簡易檢索 / 詳目顯示

研究生: 林育鈞
Yu-Chun Lin
論文名稱: 利用非侵入式電漿診斷法探討施加電壓及氣體流率對常壓電漿物理性質之影響
Measurement of atmospheric pressure plasma properties as functions of voltages and gas flow rates by non-invasive diagnostic methods
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 吳宗信
Jong-Shinn Wu
徐振哲
Cheng-Che Hsu
陳建彰
Jian-Zhang Chen
陳賜原
Szu-yuan Chen
石川健治
Kenji Ishikawa
李振綱
Cheng-Kang Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 109
中文關鍵詞: 電漿量測常壓電漿雷射量測氣體流率
外文關鍵詞: Plasma diagnostics, Laser diagnostics, Atmospheric pressure plasma, Non-invasive diagnostics
相關次數: 點閱:388下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的,為利用電漿診斷技術探討調整電漿參數對常壓電漿物理性質之影響,所探討的物理性質包含電子溫度 (electron temperature, Te)、電子密度 (electron density, ne)、氣體流動行為以及放電行為。本研究利用非侵入式的量測方法,包括電壓電流波形量測 (waveform measurement)、紋影法 (shlieren)、光發射光譜 (optical emission spectroscopy, OES)、湯姆森散射 (Thomson scattering) 、以及雷射誘導螢光法 (Laser-induced Fluorescence, LIF),探討改變氣體流率及施加電壓對電漿性質與電漿射流之影響。
    本論文將分別設計不同的非侵入式檢測系統,探討兩種不同常壓電漿的物理性質。第一種常壓電漿系統為120 Hz 之交流電常壓電漿、第二種為微波常壓電漿。第一部份利用120 Hz 交流電常壓電漿的實驗結果顯示,當固定氣體流率為2 slm且施加電壓由5 kV增加至12 kV時,電漿的放電形式並無太大差異。利用波形量測結果發現,當流率由5 slm 增加至8 slm時,高電壓及電流響應於一周期時電漿放電次數分別為3次與7次,推測為當流率上升時,兩電極間的電阻增加、導致能量消耗,因此形成不均勻放電及再激發過程。另外,紋影分析的實驗結果顯示,氣體流率為2 slm時,當電漿成功形成時,氣體流動方式由層流變為擾流;而當氣體流率增加至5 slm時,且當施加電壓由5 kV上升至12 kV時,其層流區長度由6.5 mm縮減至1.5 mm。其原因為當施加能量使氣體游離時,該區域範圍之粒子密度增加、並與周遭氣體形成擾動。當氣體游離時,將使得氣體流速產生變化,而當兩不同流速的流體接觸時,將形成擾動。除此之外,光發射光譜量測結果,可發現於氣體流率為2 slm、且施加電壓上升至12 kV時,氣體迴轉溫度 (rotational temperature, Tr)上升至1550 ± 50 K,且當氣體流率上升至8 slm時,溫度下降為1180 ± 20 K。由於改變氣體流率比改變電壓於電漿性質之影響更為顯著,因此將探討羥自由基 (OH) 於不同氣體流率下隨電漿長度的濃度變化情形。研究結果顯示,羥自由基最大生成濃度的位置約位於層流轉為擾流的位置,推測羥自由基的生成是利用空氣中之氧化合物,例如氧氣、水分、碳氧化物等,因此當空氣藉由擾流進入電漿時,羥自由基的濃度為最高。
    第二部分的實驗是利用湯姆森散射技術,量測微波常壓電漿束 (microwave atmospheric pressure plasma, MWAPPJ) 的物理性質,並藉由紋影分析探討流動行為對物理性質之影響。結果顯示,當氣體流率由2 slm增加至6 slm時,計算得到的電子密度由4.09 ± 2.01 × 1015 cm-3下降至2.13 ± 0.41 × 1015 cm-3、且電子溫度由1.28 ± 0.41上升至2.33 ± 0.72 eV。進一步將氣體流率增加至8 slm,電子溫度下降至1.99 ± 0.56 eV、但電子密度上升至3.90 ± 2.27 × 1015 cm-3。此現象藉由紋影分析結果解釋為,電漿的工作氣體與周圍氣體的擾動,導致電漿能量散失,此能量散失使其他分子發生游離與再結合反應,因此導致物理性質變化。除此之外,電漿束隨流率增加而縮短,且量測點位於電漿束末端,因此電子由電漿束崩離時,將伴隨強烈電場及動能導致溫度上升。


    Plasma diagnostics played important roles in providing the flux of reactive species, the composition of plasmas, and the status of plasma processes. In this regard, the analytical methods were widely utilized to investigate the effects of operational parameters of the properties of atmospheric pressure plasma (APP) including temperature, density, discharge, and flow behaviors. In this thesis, the non-invasive diagnostic techniques including power waveform measurement, Schlieren analysis, optical emission spectroscopy (OES), laser scattering, and laser-induced fluorescence (LIF) were used to determine the type of discharges, flow behavior, rotational temperature (Tr), electron density (ne), electron temperature (Te), and the generation of hydroxyl radical (OH), respectively, as the functions of gas flow rates and applied voltages.
    For the first plasma system, the 120 Hz AC atmospheric pressure plasma (120-Hz-AC-APP) was used to demonstrate the effects of gas flow rates and applied voltages on the discharge properties. The results indicated that the increase of gas flow rate caused the formation of spark discharge, due to the 3 spikes of high voltage response that were obtained when flow rate increased from 2 slm to 5 slm. This may be due to the increase of gas flow rates that resulted in the increase of the resistance between two electrodes and further perturbed the discharge. Additionally, the increase of gas flow rates and applied voltages resulted in the shortening of the laminar flow region, due to the turbulence behavior that took place by the Rayleigh-Taylor instability and Kelvin-Helmholtz instability. On the other hand, Tr increased from 1400 K to 1550 K by increasing the applied voltage from 5 kV to 12 kV at 2 slm discharge. Moreover, Tr increased from 950 K to 1180 K by increasing gas flow rate to 8 slm. Interestingly, the maximum concentration of OH was obtained at the position where the laminar flow turned into turbulence, due to the air species started to be dissociated by plasma and resulted in the recombination of reactive species.
    In the second part of the thesis, the microwave APP jet (MWAPPJ) were employed to determine the influences of gas flow rates on the physical properties by Thomson scattering techniques. The variations of the physical properties were investigated by performing the Schlieren analyses. The results demonstrated that the increase of gas flow rate from 2 to 6 slm led the increase of Te from 1.28 ± 0.41 to 2.33 ± 0. 72 eV and the decrease of ne from 4.09 ± 2.01 × 1015 cm-3 to 2.13 ± 0.41 × 1015 cm-3. Furthermore, by increasing the gas flow rate to 8 slm, it was found that Te decreased to 1.99 ± 0.56 eV and the ne increased to 3.09 ± 2.27 × 1015 cm-3. The reason may be owing to the acquisition position is closed to the end of the plasma jet, in which the electrons avalanched to maintain the discharge and thus resulted in the high electron field and momentum.

    摘要 I Abstract III Acknowledgement V Content of thesis VI List of figures VIII List of tables XIII Abbreviations XIV Chapter 1 Introduction 1 1-1 Background of research 1 1-2 Goals of research 2 1-3 Thesis overview 3 Chapter 2 Literatures review 4 2-1 Applications of atmospheric pressure plasma (APP) and the roles of reactive species 4 2-2 Review: diagnostic methods 11 2-2-1 Invasive method 11 2-2-2 Non-invasive diagnostics 16 2-2-3 The other diagnostic methods 26 Chapter 3 Experimental 31 3-1 120 Hz AC Atmospheric Pressure Plasma (120-Hz-AC-APP) 31 3-2 Thomson scattering measurement of MWAPPJ 36 3-3 Calculation of Tr, ne and Te from OES and TS spectra 39 Chapter 4 Results and Discussion 41 4-1 Characterization the effects of flow rates and applied voltages on the properties of 120-Hz-AC-APP 41 4-2 Investigation the roles of gas flow rates on ne and Te of microwave atmospheric pressure plasma jet (MWAPPJ) 59 Chapter 5 Conclusions 69 Future works and perspective 72 References 73 Appendix: Q & A 81 Curriculum Vitae 90

    1. Donnelly, V., Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy. Journal of Physics D: Applied Physics 2004, 37 (19), R217.
    2. Nikiforov, A. Y.; Leys, C.; Gonzalez, M.; Walsh, J., Electron density measurement in atmospheric pressure plasma jets: Stark broadening of hydrogenated and non-hydrogenated lines. Plasma Sources Science and Technology 2015, 24 (3), 034001.
    3. Zhang, Z.; Jie, S.; Cheng, C.; Zimu, X.; Weidong, X., Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water. Plasma Science and Technology 2018, 20 (4), 044009.
    4. Reuter, S.; Sousa, J. S.; Stancu, G. D.; van Helden, J.-P. H., Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets. Plasma Sources Science and Technology 2015, 24 (5), 054001.
    5. Misra, N.; Schlüter, O.; Cullen, P., Plasma in food and agriculture. In Cold Plasma in Food and Agriculture, Elsevier: 2016; pp 1-16.
    6. Aumaille, K.; Vallee, C.; Granier, A.; Goullet, A.; Gaboriau, F.; Turban, G., A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor. Thin Solid Films 2000, 359 (2), 188-196.
    7. Boselli, M.; Colombo, V.; Ghedini, E.; Gherardi, M.; Laurita, R.; Liguori, A.; Sanibondi, P.; Stancampiano, A., Schlieren high-speed imaging of a nanosecond pulsed atmospheric pressure non-equilibrium plasma jet. Plasma Chemistry and Plasma Processing 2014, 34 (4), 853-869.
    8. Laroussi, M.; Lu, X.; Keidar, M., Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics 2017, 122 (2), 020901.
    9. Ono, R., Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. Journal of Physics D: Applied Physics 2016, 49 (8), 083001.
    10. Langmuir, I., Oscillations in ionized gases. Proceedings of the National Academy of Sciences 1928, 14 (8), 627-637.
    11. Gerber, I. C.; Mihaila, I.; Hein, D.; Nastuta, A. V.; Jijie, R.; Pohoata, V.; Topala, I., Time Behaviour of Helium Atmospheric Pressure Plasma Jet Electrical and Optical Parameters. Applied Sciences 2017, 7 (8), 812.
    12. Penkov, O. V.; Khadem, M.; Lim, W.-S.; Kim, D.-E., A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research 2015, 12 (2), 225-235.
    13. Tanaka, H.; Ishikawa, K.; Mizuno, M.; Toyokuni, S.; Kajiyama, H.; Kikkawa, F.; Metelmann, H.-R.; Hori, M., State of the art in medical applications using non-thermal atmospheric pressure plasma. Reviews of Modern Plasma Physics 2017, 1 (1), 3.
    14. Nagasawa, H.; Yamamoto, Y.; Tsuda, N.; Kanezashi, M.; Yoshioka, T.; Tsuru, T., Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation. Journal of Membrane Science 2017, 524, 644-651.
    15. Kuok, F.-H.; Liao, C.-Y.; Wan, T.-H.; Yeh, P.-W.; Cheng, I.-C.; Chen, J.-Z., Atmospheric pressure plasma jet processed reduced graphene oxides for supercapacitor application. Journal of Alloys and Compounds 2017, 692, 558-562.
    16. García, M. C.; Mora, M.; Esquivel, D.; Foster, J. E.; Rodero, A.; Jiménez-Sanchidrián, C.; Romero-Salguero, F. J., Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye. Chemosphere 2017, 180, 239-246.
    17. Van Gils, C.; Hofmann, S.; Boekema, B.; Brandenburg, R.; Bruggeman, P., Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal of Physics D: Applied Physics 2013, 46 (17), 175203.
    18. Holzer, F.; Kopinke, F.-D.; Roland, U., Non-thermal plasma treatment for the elimination of odorous compounds from exhaust air from cooking processes. Chemical Engineering Journal 2018, 334, 1988-1995.
    19. Kang, S. U.; Choi, J. W.; Chang, J. W.; Kim, K. i.; Kim, Y. S.; Park, J. K.; Kim, Y. E.; Lee, Y. S.; Yang, S. S.; Kim, C. H., N2 non‐thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase‐9. Experimental Dermatology 2017, 26 (2), 163-170.
    20. Kramer, A.; Hübner, N.-O.; Weltmann, K.-D.; Lademann, J.; Ekkernkamp, A.; Hinz, P.; Assadian, O., Polypragmasia in the therapy of infected wounds–conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhaushygiene Interdisziplinar 2008, 3 (1).
    21. Buck II, D. W.; Lewis Jr, V. L., The use of argon beam coagulation in pressure sore reconstruction. Journal of Plastic, Reconstructive & Aesthetic Surgery 2009, 62 (12), 1684-1687.
    22. O'Neill, L.; Dobbyn, P.; Kulkarni, M.; Pandit, A., Wound Healing using Plasma Modified Collagen. Clinical Plasma Medicine 2018.
    23. Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J., Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential. Journal of Geophysical Research: Space Physics 2017, 122 (9), 9603-9621.
    24. Becker, K. H.; Kogelschatz, U.; Schoenbach, K.; Barker, R., Non-equilibrium air plasmas at atmospheric pressure. CRC press: 2004; p 466-516.
    25. Auciello, O.; Flamm, D. L., Plasma Diagnostics: Discharge parameters and chemistry. Academic Press: 2013; Vol. 1, p 113-181.
    26. Hoang, H.; Røed, K.; Bekkeng, T.; Trondsen, E.; Clausen, L.; Miloch, W.; Moen, J., High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft. Measurement Science and Technology 2017, 28 (11), 115903.
    27. Younus, M.; Rehman, N.; Shafiq, M.; Hussain, S.; Zakaullah, M.; Zaka-ul-Islam, M., Characterization of RF He-N2/Ar mixture plasma via Langmuir probe and optical emission spectroscopy techniques. Physics of Plasmas 2016, 23 (8), 083521.
    28. Hammadi, O. A.; Raja, W. N.; Saleh, M. A.; Altun, W. A., Employment of Magnetron to Enhance Langmuir Probe Characteristics of Argon Glow Discharge Plasma in Sputtering System. Iraqi Journal of Applied Physics 2016, 12 (4), 19-28.
    29. Afonso Ferreira, J.; Stafford, L.; Leonelli, R.; Ricard, A., Electrical characterization of the flowing afterglow of N2 and N2/O2 microwave plasmas at reduced pressure. Journal of Applied Physics 2014, 115 (16), 163303.
    30. Hu, L.; Wang, C.; Lin, Y.; Wei, T.; Lee, C.; Chang, J.; Chen, I.; Kawai, Y.; Li, T., Investigation of electron cyclotron resonance chemical vapor deposition process for a-Si: H deposition, film characterization and in situ plasma diagnostics. ECS Journal of Solid State Science and Technology 2015, 4 (7), P213-P219.
    31. Meshcheryakova, E.; Zibrov, M.; Kaziev, A.; Khodachenko, G.; Pisarev, A., Langmuir probe diagnostics of low-pressure inductively coupled argon plasmas in a magnetic field. Physics Procedia 2015, 71, 121-126.
    32. Wu, S.-Y.; Tseng, Y.-C.; Li, H.-L.; Lu, H.-N.; Huang, C., Surface characterization of organosilicon films by low-temperature atmospheric-pressure plasma jet. Japanese Journal of Applied Physics 2017, 56 (6S2), 06HE04.
    33. Hsu, C.-H.; Cho, Y.-S.; Liu, T.-X.; Chang, H.-W.; Lien, S.-Y., Optimization of residual stress of SiO2/organic silicon stacked layer prepared using inductively coupled plasma deposition. Surface and Coatings Technology 2017, 320, 293-297.
    34. Vos, M.; Knoops, H.; Synowicki, R.; Kessels, W.; Mackus, A., Atomic layer deposition of aluminum fluoride using Al (CH3) 3 and SF6 plasma. Applied Physics Letters 2017, 111 (11), 113105.
    35. Konjević, N.; Ivković, M.; Sakan, N., Hydrogen Balmer lines for low electron number density plasma diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy 2012, 76, 16-26.
    36. Hofmann, S.; Van Gessel, A.; Verreycken, T.; Bruggeman, P., Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources Science and Technology 2011, 20 (6), 065010.
    37. Rodero, A.; García, M., Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening of argon atomic emission lines. Journal of Quantitative Spectroscopy and Radiative Transfer 2017, 198, 93-103.
    38. Li, L.; Nikiforov, A.; Britun, N.; Snyders, R.; Leys, C., Emission and absorption spectroscopy study of Ar excited states in 13.56 MHz argon plasma operating at sub-atmospheric to atmospheric pressure. Spectrochimica Acta Part B: Atomic Spectroscopy 2015, 107, 75-85.
    39. Christova, M.; Castanos-Martinez, E.; Calzada, M.; Kabouzi, Y.; Luque, J.; Moisan, M., Electron density and gas temperature from line broadening in an argon surface-wave-sustained discharge at atmospheric pressure. Applied Spectroscopy 2004, 58 (9), 1032-1037.
    40. Sahu, B. B.; Han, J. G.; Shin, K. S.; Hori, M., Nitrogen Radical and Plasma Diagnostics in Dual Frequency Hybrid Plasmas to Investigate N2/SiH4 PECVD Process. Plasma Processes and Polymers 2016, 13 (4), 447-458.
    41. Du, Y.; Peng, Z.; Ding, Y.; Sadeghi, N.; Bruggeman, P. In Temperature and absolute oh density measurement by the relative emission spectroscopy in diffuse atmospheric-pressure RF glow discharges, Plasma Science (ICOPS), 2016 IEEE International Conference on, IEEE: 2016; pp 1-1.
    42. Jovović, J.; Stojadinović, S.; Šišović, N.; Konjević, N., Spectroscopic study of plasma during electrolytic oxidation of magnesium-and aluminium-alloy. Journal of Quantitative Spectroscopy and Radiative Transfer 2012, 113 (15), 1928-1937.
    43. Belostotskiy, S. G.; Ouk, T.; Donnelly, V. M.; Economou, D. J.; Sadeghi, N., Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy. Journal of Applied Physics 2010, 107 (5), 053305.
    44. Stojadinović, S.; Tadić, N.; Vasilić, R., Plasma electrolytic oxidation of hafnium. International Journal of Refractory Metals and Hard Materials 2017, 69, 153-157.
    45. Griem, H. R., Principles of plasma spectroscopy. Cambridge University Press: 2005; Vol. 2, p 9-10.
    46. Gudimenko, E.; Milosavljević, V.; Daniels, S., Influence of self-absorption on plasma diagnostics by emission spectral lines. Optics Express 2012, 20 (12), 12699-12709.
    47. Van de Sande, M., Laser scattering on low temperature plasmas. High resolution and stray light rejection PhD Dissertation Technische Universiteit Eindhoven, Eindhoven, The Netherlands 2002.
    48. Kono, A.; Nakatani, K., Efficient multichannel Thomson scattering measurement system for diagnostics of low-temperature plasmas. Review of Scientific Instruments 2000, 71 (7), 2716-2721.
    49. Tomita, K.; Urabe, K.; Shirai, N.; Sato, Y.; Hassaballa, S.; Bolouki, N.; Yoneda, M.; Shimizu, T.; Uchino, K., Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere. Japanese Journal of Applied Physics 2016, 55 (6), 066101.
    50. Chalyavi, N.; Doidge, P. S.; Morrison, R. J.; Partridge, G. B., Fundamental studies of an atmospheric-pressure microwave plasma sustained in nitrogen for atomic emission spectrometry. Journal of Analytical Atomic Spectrometry 2017, 32 (10), 1988-2002.
    51. Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S., The influence of the Ar/O2 ratio on the electron density and electron temperature in microwave discharges. Plasma Sources Science and Technology 2017, 26 (10), 105008.
    52. Zhang, Q.; Liang, Y.; Feng, H.; Ma, R.; Tian, Y.; Zhang, J.; Fang, J., A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Applied Physics Letters 2013, 102 (20), 203701.
    53. Ja Kim, S.; Min Joh, H.; Chung, T., Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells. Applied Physics Letters 2013, 103 (15), 153705.
    54. Pei, X.; Lu, Y.; Wu, S.; Xiong, Q.; Lu, X., A study on the temporally and spatially resolved OH radical distribution of a room-temperature atmospheric-pressure plasma jet by laser-induced fluorescence imaging. Plasma Sources Science and Technology 2013, 22 (2), 025023.
    55. Yonemori, S.; Ono, R., Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence. Journal of Physics D: Applied Physics 2014, 47 (12), 125401.
    56. Yue, Y.; Pei, X.; Gidon, D.; Wu, F.; Wu, S.; Lu, X., Investigation of plasma dynamics and spatially varying O and OH concentrations in atmospheric pressure plasma jets impinging on glass, water and metal substrates. Plasma Sources Science and Technology 2018, 27 (6), 064001.
    57. Yamada, H.; Yamagishi, Y.; Sakakita, H.; Tsunoda, S.; Kasahara, J.; Fujiwara, M.; Kato, S.; Itagaki, H.; Kim, J.; Kiyama, S., Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by Schlieren optical method. Japanese Journal of Applied Physics 2015, 55 (1S), 01AB08.
    58. Oh, J.-S.; Szili, E. J.; Gaur, N.; Hong, S.-H.; Furuta, H.; Short, R. D.; Hatta, A., In-situ UV absorption spectroscopy for monitoring transport of plasma reactive species through agarose as surrogate for tissue. Journal of Photopolymer Science and Technology 2015, 28 (3), 439-444.
    59. Takeda, K.; Kumakura, T.; Ishikawa, K.; Tanaka, H.; Sekine, M.; Hori, M., Behavior of absolute densities of atomic oxygen in the gas phase near an object surface in an AC-excited atmospheric pressure He plasma jet. Applied Physics Express 2017, 10 (3), 036201.
    60. Iwasaki, M.; Inui, H.; Matsudaira, Y.; Kano, H.; Yoshida, N.; Ito, M.; Hori, M., Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning. Applied Physics Letters 2008, 92 (8), 081503.
    61. Naghizadeh-Kashani, Y.; Cressault, Y.; Gleizes, A., Net emission coefficient of air thermal plasmas. Journal of Physics D: Applied Physics 2002, 35 (22), 2925.
    62. Deng, X.; Nikiforov, A. Y.; Vanraes, P.; Leys, C., Direct current plasma jet at atmospheric pressure operating in nitrogen and air. Journal of Applied Physics 2013, 113 (2), 023305.
    63. Jia, F.; Sumi, N.; Ishikawa, K.; Kano, H.; Inui, H.; Kularatne, J.; Takeda, K.; Kondo, H.; Sekine, M.; Kono, A., Laser scattering diagnosis of a 60-Hz non-equilibrium atmospheric pressure plasma jet. Applied Physics Express 2011, 4 (2), 026101.
    64. Van de Sande, M.; Van der Mullen, J., Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp. Journal of Physics D: Applied Physics 2002, 35 (12), 1381.
    65. Kong, C.; Gao, J.; Zhu, J.; Ehn, A.; Aldén, M.; Li, Z., Re-igniting the afterglow plasma column of an AC powered gliding arc discharge in atmospheric-pressure air. Applied Physics Letters 2018, 112 (26), 264101.
    66. Korolev, Y. D.; Frants, O. B.; Landl, N. V.; Geyman, V. G.; Matveev, I. B., Glow-to-spark transitions in a plasma system for ignition and combustion control. IEEE Transactions on Plasma Science 2007, 35 (6), 1651-1657.
    67. Benabbas, M. T.; Sahli, S.; Benhamouda, A.; Rebiai, S., Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet. Nanoscale Research Letters 2014, 9 (1), 697.
    68. Li, Q.; Li, J.-T.; Zhu, W.-C.; Zhu, X.-M.; Pu, Y.-K., Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets. Applied Physics Letters 2009, 95 (14), 141502.
    69. Yambe, K.; Furuichi, T.; Ogura, K. In Influence of gas flow on plasma length in atmospheric pressure plasma jet, Proceedings of the 12th Asia Pacific Physics Conference (APPC12), 2014; p 015084.
    70. Oh, J.-S.; Walsh, J. L.; Bradley, J. W., Plasma bullet current measurements in a free-stream helium capillary jet. Plasma Sources Science and Technology 2012, 21 (3), 034020.
    71. Akula, B.; Suchandra, P.; Mikhaeil, M.; Ranjan, D., Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability. Journal of Fluid Mechanics 2017, 816, 619-660.
    72. Benard, N.; Moreau, E. In Effects of altitude on the electromechanical characteristics of a single dielectric barrier discharge plasma actuator, 41st Plasmadynamics and Lasers Conference, 2010; p 4633.
    73. Tučeková, Z.; Koval’ová, Z.; Zahoranová, A.; Machala, Z.; Černák, M., Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge. The European Physical Journal Applied Physics 2016, 75 (2), 24711.
    74. Lieberman, M. A.; Lichtenberg, A. J., Principles of plasma discharges and materials processing. John Wiley & Sons: 2005; p 241-253.
    75. Zhao, L.; Ma, K.; Yang, Z., Changes of water hydrogen bond network with different externalities. International journal of molecular sciences 2015, 16 (4), 8454-8489.
    76. Srivastava, N.; Wang, C., Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. Journal of Applied Physics 2011, 110 (5), 053304.
    77. Xiao, D.; Cheng, C.; Shen, J.; Lan, Y.; Xie, H.; Shu, X.; Meng, Y.; Li, J.; Chu, P. K., Electron density measurements of atmospheric-pressure non-thermal N2 plasma jet by Stark broadening and irradiance intensity methods. Physics of Plasmas 2014, 21 (5), 053510.
    78. Jongma, R. T.; Boogaarts, M. G.; Holleman, I.; Meijer, G., Trace gas detection with cavity ring down spectroscopy. Review of scientific instruments 1995, 66 (4), 2821-2828.
    79. Meng, S.; Sun, S.; Xu, H.; Guo, Y.; Feng, D.; Zhao, Y.; Wang, P.; Qin, Y., The effects of water addition on the laminar flame speeds of CO/H2/O2/H2O mixtures. International Journal of Hydrogen Energy 2016, 41 (25), 10976-10985.
    80. Herron, J. T.; Green, D. S., Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chemistry and Plasma Processing 2001, 21 (3), 459-481.
    81. Humud, H. R.; Abbas, Q. A.; Rauuf, A. F., Effect of gas flow rate on the electron temperature, electron density and gas temperature for atmospheric microwave plasma jet. Int. J. Curr. Eng. Technol 2015, 5, 2277-4106.
    82. Dilawari, A.; Szekely, J.; Westhoff, R., A comparison of experimental measurements and theoretical predictions regarding the behavior of a turbulent argon plasma jet discharging into air. Plasma Chemistry and Plasma Processing 1990, 10 (4), 501-513.
    83. Lu, X.; Laroussi, M.; Puech, V., On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Science and Technology 2012, 21 (3), 034005.
    84. Robert, E.; Darny, T.; Dozias, S.; Iseni, S.; Pouvesle, J.-M., New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas 2015, 22 (12), 122007.
    85. Lu, X.; Naidis, G.; Laroussi, M.; Ostrikov, K., Guided ionization waves: Theory and experiments. Physics Reports 2014, 540 (3), 123-166.
    86. Van Gessel, A.; Carbone, E.; Bruggeman, P.; Van der Mullen, J., Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering. Plasma Sources Science and Technology 2012, 21 (1), 015003.
    87. Britun, N.; Konstantinidis, S.; Snyders, R., An Overview on Time‐Resolved Optical Analysis of HiPIMS Discharge. Plasma Processes and Polymers 2015, 12 (9), 1010-1027.

    無法下載圖示 全文公開日期 2024/01/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE