簡易檢索 / 詳目顯示

研究生: 黃仁楷
Jen-Kai Huang
論文名稱: 聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物共混合物與聚碳酸酯/聚對苯二甲酸丁二醇酯共混物回收再生的特性研究
Characterisation of recycled polycarbonate /acrylonitrile butadiene styrene and polycarbonate/polybutylene terephthalate blends
指導教授: 游進陽
Chin-Yang Yu
口試委員: 邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
江宗穎
John Chiang
呂杰綺
Jacky lu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 49
中文關鍵詞: PC / ABS再處理再加工回收改質苯乙烯馬來酸酐(SMA)擴鏈劑PC / PBT合膠再處理再回收利用PC和PBT新料
外文關鍵詞: PC/ABS, Reprocessing, Styrene maleic anhydride (SMA), Chain extender, PC/PBT blends, virgin PC and PBT
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3C電子、電機、IT產品日新月異,快速推陳出新,使得其廢棄物的產量日益倍增,造成沈重的環境負擔。因此,歐盟著眼於電子、電機廢棄物量與質的整合管理,2006年發展出一系列的環保指令WEEE、RoHS、EuP,並要求各盟各會員國應在2007年8月完成國內立法程序,擬藉由歐盟龐大的單一市場力量,督促廠商建立綠色採購規範。為因應歐盟與環保的要求,研究探討上述材料回收再利用之可行方案已日異重要。
    學術上藉由在實驗機上以小批量反復回收6~8次進行PC、ABS及PC/ABS Blends的物性及流變性之降解現象之驗證實驗,研究結果證實,加工之過程高分子材料受到熱及機械剪切力之作用,必然造成分子鏈斷裂而導致抗拉性能下降,玻璃轉移點(Tg)下降。然而,實際量產時材料遭受的熱、剪力及水份之影響與實驗機有甚大之差異。因此,本研究旨在純由量產加工程序建立材料降解之實測數據,並藉由改質劑之導入提昇回收材料使用之效率,以達成環保要求,並建立之最佳化”成效比”(成本/性能)之組成為本計劃之目的。
    PC/ABS混合物(以下簡稱CS)被認為是PC或ABS的良好替代材料。為了了解CS重複循環再利用的可能性,我們以工業用量產設備將CS反複加工20次並進一步鑑定描述CS的熱、流變和機械行為的特性,並嘗試對已經經歷20次加工的CS進行改質,使其性能能夠達到CS新料原始性能的85%以上。由不同加工次數的CS熱重量損失(30% at 300-450oC and 40% at ~470oC)和Tg點(at ~100oC)的表現反映出CS具有相當高的熱穩定性。而由應力從4.71增加到5.23 kgf mm2、MI值從40增加到66 g (10 min)1) 、應變從27.2降低到11.7、耐衝擊強度從87.7降低到14.2 J m1、torque 從71降低到49 N m1)等現象研判,反復加工已使CS分子鏈斷鏈、並變得更硬。通過同時添加~30%(w / w)的PC、ABS新料、1.5%的(w / w)擴鏈劑以及2%的(w / w)苯乙烯馬來酸酐(SMA)能夠成功的恢復已重複加工20次的CS料的性能。本研究驗證能夠對已經經歷多次加工的PC合膠進行回收並回復其性能、同時兼顧環境保護的新方法。
    聚碳酸酯(PC)/聚對苯二甲酸丁二醇酯(PBT)合膠(CB)同時兼具了PC和PBT的良好性能,因而被列入具有回收再生再利用價值的工程塑料之一。為了評估回收再加工CB的可能性,對0至20次回收再加工CB的物理和機械性能進行了分析評估,並試圖改質已回收再加工20次的CB使其性能達到CB新料性能的85%。基本上CB的熱重量損失(在300-450℃時為30%,在〜470℃時為40%)不會因回收再加工有明顯變化,反映了它們的高熱穩定性。隨回收加工的次數增加,熔化指數增加(從18.7到92.0


    克(每10分鐘)),但應力值(從6.08到4.99 kgf mm2不等)、應變(從79.0到29.1%)、衝擊強度(從144到14.7 J m-1)和扭矩值(從82到60 N m-1)下降、變硬,顯示CB在再回收再加工時會發生熱/機械分解。添加~30%(w / w)PC和PBT新料能成功的改質已回收再加工20次的CB。添加苯乙烯馬來酸酐和擴鏈劑未能改善再加工CB的應力值,可能是由於它們與PC和PBT分子的相互作用較弱的關係。


    The drastically increasing quantity of waste generated caused by the rapid development of 3C products has a serious impact on the environment. For a better management of 3C product waste, the EU has not only developed a series of environmental protection directives e.g. WEEE, RoHS, and EuP, in 2006 but also requested all member states to complete their legislation before August 2007. In addition, the EU has also urged manufactures to build up green procurement specifications by taking advantage of the EU single market. To reflect the requirements laid down by the EU and for environmental protection, there is an increasing essence to explore the potential to recycle and reprocess the aforementioned materials.
    In the laboratory, reprocessing 6 to 8 times in small batches was frequently performed for verifying the physical and rheological degradation of PC, ABS and PC/ABS blends. The research results have evidenced that the polymeric material is subjected to heat and mechanical shearing force during processing, resulting in the molecular chain break and, consequently, decreases in tensile properties and the glass transition point (Tg). Nevertheless, the effects induced by heat, shear force and moisture during actual mass production vary frequently largely from those in the laboratory test. Therefore, the objective of this study was (1) to quantify the degradation of polymeric materials during actual mass reprocessing, (2) to elevate the recycling and reprocessing efficiency of the polymeric materials via the introduction of modifiers for the purpose of environmental protection and (3) to optimise the “cost to performance ratio”.
    PC/ABS blend (a.k.a CS) is one of the most popular engineering plastics to date, frequently considered as a good alternative to PC or ABS. To estimate the potential to recycle and reprocess CS, we characterised the thermal, rheological and mechanical behaviour of CS reprocessed 0 to 20 times in real industrial facilities and, furthermore, unprecedentedly attempted to modify the 20-time reprocessed CS until its functionality within 15% deviation from the virgin CS. Consistent thermal weight loss (30% at 300-450oC and 40% at ~470oC) and Tg points (at ~100oC) of CS from various cycles of reprocessing reflected the associated high thermal stability. However, increased stress values (from 4.71 to 5.23 kgf mm2) and melting index (from 40 to 66 g (10 min)1) but decreased stain (from 27.2 to 11.7 %), impact strength (from 87.7 to 14.2 J m1) and torque values (from 71 to 49 N m1) suggested that CS underwent


    polymer chain breaks during reprocessing and became stiffer. Recovery of the 20-time reprocessed CS was achieved by adding ~30% (w/w) virgin PC and ABS together with 1.5% (w/w) of chain extender and 2% (w/w) of styrene maleic anhydride (SMA) simultaneously. The study demonstrated the potential for recovering repeatedly reprocessed PC-based polymer blends and a new way of recycling polymer resource for environmental protection.
    Polycarbonate (PC)/polybutylene terephthalate (PBT) blends (CBs) represent a good compromise between the properties of PC and PBT and are among the most popular engineering plastics today. To evaluate the capability of recycled and reprocessed CBs, the physical and mechanical properties of 0 to 20 times reprocessed CBs were characterised, and an attempt was made to modify a 20-time reprocessed CB to reach 85% of the functionality of a virgin CB. Generally, the thermal weight loss (30% at 300–450 °C and 40% at ~470 °C) of the CBs varied little with the reprocessing cycles, reflecting their high thermal stability. The increased melting index (from 18.7 to 92.0 g (10 min)1) but decreased stress values (from 6.08 to 4.99 kgf mm2), strains (from 79.0 to 29.1 %), impact strength (from 144 to 14.7 J m1) and torque values (from 82 to 60 N m1) with reprocessing cycles suggest that the CBs undergo thermal/mechanical decomposition when reprocessing and become thereafter stiffer. Satisfactory modification of the 20 times reprocessed CB succeeded simply via adding ~30% (w/w) virgin PC and PBT. Adding styrene maleic anhydride and a chain extender failed to improve the stress values of reprocessed CBs, probably due to their weak interaction with the PC and PBT molecules.

    中文摘要 ............................................................................................................ Ⅰ 英文摘要 ……………………………………………………………………… Ⅲ 誌謝 …………………………………………………………………………… Ⅴ 目錄 …………………………………………………………………………… Ⅵ 圖表索引 ……………………………………………………………………… Ⅷ 第一章 緒論 ………………………………………………………………….. 1 1.1 研究背景與動機 …………………………………………………………. 1 1.2 材料系統 …………………………………………………………………. 1 1.3 研究特徵與目的 …………………………………………………………. 2 1.4 研究策略與架構 …………………………………………………………. 2 1.5 實驗架構 …………………………………………………………………. 3 1.6 改質試驗加工程序及測試樣品製備 ……………………………………. 3 1.7 參考文獻 …………………………………………………………………. 4 第二章 PC/ABS反復回收加工20次的特性變化與添加改質劑進行改質再生 之研究 ……………………………………………………………….. 5 中文摘要 ……………………………………………………………………… 6 英文摘要 ……………………………………………………………………… 7 2.1 前言 ………………………………………………………………………. 8 2.2 實驗 ………………………………………………………………………. 9 2.2.1 材料 ………………………………………………………………….. 9 2.2.2 PC / ABS (CS)的回收再製 ………………………………………... 9 2.2.3 熱性質分析 ………………………………………………………... 10 2.2.4 流變行為分析 ……………………………………………………... 10 2.2.5 機械性能 …………………………………………………………... 11 2.2.6 苯乙烯馬來酸酐的合成 …………………………….…………….. 11 2.2.7 反復加工20次的CS的改質 …………………………………….. 11 2.3 結果與討論 ……………………………………………………………….. 13 2.3.1 反復加工的PC / ABS(CS)的熱穩定性 - TGA和DSC分析 ….. 13 2.3.2 不同再回收再加工次數PC / ABS的機械性能 - 流變拉伸,拉伸和 衝擊行為 ……………………………………………………………... 15 2.3.3 成功改質20次再回收再加工過的PC / ABS (CS) …………………. 17 2.4 結論 ……………………………………………………………………….. 19 2.5 參考文獻 ………………………………………………………………….. 20 Ⅵ 第三章 聚碳酸酯/聚對苯二甲酸丁二醇酯共混物回收再生的特性研究 ….. 22 中文摘要 ………………………………………………………………………. 23 英文摘要 ………………………………………………………………………. 24 3.1 前言 ……………………………………………………………………….. 25 3.2 實驗 ……………………………………………………………………….. 26 3.2.1 化學品和聚合物材料 ………………………………………………... 26 3.2.2 再加工PC/ PBT的製備 …..………………...………………………. 26 3.2.3 熱,流變和機械性能 ………………………………………………... 26 3.2.4 回收再加工20次的PC / PBT的改質 ……………………………... 27 3.3 結果與討論 ……………………………………………………………….. 27 3.3.1 不同回收再加工次數PC / PBT特性分析評估 ……………………. 27 3.3.1.1 熱穩定性 - 熱重分析(TGA)………………………………… 27 3.3.1.2 熱穩定性 - DSC分析 …………………………………………... 28 3.3.1.3 流變行為 ………………………………………………………… 29 3.3.1.4 抗張和引伸行為 ………………………………………………… 29 3.3.1.5 衝擊強度 ………………………………………………………… 30 3.3.2已回收反復加工20次的PC / PBT的改質 ………………………… 30 3.4 結論 ……………………………………………………………………….. 33 3.5 參考文獻 ………………………………………………………………….. 34 第四章 總結論 ………………………………………………………………... 36 作者簡介 ………………………………………………………………………. 38 著作目錄 ………………………………………………………………………. 39

    [1] Shen, Y. K., C. W. Wu, Y. F. Yu, and H. W. Chung. 2008. "Analysis for Optimal Gate Design of Thin-Walled Injection Molding." International Communications in Heat and Mass Transfer 35 (6):728-34. doi: 10.1016/j.icheatmasstransfer.2008.01.014.
    [2] Aden, M., A. Roesner, and A. Olowinsky. 2010. "Optical Characterization of Polycarbonate: Influence of Additives on Optical Properties." Journal of Polymer Science Part B-Polymer Physics 48 (4):451-5. doi: 10.1002/polb.21906.
    [3] Demongeot, A., R. Groote, H. Goossens, T. Hoeks, F. Tournilhac, and L. Leibler. 2017. "Cross-Linking of Poly(Butylene Terephthalate) by Reactive Extrusion Using Zn(Ii) Epoxy-Vitrimer Chemistry." Macromolecules 50 (16):6117-27. doi: 10.1021/acs.macromol.7b01141.
    [4] Sabu, T., and P. M. Visakh. 2011. Handbook of Engineering and Specialty Thermoplastics. Vol. 3. Wiley-Scrivener, New York.
    [5] Ronkay, Ferenc. 2013. "Effect of Recycling on the Rheological, Mechanical and Optical Properties of Polycarbonate." Acta Polytechnica Hungarica 10 (1):209-20.
    [6] Kahlen, S., G. M. Wallner, and R. W. Lang. 2010. "Aging Behavior and Lifetime Modeling for Polycarbonate." Solar Energy 84 (5):755-62. doi: 10.1016/j.solener.2010.01.021.
    [7] Okamoto, M., Y. Shinoda, T. Kojima, and T. Inoue. 1993. "Toughening Mechanism in a Ternary Polymer Alloy - Pbt Pc Rubber System." Polymer 34 (23):4868-73. doi: 10.1016/0032-3861(93)90011-x.
    [8] Anonymous. 1969. "ABS/PC Alloy Replaces Formed Sheet Metal." Plastics World 27 (9):26-8.
    [9] Scaffaro, R., L. Botta, and G. Di Benedetto. 2012. "Physical Properties of Virgin-Recycled Abs Blends: Effect of Post-Consumer Content and of Reprocessing Cycles." European Polymer Journal 48 (3):637-48. doi: 10.1016/j.eurpolymj.2011.12.018.
    [10] Chiu, H. T., J. K. Huang, M. T. Kuo, and J. H. Huang. 2018. "Characterisation of Pc/Abs Blend During 20 Reprocessing Cycles and Subsequent Functionality Recovery by Virgin Additives." Journal of Polymer Research 25 (5). doi: 10.1007/s10965-018-1522-6.
    [11] Chrysostomou, A., and S. Hashemi. 1996. "Influence of Reprocessing on Properties of Polycarbonate." Journal of Materials Science 31 (21):5573-82. doi: 10.1007/bf01160800.

    34
    [12] Elmaghor, F., L. Y. Zhang, R. Fan, and H. Q. Li. 2004. "Recycling of Polycarbonate by Blending with Maleic Anhydride Grafted Abs." Polymer 45 (19):6719-24. doi: 10.1016/j.polymer.2004.07.022.
    [13] Sanchez, E. M. S. 2007. "Ageing of Pc/Pbt Blend: Mechanical Properties and Recycling Possibility." Polymer Testing 26 (3):378-87. doi: 10.1016/j.polymertesting.2006.12.007.
    [14] Wojtyla, Szymon, Piotr Klama, and Tomasz Baran. 2017. "Is 3d Printing Safe? Analysis of the Thermal Treatment of Thermoplastics: Abs, Pla, Pet, and Nylon." Journal of occupational and environmental hygiene 14 (6):D80-D5. doi: 10.1080/15459624.2017.1285489.
    [15] Zhang, D. H., M. He, W. D. He, Y. Zhou, S. H. Qin, and J. Yu. 2017. "Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with Dopo." Materials 10 (5). doi: 10.3390/ma10050500.
    [16] Reheem, A. M. A., A. Atta, and Miaa Maksoud. 2016. "Low Energy Ion Beam Induced Changes in Structural and Thermal Properties of Polycarbonate." Radiation Physics and Chemistry 127:269-75. doi: 10.1016/j.radphyschem.2016.07.014.
    [17] Matsuda, T., T. Shimomura, and M. Hirami. 1999. "Crystallization and Melting of Binary Mixtures of Nylon 6 and Nylon 66. A Study by Dsc." Polymer Journal 31 (9):795-800. doi: 10.1295/polymj.31.795.
    [18] Shen, Z. Y., F. L. Luo, J. H. Du, X. M. Lei, and L. J. Ji. 2017. "Studies on the Effects of 4,4 '-Dihydroxyphenyl on Crystallization and Melting Behavior of Poly (Butylene Terephthalate)." Journal of Polymer Engineering 37 (8):747-55. doi: 10.1515/polyeng-2016-0206.
    [19] Wang, X. Y., Y. X. Weng, W. Wang, Z. G. Huang, and Y. Z. Wang. 2016. "Modification of Poly(Propylene Carbonate) with Chain Extender Adr-4368 to Improve Its Thermal, Barrier, and Mechanical Properties." Polymer Testing 54:301-7. doi: 10.1016/j.polymertesting.2016.07.024.
    [20] John, J. V., K. R. Kim, S. T. Baek, J. H. Yoon, H. Suh, and I. Kim. 2016. "Effect of Chain-Extender Modification on the Structure and Properties of Thermoplastic Poly(Ether Ester) Elastomers." Journal of Applied Polymer Science 133 (7). doi: 10.1002/app.42888.
    [21] Cha, J., and J. L. White. 2002. "Modification of Polyolerin with Maleic Anhydride/Styrene and Methyl Methacrylate/Styrene." International Polymer Processing 17 (2):115-23.

    無法下載圖示 全文公開日期 2024/06/28 (校內網路)
    全文公開日期 2024/06/28 (校外網路)
    全文公開日期 2024/06/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE