簡易檢索 / 詳目顯示

研究生: 張又中
Yu-Chung Chang
論文名稱: 官能基調變氧化石墨烯之二氧化碳光催化之研究
Modulation on the surface functionalities of GOx for CO2 photoreduction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林麗瓊
Li-Chyong Lin
陳貴賢
Kuei-Hsien Chen
鍾博文
Po-Wen Chung
林昇佃
Shawn-D Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 90
中文關鍵詞: 二氧化碳還原光觸媒氧化石墨烯
外文關鍵詞: CO2 reduction, Photocatalyst, Graphene oxide
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用官能基調變氧化石墨烯作為可見光驅動的無金屬碳基觸媒進行二氧化碳還原光催化。為了瞭解氧化石墨烯表面上之含氧官能基在進行二氧化碳光催化石所扮演的腳色,本研究利用管狀高溫爐在氬氣環境升溫超過600度將含氧官能基從氧化石墨烯(As-GO)表面移除,通過此步驟可以得到表面官能基主要為羥基(-OH)的改質氧化石墨烯(M-GO),改質氧化石墨烯在二氧化碳光催化的效能在碳氫化合物的產量得到效能增長。透過反向滴定法測得各氧化官能基在氧化石墨烯及改質氧化石墨烯上的比例,進一步使用鹼基將官能基中和並測量二氧化碳光催化產率;在此一結果上可以證明羥基(-OH)是二氧化碳光催化的主導官能基。


    This work demonstrates a metal-free photocatalyst for visible-light-driven CO2 redaction via a selective-functional-group of graphene oxide (GO) by rapid annealing process under the Ar environment. The oxygenated group of GO facilitates CO2 photoreduction reaction; however, the primary function of oxygen contained groups is still not clear. In this study, as-prepared graphene (As-GO) and modified graphene oxide (M-GO) have been investigated for CO2 reduction. Mostly, the oxygen functional groups on the GO’s basal plane have been removed as the temperature exceeds 400 oC, but the hydroxyl functional groups persistently bond strongly with carbon, especially localized on the edge side of graphene oxide. The M-GO optimized by the treated temperature performs a higher CO2 reduction reaction (CO2RR), promoting the yield of hydrocarbon products during the reaction process. The Boehm titration and surface neutralization graphene oxide were done for the investigation of the oxygen-containing functional group's contribution.

    摘要 I Abstract II Acknowledgment III Contents IV Lists of Figures VI Lists of Tables X Chapter 1 Introduction 1 1-1 Globe Warming and CO2 Property 1 1-2 CO2 Utilization and Strategies 1 1-3 Photocatalytic CO2 reduction 4 1-4 Thermodynamics of CO2 Conversion 11 1-5 Challenges for CO2 Photoreduction 13 1-6 Graphene Oxide as Photocatalysts 16 1-7 Characteristic of Oxygen Containing Functional Groups via Boehm Titration 18 1-8 CO2 Adsorption Ability of Various Oxygen Containing Functional Groups on Graphene Oxide Surface 21 Chapter 2 Motivation 26 2-1 Narrow Band Gap Graphene Oxide for CO2 Photoreduction 26 2-2 Investigation of Functional Groups Contribution for CO2 Photoreduction 27 Chapter 3 Experimental and Instrumental Setup 29 3-1 Materials 29 3-2 Synthesis of Graphene Oxide (As-GO) 29 3-3 Synthesis of Modified Graphene Oxide 30 3-4 Boehm Titration and Surface Neutralized GO 31 3-5 UV-visible Absorption Measurement 33 3-6 Raman Spectroscopy, Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS-FTIR) and X-ray Diffraction Pattern 34 3-7 X-ray Photoelectron Spectroscopy, Ultraviolet Photoelectron Spectroscopy (UPS) and X-ray Absorption Spectroscopy (XAS) measurement 35 3-8 Gas Chromatography Measurement 37 3-9 Photocatalytic CO2 Reduction Experiment 38 3-10 Standard Calibration Curves and Blank CO2 Photoreduction Measurement 40 3-11 Solar Spectrum and Quantum Efficiency Calculation 43 3-12 Wavelength Dependent, Power Dependent, and Relative Humidity CO2 Conversion Measurement 45 Chapter 4 Results and Discussions 47 4-1 Characterization of Graphene Oxide 47 4-2 Surface Neutralization of Graphene Oxide for CO2 Photoreduction Conversion Measurement 58 4-3 Environmental Influence of CO2 Photoreduction 64 Chapter 5 Conclusion 69 Reference 70

    1. Yamasaki, A., An Overview of CO2 Mitigation Options for Global Warming—Emphasizing CO2 Sequestration Options. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2003, 36 (4), 361-375.
    2. Maginn, E. J., What to Do with CO2. The Journal of Physical Chemistry Letters 2010, 1 (24), 3478-3479.
    3. Mikkelsen, M.; Jorgensen, M.; Krebs, F. C., The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science 2010, 3 (1), 43-81.
    4. Bushuyev, O.; Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Lagemaat, J.; Kelley, S.; Sargent, E., What Should We Make with CO 2 and How Can We Make It? Joule 2018.
    5. Aydin, G.; Karakurt, I.; Aydiner, K., Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy 2010, 38 (9), 5072-5080.
    6. Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014, 39, 426-443.
    7. Gattrell, M.; Gupta, N.; Co, A., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry 2006, 594 (1), 1-19.
    8. Lu, Q.; Jiao, F., Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439-456.
    9. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686.
    10. Ye, S.; Wang, R.; Wu, M.-Z.; Yuan, Y.-P., A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Applied Surface Science 2015, 358, 15-27.
    11. Izumi, Y., Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews 2013, 257 (1), 171-186.
    12. Tahir, M.; Amin, N. S., Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management 2013, 76 (0), 194-214.
    13. Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews 2019, 48 (21), 5310-5349.
    14. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A., Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010, 4 (3), 1259-1278.
    15. Zhou, H.; Qu, Y.; Zeid, T.; Duan, X., Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science 2012, 5 (5), 6732-6743.
    16. Tu, W.; Zhou, Y.; Zou, Z., Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials 2014, n/a-n/a.
    17. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95 (1), 69-96.
    18. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638.
    19. Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J., High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Applied Materials and Interfaces 2013, 5 (4), 1348-1354.
    20. Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Li, X.; Zhou, L., Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental 2013, 130-131, 277-284.
    21. Nunez, J.; De La Pena O'Shea, V. A.; Jana, P.; Coronado, J. M.; Serrano, D. P., Effect of copper on the performance of ZnO and ZnO1-xN x oxides as CO2 photoreduction catalysts. Catalysis Today 2013, 209, 21-27.
    22. Zhang, Y.; Tang, Y.; Liu, X.; Dong, Z.; Hng, H. H.; Chen, Z.; Sum, T. C.; Chen, X., Three-dimensional CdS-titanate composite nanomaterials for enhanced visible-light-driven hydrogen evolution. Small 2013, 9 (7), 996-1002.
    23. Coridan, R. H.; Shaner, M.; Wiggenhorn, C.; Brunschwig, B. S.; Lewis, N. S., Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. Journal of Physical Chemistry C 2013, 117 (14), 6949-6957.
    24. Praus, P.; Kozák, O.; Kočí, K.; Panáček, A.; Dvorský, R., CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide. Journal of Colloid and Interface Science 2011, 360 (2), 574-579.
    25. Finkelstein-Shapiro, D.; Petrosko, S. H.; Dimitrijevic, N. M.; Gosztola, D.; Gray, K. A.; Rajh, T.; Tarakeshwar, P.; Mujica, V., CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles. Journal of Physical Chemistry Letters 2013, 4 (3), 475-479.
    26. Michalkiewicz, B.; Majewska, J.; Kadzioka, G.; Bubacz, K.; Mozia, S.; Morawski, A. W., Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization 2014, 5, 47-52.
    27. Sing Tan, S.; Zou, L.; Hu, E., Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials 2007, 8 (1–2), 89-92.
    28. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122.
    29. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H., Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science 2012, 5 (11), 9217-9233.
    30. Billo, T.; Fu, F.-Y.; Raghunath, P.; Shown, I.; Chen, W.-F.; Lien, H.-T.; Shen, T.-H.; Lee, J.-F.; Chan, T.-S.; Huang, K.-Y.; Wu, C.-I.; Lin, M. C.; Hwang, J.-S.; Lee, C.-H.; Chen, L.-C.; Chen, K.-H., Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. 2018, 14 (2), 1702928.
    31. Fu, F.-Y.; Shown, I.; Li, C.-S.; Raghunath, P.; Lin, T.-Y.; Billo, T.; Wu, H.-L.; Wu, C.-I.; Chung, P.-W.; Lin, M.-C.; Chen, L.-C.; Chen, K.-H., KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction. ACS Applied Materials & Interfaces 2019, 11 (28), 25186-25194.
    32. Kang, S.; Han, S.; Kang, Y., Unveiling Electrochemical Reaction Pathways of CO2 Reduction to CN Species at S-Vacancies of MoS2. 2019, 12 (12), 2671-2678.
    33. Shown, I.; Samireddi, S.; Chang, Y.-C.; Putikam, R.; Chang, P.-H.; Sabbah, A.; Fu, F.-Y.; Chen, W.-F.; Wu, C.-I.; Yu, T.-Y.; Chung, P.-W.; Lin, M. C.; Chen, L.-C.; Chen, K.-H., Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature Communications 2018, 9 (1), 169.
    34. Wang, L.; Wang, Y.; Cheng, Y.; Liu, Z.; Guo, Q.; Ha, M. N.; Zhao, Z., Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. Journal of Materials Chemistry A 2016, 4 (14), 5314-5322.
    35. Bae, K.-L.; Kim, J.; Lim, C. K.; Nam, K. M.; Song, H., Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nature Communications 2017, 8 (1), 1156.
    36. He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M., High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental 2015, 168-169, 1-8.
    37. He, Y.; Zhang, L.; Teng, B.; Fan, M., New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environmental Science & Technology 2015, 49 (1), 649-656.
    38. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S., On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications 2012, 25, 78-82.
    39. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C., Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry 2011, 21 (35), 13452.
    40. Chai, B.; Peng, T.; Zeng, P.; Mao, J., Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. Journal of Materials Chemistry 2011, 21 (38), 14587.
    41. Lakadamyali, F.; Reisner, E., Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chemical Communications 2011, 47 (6), 1695.
    42. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A., High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 2009, 9 (2), 731-737.
    43. Singh, V.; Beltran, I. J. C.; Ribot, J. C.; Nagpal, P., Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis. Nano Letters 2014, 14 (2), 597-603.
    44. Adachi, K.; Ohta, K.; Mizuno, T., Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy 1994, 53 (2), 187-190.
    45. Subrahmanyam, M.; Kaneco, S.; Alonso-Vante, N., A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental 1999, 23 (2–3), 169-174.
    46. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2 (7), 745-758.
    47. Wu, J. C. S.; Lin, H.-M., Photo reduction of CO2 to methanol via TiO2 photocatalyst. International Journal of Photoenergy 2005, 7 (3).
    48. Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C., Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. The Journal of Physical Chemistry Letters 2009, 1 (1), 48-53.
    49. Ulagappan, N.; Frei, H., Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. The Journal of Physical Chemistry A 2000, 104 (33), 7834-7839.
    50. Yang, C.-C.; Vernimmen, J.; Meynen, V.; Cool, P.; Mul, G., Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. Journal of Catalysis 2011, 284 (1), 1-8.
    51. Yang, C.-C.; Yu, Y.-H.; van der Linden, B.; Wu, J. C. S.; Mul, G., Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? Journal of the American Chemical Society 2010, 132 (24), 8398-8406.
    52. Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T., Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. The Journal of Physical Chemistry C 2010, 114 (19), 8892-8898.
    53. Park, H.-a.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K., Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. Journal of Materials Chemistry 2012, 22 (12), 5304-5307.
    54. Halmann, M.; Ulman, M.; Aurian-Blajeni, B., Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy 1983, 31 (4), 429-431.
    55. Nguyen, T.-V.; Wu, J. C. S.; Chiou, C.-H., Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Communications 2008, 9 (10), 2073-2076.
    56. Kuwabata, S.; Uchida, H.; Ogawa, A.; Hirao, S.; Yoneyama, H., Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. Journal of the Chemical Society, Chemical Communications 1995, (8), 829-830.
    57. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry 1998, 115 (3), 223-226.
    58. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3–4), 494-502.
    59. Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2010, 96 (3–4), 239-244.
    60. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828.
    61. Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y.-P., Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chemical Communications 2004, (10), 1234-1235.
    62. Vijayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K., Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. The Journal of Physical Chemistry C 2010, 114 (30), 12994-13002.
    63. Liu, Q.; Zhou, Y.; Tu, W.; Yan, S.; Zou, Z., Solution-Chemical Route to Generalized Synthesis of Metal Germanate Nanowires with Room-Temperature, Light-Driven Hydrogenation Activity of CO2 into Renewable Hydrocarbon Fuels. Inorganic Chemistry 2013, 53 (1), 359-364.
    64. Li, X.; Zhuang, Z.; Li, W.; Pan, H., Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General 2012, 429–430 (0), 31-38.
    65. Zhang, N.; Ouyang, S.; Li, P.; Zhang, Y.; Xi, G.; Kako, T.; Ye, J., Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications 2011, 47 (7), 2041-2043.
    66. Freund, H. J.; Roberts, M. W., Surface chemistry of carbon dioxide. Surface Science Reports 1996, 25 (8), 225-273.
    67. Lowry, T. M., Valence and the structure of atoms and molecules. By Prof. G. N. Lewis. Pp. 172. American Chemical Monograph Series. New York: The Chemical Catalog Co., Inc., 1923. Price $3. Journal of the Society of Chemical Industry 1924, 43 (1), 17-17.
    68. Liu, L.; Fan, W.; Zhao, X.; Sun, H.; Li, P.; Sun, L., Surface Dependence of CO2 Adsorption on Zn2GeO4. Langmuir 2012, 28 (28), 10415-10424.
    69. Chang, X.; Wang, T.; Gong, J., CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science 2016, 9 (7), 2177-2196.
    70. Liou, P.-Y.; Chen, S.-C.; Wu, J. C. S.; Liu, D.; Mackintosh, S.; Maroto-Valer, M.; Linforth, R., Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy & Environmental Science 2011, 4 (4), 1487-1494.
    71. Wang, T.; Yang, L.; Du, X.; Yang, Y., Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor. Energy Conversion and Management 2013, 65, 299-307.
    72. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
    73. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009, 19 (12), 1987-1992.
    74. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat Nano 2009, 4 (4), 217-224.
    75. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2010, 2 (12), 1015-1024.
    76. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010, 39 (1), 228-240.
    77. Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I. S.; Chen, C.-W.; Chhowalla, M., Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials 2010, 22 (4), 505-509.
    78. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M., Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C 2009, 113 (35), 15768-15771.
    79. Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H., Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials 2010, 20 (14), 2255-2262.
    80. Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M., Modification of the surface chemistry of activated carbons. Carbon 1999, 37 (9), 1379-1389.
    81. Ogino, I.; Suzuki, Y.; Mukai, S. R., Tuning the Pore Structure and Surface Properties of Carbon-Based Acid Catalysts for Liquid-Phase Reactions. ACS Catalysis 2015, 5 (8), 4951-4958.
    82. Liu, Y.; Wilcox, J., Molecular Simulation Studies of CO2 Adsorption by Carbon Model Compounds for Carbon Capture and Sequestration Applications. Environmental Science & Technology 2013, 47 (1), 95-101.
    83. Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I., Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 2008, 20 (1), 14-27.
    84. Liu, Y.; Wilcox, J., Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons. Environmental Science & Technology 2012, 46 (3), 1940-1947.
    85. Chen, J.; Zhang, Y.; Zhang, M.; Yao, B.; Li, Y.; Huang, L.; Li, C.; Shi, G., Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science 2016, 7 (3), 1874-1881.
    86. Vacchi, I. A.; Raya, J.; Bianco, A.; Ménard-Moyon, C., Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Materials 2018, 5 (3), 035037.
    87. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J., Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. The Journal of Physical Chemistry C 2011, 115 (34), 17009-17019.
    88. Kumar, P. V.; Bernardi, M.; Grossman, J. C., The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano 2013, 7 (2), 1638-1645.
    89. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon 2004, 42 (14), 2929-2937.
    90. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4 (4), 2059-2069.
    91. Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S., Ultraviolet-visible spectroscopy of graphene oxides. 2012, 2 (3), 032146.
    92. Eda, G.; Chhowalla, M., Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. 2010, 22 (22), 2392-2415.
    93. Zhao, G.; Huang, X.; Wang, X.; Wang, X., Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review. Journal of Materials Chemistry A 2017, 5 (41), 21625-21649.
    94. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials 2009, 19 (16), 2577-2583.
    95. Mokkapati, V. R. S. S.; Pandit, S.; Kim, J.; Martensson, A.; Lovmar, M.; Westerlund, F.; Mijakovic, I., Bacterial response to graphene oxide and reduced graphene oxide integrated in agar plates. Royal Society Open Science 5 (11), 181083.

    無法下載圖示 全文公開日期 2025/01/22 (校內網路)
    全文公開日期 2025/01/22 (校外網路)
    全文公開日期 2025/01/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE