. Economic Optimization of Dual Mixed Refrigerant Liquefied Natural Gas Plant Considering Natural Gas Extraction Rate. Ind. Eng. Chem. Res.2017, 56, 2804-2814.
    5. Fukui, R.; Greenfield, C.; Pogue, K.; van der Zwaan, B. Experience Curve for Natural Gas Production by Hydraulic Fracturing. Energy Policy 2017, 105, 263-268.
    6. Velasco, J. A.; Fernandez, C.; Lopez, L.; Cabrera, S.; Boutonnet, M.; Järås, S. Catalytic Partial Oxidation of Methane over Nickel and Ruthenium Based Catalysts under Low O2/CH4 Ratios and with Addition of Steam. Fuel 2015, 153, 192-201.
    7. Leng, W.; Zhan, H.; Ge, L.; Wang, W.; Ma, Y.; Zhao, K.; Li, S.; Xiao, L. Rapidly Determinating the Principal Components of Natural Gas Distilled from Shale with Terahertz Spectroscopy. Fuel 2015, 159, 84-88.
    8. Faramawy, S.; Zaki, T.; Sakr, A. A.-E. Natural Gas Origin, Composition, and Processing: A Review. J. Nat. Gas Sci. Eng.2016, 34, 34-54.
    9. Campos, A. F.; Silva, N. F.; Pereira, M. G.; Freitas, M. A. V. A Review of Brazilian Natural Gas Industry: Challenges and Strategies. Renewable Sustainable Energy Rev. 2017, 75, 1207-1216.
    10. Chengzao, J.; Yongfeng, Z.; Xia, Z. Prospects of and Challenges to Natural Gas Industry Development in China. Nat. Gas Ind. B2014, 1, 1-13.
    11. Alvarez-Galvan, M. C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R. M.; Fierro, J. L. G. Direct Methane Conversion Routes to Chemicals and Fuels. Catal. Today 2011, 171, 15-23.
    12. Baltrusaitis, J.; Jansen, I.; Christus, J. D. S. Renewable Energy Based Catalytic CH4 Conversion to Fuels. Catal. Sci. Technol.2014, 4, 23-97.
    13. Tang, P.; Zhu, Q.; Wu, Z.; Ma, D. Methane Activation: The Past and Future. Energy Environ. Sci. 2014, 7, 2580-2591.
    14. Rabiu, A. M.; Steen, E.; Claeys, M. Further Investigation into the Formation of Alcohol During Fischer Tropsch Synthesis on Fe-Based Catalysts. APCBEE Procedia 2012, 3, 110-115.
    15. Silva, M. J. Synthesis of Methanol from Methane: Challenges and Advances on the Multi-Step (Syngas) and One-Step Routes (Dmtm). Fuel Proce. Technol.2016, 145, 42-61.
    16. Zakaria, Z.; Kamarudin, S. K. Direct Conversion Technologies of Methane to Methanol: An Overview. Renewable Sustainable Energy Rev.2016, 65, 250-261.
    17. Han, B.; Yang, Y.; Xu, Y.; Etim, U. J.; Qiao, K.; Xu, B.; Yan, Z. A Review of the Direct Oxidation of Methane to Methanol. Chinese J. Catal.2016, 37, 1206-1215.
    18. Liu, K.; Zhao, J.; Zhu, D.; Meng, F.; Kong, F.; Tang, Y. Oxidative Coupling of Methane in Solid Oxide Fuel Cell Tubular Membrane Reactor with High Ethylene Yield. Catal. Commun.2017, 96, 23-27.
    19. Kim, I.; Lee, G.; Na, H. B.; Ha, J.-M.; Jung, J. C. Selective Oxygen Species for the Oxidative Coupling of Methane. Mol. Catal.2017, 435, 13-23.
    20. Wolf, E. E. Methane to Light Hydrocarbons Via Oxidative Methane Coupling: Lessons from the Past to Search for a Selective Heterogeneous Catalyst. J. Phys. Chem. Lett. 2014, 5, 986-998.
    21. Ito, T.; Wang, J.-X.;Lin, C-H.; Lunsford, J. H. Oxidative Dimerization of Methane over a Lithium-Promoted Magnesium Oxide Catalyst. J. Am. Chem. Sos.1985, 107, 5062-5068.
    22. Lunsford, J. H. The Catalytic Oxidative Coupling of Methane. Angw. Chem. Int. Ed. Engl.1995, 34. 970-980.
    23. Tomkins, P.; Ranocchiari, M.; Bokhoven, J. A. Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and Beyond. Acc. chem. res.2017, 50, 418-425.
    24. Ipek, B.; Lobo, R. F. Catalytic Conversion of Methane to Methanol on Cu-Ssz-13 Using N2O as Oxidant. Chem. commun.2016, 52, 13401-13404.
    25. Farrell, B. L.; Igenegbai, V. O.; Linic, S. A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts. ACS Catal.2016, 6, 4340-4346.
    26. Hammond, C.; Conrad, S.; Hermans, I. Oxidative Methane Upgrading. Chem.Sus.Chem.2012, 5, 1668-86.
    27. Hutchings, G. J.; Scurell,M. S.; Woodhouse, J. R. Oxidative Coupling of Methane Using Oxide Catalysts. Chem. Soc. Rev.1989, 18, 251-283.
    28. Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M.; Schlögl, R.; Schomäcker, R. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catal. Rev. 2011, 53, 424-514.
    29. Luo, L.; Tang, X.; Wang, W.; Wang, Y.; Sun, S.; Qi, F.; Huang, W. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron Uv Photoionization Mass Spectroscopy. Sci. rep. 2013, 3, 1625.
    30. Farrell, W. S.; Zavalij, P. Y.; Sita, L. R. Catalytic Production of Isothiocyanates Via a Mo(Ii)/Mo(Iv) Cycle for the “Soft” Sulfur Oxidation of Isonitriles. Organometallics 2016, 35, 2361-2366.
    31. Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; Tan, D.; Si, R.; Zhang, S.; Li, J.; Sun, L.; Tang, Z.; Pan, X.; Bao, X. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 2014, 344, 616-9.
    32. Xiao, Y.; Varma, A. Highly Selective Nonoxidative Coupling of Methane over Pt-Bi Bimetallic Catalysts. ACS Catal.2018, 8, 2735-2740.
    33. Sheng, H.; Schreiner, E. P.; Zheng, W.; Lobo, R. F. Non-Oxidative Coupling of Methane to Ethylene Using Mo2C/[B]Zsm-5. Chem.Phys.Chem.2018, 19, 504-511.
    34. Sun, K.; Ginosar, D. M.; He, T.; Zhang, Y.; Fan, M.; Chen, R. Progress in Nonoxidative Dehydroaromatization of Methane in the Last 6 Years. Ind. Eng. Chem. Res. 2018, 57, 1768-1789.
    35. Gerceker, D.; Motagamwala, A. H.; Rivera-Dones, K. R.; Miller, J. B.; Huber, G. W.; Mavrikakis, M.; Dumesic, J. A. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts. ACS Catal.2017, 7, 2088-2100.
    36. Cheng, Z.; Lo, C. S. Effect of Support Structure and Composition on the Catalytic Activity of Pt Nanoclusters for Methane Dehydrogenation. Ind. Eng. Chem. Res.2013, 52, 15447-15454.
    37. Kokalj, A.; Bonini, N.;Gironcoli, S.;Sbraccia, C.;Fratesi, G.; Baroni, S. Methane Dehydrogenation on Rh@Cu(111): A First-Principles Study of a Model Catalyst. J. Am. Chem. Soc. 2006, 128, 12448-12454.
    38. Yuan, S.; Meng, L.; Wang, J. Greatly Improved Methane Dehydrogenation Via Ni Adsorbed Cu(100) Surface. J. Phys. Chem. C2013, 117, 14796-14803.
    39. Melissa, A.; Petersen, S. J. J.;David, A. K. Theory of Methane Dehydrogenation on Pt{110}(1 × 2). Part I: Chemisorption of CHx (X ) 0 -3). J. Phys. Chem. B 2004, 108, 5909-5919.
    40. Lapoutre, V. J.; Redlich, B.; Meer, A. F.; Oomens, J.; Bakker, J. M.; Sweeney, A.; Mookherjee, A.; Armentrout, P. B. Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations. J. Phys. Chem. A2013, 117, 4115-26.
    41. Lang, S. M.; Frank, A.; Bernhardt, T. M. Activation and Catalytic Dehydrogenation of Methane on Small Pdx and PdxO Clusters. J. Phys. Chem. C2013, 117, 9791-9800.
    42. Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-Temperature Activation of Methane on the IrO2(110) Surface. Science 2017, 356,299–303
    43. Szeto, K. C.; Norsic, S.; Hardou, L.; Roux, E.; Chakka, S.; Thivolle-Cazat, J.; Baudouin, A.; Papaioannou, C.; Basset, J. M.; Taoufik, M. Non-Oxidative Coupling of Methane Catalysed by Supported Tungsten Hydride onto Alumina and Silica-Alumina in Classical and H2 Permeable Membrane Fixed-Bed Reactors. Chem. commun.2010, 46, 3985-7.
    44. Yang, M.-L.; Zhu, Y.-A.; Zhou, X.-G.; Sui, Z.-J.; Chen, D. First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts. ACS Catal.2012, 2, 1247-1258.
    45. Li, H. F.; Zhao, Y. X.; Yuan, Z.; Liu, Q. Y.; Li, Z. Y.; Li, X. N.; Ning, C. G.; He, S. G. Methane Activation by Tantalum Carbide Cluster Anions Ta2C4. J. Phys. Chem. Lett.2017, 8, 605-610.
    46. Trinh, Q. T.; Banerjee, A.; Yang, Y.; Mushrif, S. H. Sub-Surface Boron-Doped Copper for Methane Activation and Coupling: First-Principles Investigation of the Structure, Activity, and Selectivity of the Catalyst. J. Phys. Chem. C2017, 121, 1099-1112.
    47. Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem. Rev.2017, 117, 8497-8520.
    48. Zhu, Q.; Wegener, S. L.; Xie, C.; Uche, O.; Neurock, M.; Marks, T. J. Sulfur as a Selective 'Soft' Oxidant for Catalytic Methane Conversion Probed by Experiment and Theory. Nat. chem. 2013, 5, 104-9.
    49. Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y. Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry. Chem. Soc. Rev. 2014, 43, 3480-524.
    50. Kondratenko, E. V.; Peppel, T.; Seeburg, D.; Kondratenko, V. A.; Kalevaru, N.; Martin, A.; Wohlrab, S. Methane Conversion into Different Hydrocarbons or Oxygenates: Current Status and Future Perspectives in Catalyst Development and Reactor Operation. Catal. Sci. Technol. 2017, 7, 366-381.
    51. Alayon, E. M.; Nachtegaal, M.; Ranocchiari, M.; Bokhoven, J. A. Catalytic Conversion of Methane to Methanol over Cu-Mordenite. Chem. commun.2012, 48, 404-6.
    52. Sheppard, T.; Hamill, C. D.; Goguet, A.; Rooney, D. W.; Thompson, J. M. A Low Temperature Isothermal Gas-Phase System for Conversion of Methane to Methanol over Cu-Zsm-5. Chem. commun.2014, 50, 11053-5.
    53. Bahmanpour, A. M.; Hoadley, A.; Tanksale, A. Formaldehyde Production Via Hydrogenation of Carbon Monoxide in the Aqueous Phase. Green Chem. 2015, 17, 3500-3507.
    54. Pirovano, C.; Schönborn, E.; Wohlrab, S.; Kalevaru, V.; Martin, A. On the Performance of Porous Silica Supported VOx Catalysts in the Partial Oxidation of Methane. Catal. Today 2012, 192, 20-27.
    55. Wallis, P.; Schönborn, E.; Kalevaru, V. N.; Martin, A.; Wohlrab, S. Enhanced Formaldehyde Selectivity in Catalytic Methane Oxidation by Vanadia on Ti-Doped Sba-15. RSC Adv. 2015, 5, 69509-69513.
    56. Chen, Z.; Lv, C.; Chen, Z.; Jin, L.; Wang, J.; Huang, Z. Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions. Am. J. Anal. Chem. 2014, 05, 1200-1213.
    57. Hod, I.;Deria, P.; Bury, W.; Mondloch, J. E.; Kung, C.-W.; So, M.; Sampson, M. D.; Peters, A. W.; Kubiak, C. P. A Porous Proton-Relaying Metal-Organic Framework Material That Accelerates Electrochemical Hydrogen Evolution. Nat. commun. 2015, 6, 8304-9.
    58. Pham, T. L. M.; Leggesse, E. G.; Jiang, J. C. Ethylene Formation by Methane Dehydrogenation and C-C Coupling Reaction on Stoichiometric IrO2 (110) Surface-a density functional theory investigation. Catal. Sci. Technol. 2015, 4, 42-55.
    59. Cho, W.; Lee, S.-H.; Ju, W.-S.; Baek, Y. Conversion of Natural Gas to Hydrogen and Carbon Black by Plasma and Application of Plasma Black. Fuel Chem.2004, 49 (1), 181-8.
    60. Ramkumar, S.; Phalak, N.; Fan, L.-S. Calcium Looping Process (Clp) for Enhanced Steam Methane Reforming. Ind. Eng. Chem. Res.2012, 51, 1186-1192.
    61. Raja, M. A.; Chen, H.; Zhao, Y.; Zhang, X.; Zhang, S. Process Simulation and Assessment of Hydrogen and High Valued Hydrocarbon Fuels Products from Oil Shale. Int. J. Hydrogen Energy 2017, 42, 4922-4934.
    62. Che, F.; Gray, J. T.; Ha, S.; Ewen, J.-S. Improving Ni Catalysts Using Electric Fields: A Dft and Experimental Study of the Methane Steam Reforming Reaction. ACS Catal. 2016, 7, 551-562.
    63. Al-Sayari, S. A. Recent Developments in the Partial Oxidation of Methane to Syngas. The Open Catal. J. 2013, 6, 17-28.
    64. Enger, B. C.; Lødeng, R.; Holmen, A. A Review of Catalytic Partial Oxidation of Methane to Synthesis Gas with Emphasis on Reaction Mechanisms over Transition Metal Catalysts. Appl. Catal. A: General 2008, 346, 1-27.
    65. Frind, R.; Borchardt, L.; Kockrick, E.; Mammitzsch, L.; Petasch, U.; Herrmann, M.; Kaskel, S. Complete and Partial Oxidation of Methane on Ceria/Platinum Silicon Carbide Nanocomposites. Catal. Sci. Technol. 2012, 2, 139-146.
    66. Izquierdo, U.; Barrio, V. L.; Cambra, J. F.; Requies, J.; Güemez, M. B.; Arias, P. L.; Kolb, G.; Zapf, R.; Gutiérrez, A. M.; Arraibi, J. R. Hydrogen Production from Methane and Natural Gas Steam Reforming in Conventional and Microreactor Reaction Systems. Int. J. Hydrogen Energy 2012, 37, 7026-7033.
    67. Dasari, B. L.; Nouri, J. M.; Brabazon, D.; Naher, S. Graphene and Derivatives – Synthesis Techniques, Properties and Their Energy Applications. Energy 2017, 140, 766-778.
    68. Sun, Z.; James, D. K.; Tour, J. M. Graphene Chemistry: Synthesis and Manipulation. J. Phys. Chem. Lett.2011, 2, 2425-2432.
    69. Zhu, S. E.; Shabani, R.; Rho, J.; Kim, Y.; Hong, B. H.; Ahn, J. H.; Cho, H. J. Graphene-Based Bimorph Microactuators. Nano lett.2011, 11, 977-81.
    70. Goli, P.; Ning, H.; Li, X.; Lu, C. Y.; Novoselov, K. S.; Balandin, A. A. Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films. Nano lett.2014, 14, 1497-503.
    71. Miscuglio, M.; Spirito, D.; Zaccaria, R. P.; Krahne, R. Shape Approaches for Enhancing Plasmon Propagation in Graphene. ACS Photonics 2016, 3, 2170-2175.
    72. Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75-127.
    73. Wang, T.;Yu, J.; Wang, M.; Cao, Y.; Dai, W.; Shen, D.; Guo, L.; Wu, Y.Effect of Different Sizes of Graphene on Thermal Transport Performance of Graphene Paper. Comp. Commun. 2017, 5, 46-53.
    74. Farmani, A.; Zarifkar, A.; Sheikhi, M. H.; Miri, M. Design of a Tunable Graphene Plasmonic-on-White Graphene Switch at Infrared Range. Superlattices and Microstructures 2017, 5 32-41.
    75. Fang, Z.; Liu, Z.; Wang, Y.; Ajayan, P. M.; Nordlander, P.; Halas, N. J. Graphene-Antenna Sandwich Photodetector. Nano lett.2012, 12, 3808-13.
    76. Conley, H.; Lavrik, N. V.; Prasai, D.; Bolotin, K. I. Graphene Bimetallic-Like Cantilevers: Probing Graphene/Substrate Interactions. Nano lett.2011, 11, 4748-52.
    77. Chae, S.; Jang, S.; Choi, W. J.; Kim, Y. S.; Chang, H.; Lee, T. I.; Lee, J. O. Lattice Transparency of Graphene. Nano lett.2017, 17, 1711-1718.
    78. Withers, F.;Bointon, T. H.; Craciun, M. F.; Russo, S. All-Graphene Photodetectors. ACS Nano2013, 6, 5052–5057.
    79. Joiner, C. A.; Campbell, P. M.; Tarasov, A. A.; Beatty, B. R.; Perini, C. J.; Tsai, M. Y.; Ready, W. J.; Vogel, E. M. Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials. ACS appl. mater. interfaces 2016, 8, 8702-9.
    80. Goh, B. M.; Wang, Y.; Reddy, M. V.; Ding, Y. L.; Lu, L.; Bunker, C.; Loh, K. P. Filling the Voids of Graphene Foam with Graphene "Eggshell" for Improved Lithium-Ion Storage. ACS appl. mater. interfaces 2014, 6, 9835-41.
    81. Furchi, M.;Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M. Microcavity-Integrated Graphene Photodetector. Nano lett.2012, 12, 2773-7.
    82. Cobas, E.; Friedman, A. L.; Erve, O. M.; Robinson, J. T.; Jonker, B. T. Graphene as a Tunnel Barrier: Graphene-Based Magnetic Tunnel Junctions. Nano lett.2012, 12, 3000-4.
    83. Hong, G.; Han, Y.; Schutzius, T. M.; Wang, Y.; Pan, Y.; Hu, M.; Jie, J.; Sharma, C. S.; Muller, U.; Poulikakos, D. On the Mechanism of Hydrophilicity of Graphene. Nano lett.2016, 16, 4447-53.
    84. Wang, Y.; Jaiswal, M.; Lin, M.;Saha, S.; Ozyilmaz, B.; Loh, K. P. Electronic Properties of Nanodiamond Decorated Graphene. ACS Nano2012, 2,1018–1025.
    85. Al-Aqtash, N.; Vasiliev, I. Ab Initio Study of Boron- and Nitrogen-Doped Graphene and Carbon Nanotubes Functionalized with Carboxyl Groups. J. Phys. Chem. C 2011, 115, 18500-18510.
    86. Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.;Fan, X.; Samuel, E. L. G.; Ajayen, P. M.; Tour, J. M. Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano 2014, 10, 10837–10843.
    87. Jiang, H. R.; Zhao, T. S.; Shi, L.; Tan, P.; An, L. First-Principles Study of Nitrogen-, Boron-Doped Graphene and Co-Doped Graphene as the Potential Catalysts in Nonaqueous Li–O2 Batteries. J. Phys. Chem. C2016, 120, 6612-6618.
    88. Yazdi, A. Z.; Fei, H.; Ye, R.; Wang, G.; Tour, J.; Sundararaj, U. Boron/Nitrogen Co-Doped Helically Unzipped Multiwalled Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction. ACS appl. mater. interfaces 2015, 7, 7786-94.
    89. Cueto, M. D.; Ocón, P.; Poyato, J. M. L. Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications. J. Phys. Chem. C2015, 119, 2004-2009.
    90. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. mater.2007, 6, 45-51.
    91. Wang, X.; Sun, G.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. rev.2014, 43, 7067-98.
    92. Brun, S. J.; Pereira, V. M.; Pedersen, T. G. Boron and Nitrogen Doping in Graphene Antidot Lattices. Phys. Rev. B 2016, 8, 93-100.
    93. Zheng, B.;Hermet, P.; Henrard, L.Scanning Tunneling Microscopy Simulations of Nitrogen- and Boron- Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano 2010, 7, 4165–4173.
    94. Mudedla, S. K.; Balamurugan, K.; Subramanian, V. Computational Study on the Interaction of Modified Nucleobases with Graphene and Doped Graphenes. J. Phys. Chem. C2014, 118, 16165-16174.
    95. Jaiswal, V.; Umrao, S. K.; Rastogi, R. B.; Kumar, R.; Srivastava, A. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen Co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives. ACS appl. mater. interfaces 2016, 8, 11698-710.
    96. Ortiz-Medina, J.; López-Urías, F.; Terrones, H.; Rodríguez-Macías, F. J.; Endo, M.; Terrones, M. Differential Response of Doped/Defective Graphene and Dopamine to Electric Fields: A Density Functional Theory Study. J. Phys. Chem. C2015, 119, 13972-13978.
    97. Gong, Y.;Fei, H.; Zou, X.; Zhou, W.; Yang, S.; Ye, G.; Liu, Z.;Peng, Z.; Lou, J. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chem. Mater. 2015, 27, 1181-1186.
    98. Nachimuthu, S.; Lai, P. J.; Leggesse, E. G.; Jiang, J. C. A First Principles Study on Boron-Doped Graphene Decorated by Ni-Ti-Mg Atoms for Enhanced Hydrogen Storage Performance. Sci. rep. 2015, 5, 16797-9.
    99. Tayyem, M.; Hamad, B.; Paulus, B. Adsorption of O, O2 and CO on Iridium Clusters and the Investigations of Their Stability. J. Chem. Phys.2017, 495, 10-15.
    100. Ge, G.-X.; Yan, H.-X.; Yang, J.-M.; Zhou, L.; Wan, J.-G.; Zhao, J.-J.; Wang, G.-H. Manipulation of Magnetic Anisotropy in Ir (N+1) Clusters by Co Atom. Stat. Mechanics and its Applications 2016, 453, 194-202.
    101. Sun, Q.; Li, Z.; Wang, M.; Du, A.; Smith, S. C. Methane Activation on Fe4 Cluster: A Density Functional Theory Study. Chem. Phys. Lett.2012, 550, 41-46.
    102. Bhat, S.; Chakraborty, I.; Maark, T. A.; Mitra, A.; De, G.; Pradeep, T. Atomically Precise and Monolayer Protected Iridium Clusters in Solution. RSC Adv. 2016, 6, 26679-26688.
    103. Zhou, C.;Wu, J.;Kumar, T. J.D.; Balakrishnan, N.; Forrey, R. C.; Cheng, H.Growth Pathway of Pt Clusters on α-Al2O3(0001) Surface. J. Phys. Chem. C 2007, 111, 13786-13793.
    104. Duca, D.; Ferrante, F.; Manna, G. L. Theoretical Study of Palladium Cluster Structures on Carbonaceous Supports. J. Phys. Chem. C 2007, 111, 5402-5408.
    105. Wang, L.; Xiao,L. Methane Activation on Pt and Pt4: A Density Functional Theory Study. J. Phys. Chem. B 2007, 111, 1657-1663.
    106. Parreira, R. L. T.;Caramori, G. F.;Galembeck, S. E.;Huguenin, H. The Nature of the Interactions between Pt4 Cluster and the Adsorbates •H, •OH, and H2O. J. Phys. Chem. A 2008, 112, 11731–11743.
    107. Cheng, Z.; Fine, N. A.; Lo, C. S. Platinum Nanoclusters Exhibit Enhanced Catalytic Activity for Methane Dehydrogenation. Top. Catal.2012, 55, 345-352.
    108. Du, J.; Sun, X.; chen, J.; Jiang, G. A Theoretical Study on Small Iridium Clusters: Structural Evolution, Electronic and Magnetic Properties, and Reactivity Predictors. J. Phys. Chem. A 2010, 114, 12825–12833.
    109. Pawluk, T.;Hirata, Y.; Wang, L. Studies of Iridium Nanoparticles Using Density Functional Theory Calculations. J. Phys. Chem. B 2005, 109, 20817-20823.
    110. Chen, M.; Dixon, D. A. Low-Lying Electronic States of Irnclusters Withn= 2–8 Predicted at the Dft, Casscf, and Ccsd(T) Levels. J. Phys. Chem. A2013, 117, 3676-3688.
    111. Chen, Y.; Huo, M.; Chen, T.; Li, Q.; Sun, Z.; Song, L. The Properties of Irn (N = 2-10) Clusters and Their Nucleation on Gamma-Al2O3 and MgO Surfaces: From Ab Initio Studies. Phys. Chem. Chem. Phys.2015, 17, 1680-7.
    112. Yamada, Y.; Castleman, A. W. The Magic Numbers of Metal and Metal Alloy Clusters. J. Chem. Phys.1992, 97, 4543-4548.
    113. Sakurai, M.; Watanabe, K.; Sumiyama, K.; Suzuki, K. Magic Numbers in Transition Metal (Fe, Ti, Zr, Nb, and Ta) Clusters Observed by Time-of-Flight Mass Spectrometry. J. Chem. Phys.1999, 111, 235-238.
    114. Harbola, M. K. Magic Numbers for Metallic Clusters and the Principle of Maximum Hardness. Proc. Natl. Acad. Sci. 1992, 89, 1036-1039.
    115. Imaoka, T.; Kitazawa, H.; Chun, W. J.; Omura, S.; Albrecht, K.; Yamamoto, K. Magic Number Pt13 and Misshapen Pt12 Clusters: Which One Is the Better Catalyst? J. Am. Chem. Soc.2013, 135, 13089-95.
    116. Kumar, S.; Bolan, M. D.; Bigioni, T. P.Glutathione-Stabilized Magic-Number Silver Cluster Compounds. J. Am. Chem. Soc. 2010, 132, 13141–13143.
    117. France,M. R.; Robinson, J. W. B.; Pullins,S. H. Antimony and Bismuth Oxide Clusters: Growth and Decomposition of New Magic Number Clusters. J. Phys. Chem. A. 1997, 101, 6214-6221
    118. Teo, B. K.;Zhang, H.;Shi, X. Cluster of Clusters: A Modular Approach to Large Metal Clusters and Structural Characterization of a 38-Atom Cluster Based on Vertex-Sharing Triicosahedra. J. Am. Chem. Soc. 1990, 112, 8552-8562.
    119. Chang, C. C.; Liu, C. Y.; Wu, S. Y.; Tsai, M. K. Adsorption and Dehydrogenation of Ethane, Propane and Butane on Rh13 Clusters Supported on Unzipped Graphene Oxide and TiO2(110) - a Dft Study.Phys. Chem. Chem. Phys.2017, 19, 4989-4996.
    120. Qi, K.; Zhao, J. M.; Wang, G. C. A Density Functional Theory Study of Ethylene Hydrogenation on MgO- and Gamma-Al2O3-Supported Carbon-Containing Ir4 Clusters. Phys. Chem. Chem. Phys.2015, 17, 4899-908.
    121. Sirijaraensre, J.; Limtrakul, J. Modification of the Catalytic Properties of the Au4 Nanocluster for the Conversion of Methane-to-Methanol: Synergistic Effects of Metallic Adatoms and a Defective Graphene Support. Phys. Chem. Chem. Phys.2015, 17, 9706-15.
    122. Gates, B. C. Supported Metal Clusters: Synthesis, Structure, and Catalysis. ACS Chem. Rev.1995, 95, 511-522.
    123. Russell, J.; Zapol, P.; Král, P.; Curtiss, L. A. Methane Bond Activation by Pt and Pd Subnanometer Clusters Supported on Graphene and Carbon Nanotubes. Chem. Phys. Lett.2012, 536, 9-13.
    124. Gasper, R. J.; Ramasubramaniam, A. Density Functional Theory Studies of the Methanol Decomposition Reaction on Graphene-Supported Pt13 Nanoclusters. J. Phys. Chem. C2016, 120, 17408-17417.
    125. Mahmoodinia, M.; Trinh, T. T.; Astrand, P. O.; Tran, K. Q. Geometrical Flexibility of Platinum Nanoclusters: Impacts on Catalytic Decomposition of Ethylene Glycol. Phys. Chem. Chem. Phys.2017, 19, 28596-28603.
    126. Yamaguchi, A.; Iglesia, E. Catalytic Activation and Reforming of Methane on Supported Palladium Clusters. J. Catal.2010, 274, 52-63.
    127. Davis, J. B.; Shayeghi, A.; Horswell, S. L.; Johnston, R. L. The Birmingham Parallel Genetic Algorithm and Its Application to the Direct Dft Global Optimisation of Ir(N) (N = 10-20) Clusters. Nanoscale 2015, 7, 14032-8.
    128. Ge, Y.; Jiang, H.; Kato, R.; Gummagatta, P. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation. J. Phys. Chem. A2016, 120, 9500-9508.
    129. Chaves, A. S.; Piotrowski, M. J.; Silva, J. L. F. Evolution of the Structural, Energetic, and Electronic Properties of the 3d, 4d, and 5d Transition-Metal Clusters (30 Tmn Systems for N = 2-15): A Density Functional Theory Investigation. Phys. Chem. Chem. Phys.2017, 19, 15484-15502.
    130. Achatz, U.; Berg, C.;Joos, S.;Fox, B. S.; Beyer, M. K.; Niedner-Schatteburg, G.;Bondybey, V. E. Methane Activation by Platinum Cluster Ions in the Gas Phase Effects of Cluster Charge on the Pt Tetramer. Chem. Phys. Lett.2000,320,53–58.
    131. Wang, R.; Ran, J.; Qi, W.; Niu, J.; Du, X. A Comparison of Methane Activation on Catalysts Pt2 and PtNi. Comput. Theo. Chem.2015, 1073, 94-101.
    132. Lang, S. M.; Bernhardt, T. M. Methane Activation and Partial Oxidation on Free Gold and Palladium Clusters: Mechanistic Insights into Cooperative and Highly Selective Cluster Catalysis. Faraday Discussions 2011, 152, 337-9.
    133. García-Diéguez, M.; Chin, Y.-H.; Iglesia, E. Catalytic Reactions of Dioxygen with Ethane and Methane on Platinum Clusters: Mechanistic Connections, Site Requirements, and Consequences of Chemisorbed Oxygen. J. Catal. 2012, 285, 260-272.
    134. Wei, J.; Iglesia, E. Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters. Angew.Chem. 2004, 43, 3685-8.
    135. Imaoka, T.; Akanuma, Y.; Haruta, N.; Tsuchiya, S.; Ishihara, K.; Okayasu, T.; Chun, W. J.; Takahashi, M.; Yamamoto, K. Platinum Clusters with Precise Numbers of Atoms for Preparative-Scale Catalysis. Nat. commun. 2017, 8, 688-9.
    136. Friesner, R. A. Ab Initio Quantum Chemistry: Methodology and Applications. Proc. Natl. Acad. Sci. U. S. A.2005, 102, 6648-53.
    137. Johansson, M. P.; Kila, V. R. L.;Sundholm, D. Ab Initio, Density Functional Theory, and Semi-Empirical Calculations. Springer Science+Business Media 2013, 924, 132-145.
    138. Helgaker, T.; Coriani, S.; Jorgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem. rev.2012, 112, 543-631.
    139. Lewares, E. G.Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer Science 2016,978, 313-348.
    140. Pokluda, J.; Černý, M.; Šob, M.; Umeno, Y. Ab Initio Calculations of Mechanical Properties: Methods and Applications. Prog. Mater. Sci. 2015, 73, 127-158.
    141. Burke, K. Perspective on Density Functional Theory. J. Chem. Phys.2012, 136, 150901-5.
    142. Kohn, W.;Becke, A. D.;Parr, R. G.Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974-12980.
    143. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864-B871.
    144. Medvedev, M. G.;Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density Functional Theory Is Straying from the Path toward the Exact Functional. Science 2017, 355,49–52.
    145. Harker, A. H. Materials Modelling Using Density Functional Theory: Properties and Predictions, by Giustino Feliciano. Contemporary Phys.2015, 57, 140-141.
    146. Pribram-Jones, A.; Pittalis, S.; Gross, E. K. U.; Burke, K. Thermal Density Functional Theory in Context. Springer 2014, 12, 32-35.
    147. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.1965, 140, A1133-A1138.
    148. Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048-5079.
    149. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1993, 48, 4978-4979.
    150. Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41, 7892-7895.
    151. Kresse, G.;Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev.B 1999, 59, 3-8.
    152. Bouckaert, L. P.; Smoluchowski, R.; Wigner, E. Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals. Phys. Rev.1936, 50, 58-67.
    153. Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188-5192.
    154. Sheppard, D.; Henkelman, G. Paths to Which the Nudged Elastic Band Converges. J. comp. chem. 2011, 32, 1769-71.
    155. Koistinen, O. P.; Dagbjartsdottir, F. B.; Asgeirsson, V.; Vehtari, A.; Jonsson, H. Nudged Elastic Band Calculations Accelerated with Gaussian Process Regression. J. Chem. Phys.2017, 147, 152720-8.
    156. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys.2000, 113, 9901-9904.
    157. Perdew, J. P.; Burke, K.;Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996, 77, 18-20.
    158. Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 16-20.
    159. Hassani, A.; Mosavian, M. T. H.; Ahmadpour, A.; Farhadian, N. A Comparative Theoretical Study of Methane Adsorption on the Nitrogen, Boron and Lithium Doped Graphene Sheets Including Density Functional Dispersion Correction. Comput. Theo. Chem. 2016, 1084, 43-50.
    160. Cervenka, J.; Flipse, C. F. J. The Role of Defects on the Electronic Structure of a Graphite Surface. J. Phys: Conference Series 2007, 61, 190-194.
    161. Mukherjee, S.; Kaloni, T. P. Electronic Properties of Boron- and Nitrogen-Doped Graphene: A First Principles Study. J. Nanopart. Res. 2012, 14, 41-45.
    162. Ferrighi, L.; Trioni, M. I.; Valentin, C. Boron-Doped, Nitrogen-Doped, and Codoped Graphene on Cu(111): A Dft + Vdw Study. J. Phys. Chem. C2015, 119, 6056-6064.
    163. Rani, P.; Jindal, V. K. Stability and Electronic Properties of Isomers of B/N Co-Doped Graphene. Appl. Nanosci. 2013, 4, 989-996.
    164. Li, J.; Croiset, E.; Ricardez-Sandoval, L. Methane Dissociation on Ni (100), Ni (111), and Ni (553): A Comparative Density Functional Theory Study. J. Mol. Catal. A: Chemical 2012, 365, 103-114.
    165. Zhang, R.; Song, L.; Wang, Y. Insight into the Adsorption and Dissociation of CH4 on Pt(Hkl) Surfaces: A Theoretical Study. Appl. Surf. Sci.2012, 258, 7154-7160.
    166. Zuo, Z.; Huang, W.; Han, P.; Li, Z. A Density Functional Theory Study of CH4 Dehydrogenation on Co(111). Appl. Surf. Sci.2010, 256, 5929-5934.
    167. Liu, H.; Teng, B.; Fan, M.; Wang, B.; Zhang, Y.; Harris, H. CH4 Dissociation on the Perfect and Defective MgO(001) Supported Ni4. Fuel 2014, 123, 285-292.
    168. An, W.; Zeng, X. C.; Turner, C. H. First-Principles Study of Methane Dehydrogenation on a Bimetallic Cu/Ni(111) Surface. J. Chem. Phys.2009, 131, 174702-8.
    169. Zhang, M.; Yu, Y.; Zhang, Y. Dft Research of Methane Preliminary Dissociation on Aluminum Catalyst. Appl. Surf. Sci. 2013, 280, 15-24.
    170. Li, M.-R.; Lu, Z.; Wang, G.-C. The Effect of Potassium on Steam-Methane Reforming on the Ni4/Al2O3 Surface: A Dft Study. Catal. Sci. Technol. 2017, 7, 3613-3625.
    171. Pekluda, D.; Ramaprabhu, S. Hydrogen Storage in Platinum Decorated Hydrogen Exfoliated Graphene Sheets by Spillover Mechanism. Phys. Chem. Chem. Phys.2014, 16, 26725-9.
    172. Grootel, P. W.;Santen, R. A.; Hensen, E. J. M. Methane Dissociation on High and Low Indices Rh Surfaces. J. Phys. Chem. C2011, 115, 13027-13034.
    173. Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M. Dft Study of Hydrogen Production from Formic Acid Decomposition on Pd-Au Alloy Nanoclusters. Appl. Surf. Sci.2017, 426, 194-205.
    174. Song, W.; Su, Y.; Hensen, E. J. M. A Dft Study of CO Oxidation at the Pd–CeO2(110) Interface. J. Phys. Chem. C2015, 119, 27505-27511.
    175. Dzade, N. Y.; Roldan, A.; Leeuw, N. H. Activation and Dissociation of CO2 on the (001), (011), and (111) Surfaces of Mackinawite (FeS): A Dispersion-Corrected Dft Study. J. Chem. Phys.2015, 143, 094703-8.
    176. Niu, T.; Jiang, Z.; Zhu, Y.; Zhou, G.; Spronsen, M. A.; Tenney, S. A.; Boscoboinik, J. A.; Stacchiola, D. Oxygen-Promoted Methane Activation on Copper. J. Phys. Chem. B2018, 122, 855-863.
    177. Qi, Q.; Wang, X.; Chen, L.; Li, B. Methane Dissociation on Pt(111), Ir(111) and Ptir(111) Surface: A Density Functional Theory Study. Appl. Surf. Sci. 2013, 284, 784-791.
    178. Hao, X.; Wang, Q.; Li, D.; Zhang, R.; Wang, B. The Adsorption and Dissociation of Methane on Cobalt Surfaces: Thermochemistry and Reaction Barriers. RSC Adv. 2014, 4, 43004-43011.
    179. Moiraghi, R.; Lozano, A.; Busnengo, H. F. Theoretical Study of the Dissociative Adsorption of Methane on Ir(111): The Role of Steps and Surface Distortions at High Temperatures. J. Phys. Chem. C2016, 120, 3946-3954.
    180. Trinchero, A.; Hellman, A.; Grönbeck, H. Methane Oxidation over Pd and Pt Studied by Dft and Kinetic Modeling. Surf. Sci.2013, 616, 206-213.
    181. Ohkawa,T.;Kuramoto, K. Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-Atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au). Int. J. Comput. Theo. Chem.2016, 4(3),21-30.
    182. Huang, Y.; Du, J.; Ling, C.; Zhou, T.; Wang, S. Methane Dehydrogenation on Au/Ni Surface Alloys – a First-Principles Study. Catal. Sci. Technol. 2013, 3, 1343-8.
    183. Xu, L; Wen, H.; Jin, X.; Bing, Q.-m.; Liu, J.-y. Dft Study on Dry Reforming of Methane over Ni2 Fe Overlayer of Ni(1 1 1) Surface. Appl. Surf. Sci. 2018, 443, 515-524.
    184. Niu, J.; Ran, J.; Du, X.; Qi, W.; Zhang, P.; Yang, L. Effect of Pt Addition on Resistance to Carbon Formation of Ni Catalysts in Methane Dehydrogenation over Ni-Pt Bimetallic Surfaces: A Density Functional Theory Study. Mol. Catal.2017, 434, 206-218.
    185. Damte, J. Y.; Lyu, S. L.; Leggesse, E. G.; Jiang, J. C. Methanol Decomposition Reactions over a Boron-Doped Graphene Supported Ru-Pt Catalyst. Phys. Chem. Chem. Phys.2018, 20, 9355-9363.
    186. Huang, Y.; Ling, C.; Jin, M.; Du, J.; Zhou, T.; Wang, S. Water Adsorption and Dissociation on Ni Surface: Effects of Steps, Dopants, Coverage and Self-Aggregation. Phys. Chem. Chem. Phys.2013, 15, 17804-17.
    187. Han, Z. K.; Gao, Y. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles Dft+U Investigation. Chem. 2016, 22, 2092-2099.
    188. Zhang, J.; Zhang, R.; Wang, B.; Ling, L. Insight into the Adsorption and Dissociation of Water over Different CuO(111) Surfaces: The Effect of Surface Structures. Appl. Surf. Sci.2016, 364, 758-768.
    189. Wang, H.; He, C.-Z.; Huai, L.-Y.; Liu, J.-Y. Formaldehyde Decomposition and Coupling on V(100): A First-Principles Study. J. Phys. Chem. C2012, 116, 10639-10648.
    190. Lv, C. Q.; Ling, K. C.; Wang, G. C. Methane Combustion on Pd-Based Model Catalysts: Structure Sensitive or Insensitive? J. Chem. Phys.2009, 131, 144704-8.
    191. Malek, A.; Eikerling, M. H. Chemisorbed Oxygen at Pt(111): A Dft Study of Structural and Electronic Surface Properties. Electrocatalysis 2017, 9, 370-379.
    192. Wang, J.;Wang, G.-C. Promotion Effect of Methane Activation on Cu(111) by the Surface- Active Oxygen Species: A Combination of Dft and Reaxff Study. J. Phys. Chem. C 2018, 122, 17338−17346.
    193. Reneme, Y.; Pietrzyk, S.; Dhainaut, F.; Chaar, M.; Veen, A. C.; Granger, P.Reaction Pathways Involved in CH4 Conversion on Pd/Al2O3 Catalysts: Tap as a Powerful Tool for the Elucidation of the Effective Role of the Metal/Support Interface. Frontiers in chem.2016, 4,7.
    194. Weng, X.; Ren, H.; Chen, M.; Wan, H. Effect of Surface Oxygen on the Activation of Methane on Palladium and Platinum Surfaces. ACS Catal.2014, 4, 2598-2604.

    QR CODE