簡易檢索 / 詳目顯示

研究生: 楊政諺
Cheng-Yan YANG
論文名稱: 雙模式三相Y-Δ主動雙橋串聯諧振直流-直流轉換器研製
Study and Implementation of Dual-Mode Three-Phase Wye-Delta Connected Dual-Active-Bridge Series Resonant DC-DC Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
劉邦榮
Pang-Jung Liu
劉益華
Yi-Hua Liu
呂錦山
Ching-Shan Leu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 三相直流-直流轉換器Y-Δ接主動雙橋式相移控制變頻控制雙模式控制
外文關鍵詞: Y-D connection, variable-frequency mode, phase-shift mode, dual-made
相關次數: 點閱:189下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文所提雙模式三相Y-Δ主動雙橋串聯諧振直流-直流轉換器可以工作於相移模式或變頻模式。於變頻模式操作時,一次側Y接開關具有零電壓切換,二次側接有較低的切換損失,因此能減少切換損失並提升轉換效率。於相移模式操作時,定頻工作在電感性,改善諧振電路輸出空載失真問題。本論文詳細分析與敘述此兩種模式之電路理論與設計方法,且透過模擬與實作結果,驗證所提直流-直流轉換器之可行性。最後實作出一台輸出功率為2.2kW的實體電路,比較兩模式輕載前效率改善,整體效率可在90 %以上。


    The operations of the proposed three-phase wye-delta connected dual-active-bridge Series Resonant DC-DC Converter can be under either phase-shift (PS) mode or variable-frequency (VF) mode. For VF mode operation, The primary side Y-connected switch has zero voltage switching (ZVS), and the secondary side is -connected with a low switching loss, thus reducing switching losses and improving conversion efficiency. On the other hand, the PS mode operation with fixed switching frequency in inductive. Improve the problem of no-load distortion of the output voltage of the resonant circuit. Circuit principles and design procedures are presented and verified by the simulations and experimental results. Finally, a laboratory prototype with 2.2 kW rated power output is built and tested. Compare the efficiency of the two modes before light load, The measured efficiency is above 90 .

    摘要 i Abstract ii 誌 謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究目的與動機 1 1.2 研究內容 2 1.3 章節大綱 3 第二章 主動雙橋諧振式直流-直流轉換器 4 2.1 主動雙橋轉換器基本原理 4 2.1.1 單相主動雙橋動作原理 6 2.1.2 單相主動雙橋傳輸功率與柔切操作區域 9 2.2 串聯諧振式轉換器基本原理 11 2.2.1 串聯諧振交流頻率響應分析 12 2.2.2 串聯諧振柔切操作區域 14 2.3 文獻回顧與探討 15 2.3.1 主動雙橋控制調變演變 16 2.3.2 主動雙橋加入諧振電路 19 第三章 雙模式三相主動雙橋諧振式直流-直流轉換器 20 3.1 三相變壓器星形與三角形接法 20 3.2 三相Y-Δ主動雙橋直流-直流轉換器架構 23 3.3 相移式電路動作原理 24 3.4 相移式電路傳輸功率與柔切操作區域 37 3.5 諧振式電路動作原理 42 3.6 諧振式電路電壓增益函數 55 第四章 操作模式比較與輸出負載調節策略 58 4.1 負載調節策略優缺之比較 58 4.2 雙模式控制方式 61 第五章 實作設計與電路模擬 62 5.1 電路電氣規格制定 62 5.2 電路元件設計 63 5.2.1 相移電路功率傳輸電感設計 63 5.2.2 功率開關選擇 64 5.2.3 諧振槽設計 65 5.2.4 變壓器設計 65 5.2.5 輸出濾波電容設計 68 5.3 三相Y-Δ主動雙橋轉換器相移電路分析與模擬 69 5.4 三相Y-Δ主動雙橋轉換器變頻電路分析與模擬 71 5.5 三相Y-Δ主動雙橋轉換器雙模式控制分析與模擬 73 第六章 實驗數據及波形 74 6.1 實驗數據 74 6.2 實驗波形 76 第七章 結論和未來展望 82 7.1 結論 82 7.2 未來展望 83 參考文獻 84

    [1]F. C. Lee, “High-Frequency Quasi-Resonant and Mulity-Resonant Converter Technologies,” IEEE IECON, pp.509-521, 1988.
    [2]J. G. Cho, J. A. Sabate, and F. C. Lee,“Novel Full Bridge Zero-Voltage-Transition PWM DC/DC Converter for High Power Applications,”IEEE PESC, pp.143-149, 1994,
    [3]J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE PESC, vol. 1 pp.147-234, 2001.
    [4]蔡富斌,具同步整流之數位控制半橋串聯諧振轉換器之研製,國立台灣科技大學電子工程系碩士論文,2012年。
    [5]林景源,適用於大範圍負載變化之電源供應器研製,國立臺灣科技大學電子工程系碩士論文,2004年。
    [6]羅聖傑,用於家庭區域電網之主動雙橋式隔離型雙向直流轉換器的實現,國立中山大學電機工程系碩士論文,2012年。
    [7]M. Kim, M. Rosekeit, S. K. Sul, and R. W. De Doncker, “A Dual Phase-Shift Control Strategy for Dual Active Bridge DC-DC Converter in Wide Voltage Range,”ICPE ECCE Asia, pp.364-371, 2011.
    [8]M. Jafari, Z. Malekjamshidi and J. G. Zhu, “Analysis of Operation Modes and Limitations of Dual Active Bridge Phase-Shift Converter,”IEEE PEDS, pp.393-398, 2015.
    [9]D. D. Nguyen, D. T. Nguyen and G. Fujita,“Dual Active Bridge Series Resonant Converter :A New Control Strategy Using Phase-Shifting Combined Frequency Modulation,” IEEE Trans. Power Electron. , pp.1215-1222, 2015.
    [10]G. G. Oggier, R. Leidhold, G. O. Garcia, A. R. Oliva, J. C. balda and F. Barlow, “Extending the ZVS Operating Range of Dual Active Bridge High-Power DC-DC Converters,” IEEE PESC, pp.1-7, 2006.
    [11]H. Kakigano, “Fundamental Study on Control Strategies to Increase Efficiency of Dual Active Bridge DC-DC Converter,” IECON, pp.1073-1078, 2015.
    [12]B. Zhao, Q. Song, W. H. Liu and Y. Sun, “Overview of Dual Active Bridge Isolated Bidirectional DC-DC Converter for High Frequency Link Power Conversion System,” IEEE Trans. Power Electron., pp.4091-4106, 2014.
    [13]F. Krismer and J. W. Kolar, “Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications,” IEEE Trans. Power Electron., pp.2745-2760, 2012.
    [14]H. Wen and W. Xiao, “Bidirectional Dual Active Bridge DC-DC Converter with Triple-Phase-Shift Control,”IEEE APEC, pp.1972-1978, 2013.
    [15]王釗桴,高功率隔離型雙向三相直流-直流轉換器研製,國立台灣科技大學電子工程系博士論文,2014年。
    [16]J. Xue, “Single-Phase vs. Three-Phase High Power High Frequency Tansformers,”Virginia Polytechnic Institute and State University, pp.33-56, 2010.
    [17]Z. Wang and H. Li, “Three-Phase Bidirectional DC-DC Converter with Enhanced Current Sharing Capability,”IEEE ECCE, pp.1116-1122, 2010.
    [18]R. W. DeDoncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high power density dc-to-dc converter for high power applications,” IEEE Trans. Industry Applications, vol. 27, no. 1, pp. 63-73, Jan./Feb. 1991.
    [19]M. D. Bellar, M. Aredes, J. L. Silva Neto, L. G. B. Rolim, F. C. Aquino and V. C. Petersen, "Comparative analysis of single-phase to three-phase converters for rural electrification," 2004 IEEE International Symposium on Industrial Electronics, Ajaccio, France, 2004, pp. 1255-1260 vol. 2.
    [20]B. Zhao, Q. Song and W. Liu, "Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC–DC Converter With Dual-Phase-Shift Control," IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4172-4176, Sept. 2012.
    [21]R. T. Naayagi, A. J. Forsyth and R. Shuttleworth, "Performance analysis of extended phase-shift control of DAB DC-DC converter for aerospace energy storage system," 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, 2015, pp. 514-517.
    [22]B. Zhao, Q. Yu, and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC-DC Converter for Power Distribution in Microgrid,” IEEE Transactions on Power Electronics, vol. 27, pp. 4667-4680, 2012.
    [23]G. Oggier, G. O. Garc, x00Ed, and A. R. Oliva, “Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range,” IEEE Transactions on Power Electronics, vol. 26, pp. 1228-1236, 2011.
    [24]A. K. Jain and R. Ayyanar, “Pwm control of dual active bridge: Comprehensive analysis and experimental verification,” IEEE Transactions on Power Electronics, vol. 26, pp. 1215-1227, 2011.
    [25]K. Wu, C. W. d. Silva, and W. G. Dunford, “Stability Analysis of Isolated Bidirectional Dual Active Full-Bridge DC-DC Converter With Triple Phase-Shift Control,” IEEE Transactions on Power Electronics, vol. 27, pp. 2007-2017, 2012.
    [26]H. Wen and W. Xiao, “Bidirectional dual-active-bridge DC-DC converter with triple-phase-shift control,” Applied Power Electronics Conference and Exposition (APEC), 2013 Twenty-Eighth Annual IEEE, 2013, pp. 1972-1978.
    [27]Y. A. Harrye, K. H. Ahmed, and A. A. Aboushady, “Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network,” 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014, pp. 566-571.
    [28]X. Li and A. K. S. Bhat, "Analysis and Design of High-Frequency Isolated Dual-Bridge Series Resonant DC/DC Converter,"IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 850-862, April 2010.
    [29]W. Chen, P. Rong and Z. Lu, "Snubberless Bidirectional DC–DC Converter With New CLLC Resonant Tank Featuring Minimized Switching Loss," IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3075-3086, Sept. 2010.
    [30]陳輝庭,三相Y-△接主動雙橋式直流-直流轉換器研製,國立台灣科技大學電子工程系碩士論文,2016年。
    [31]F. Jin, F. Liu, X. Ruan and X. Meng, "Multi-phase multi-level LLC resonant converter with low voltage stress on the primary-side switches,"2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 4704-4710.

    QR CODE