簡易檢索 / 詳目顯示

研究生: 藍偉倫
Wei-Lun Lan
論文名稱: 應用多品質加工參數最佳化於機能性暖感織物開發之研究
Research on the application of multi-quality processing parameters optimization to the development of functional warm fabrics
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 廖文城
黃昌群
邱智瑋
蘇德利
邱錦勳
郭中豐
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 遠紅外線吸濕發熱田口方法層級分析法理想解類似度順序偏好法灰關聯分析法
外文關鍵詞: Far infrared, Hygroscopic heating, Taguchi method, Analytic hierarchy process, Technique for order preference by similarity to ideal solution, Grey relational analysis
相關次數: 點閱:530下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一同時具有遠紅外線放射、抗靜電及暖感之發熱聚酯機能性纖維織物,適用於冬季服飾。本研究之開發分為兩部分:
    第一部份為聚酯纖維遠紅外線機能改質開發及研究,透過奈米鍺金屬及與聚酯材料之熔融混煉,使聚酯附有遠紅外線機能,纖維能吸收陽光中之遠紅外線,達到溫度上升之效果。改質後之聚酯材料透過熔融紡絲製程製作75d/72f之全延伸絲(Full drawn yarn, FDY),製程透過田口方法(Taguchi method)結合層級分析法(Analytic hierarchy process, AHP)及理想解類似度順序偏好法(Technique for order preferenceby similarity to ideal solution, TOPSIS) 探討最佳化遠紅外線聚酯纖維之拉伸強度、伸長率、丹尼數、遠紅外線放射率及遠紅外線溫升等性質。結果顯示,最佳化遠紅外線聚酯纖維之拉伸強度為4.84 g/d,斷裂伸長率為41.26%,丹尼數為74.39d / 72f,遠紅外線放射率為89%,遠紅外線溫升為6.3℃,且透過表面觀測證實本研究確實混煉奈米鍺金屬與聚酯材料並具有良好之分散性。
    第二部份為聚酯纖維吸濕發熱改質及多機能性暖感織物之開發研究,於對苯二甲酸(Terephthalic acid, TPA)及乙二醇(Ethylene glycol, EG)酯化反應中添加間苯二甲酸二羥基乙酯-5-磺酸鈉(Sodium-5-s ulfobis(β-hydroxyethyl) isophthalate, SIPE)與聚乙二醇(Polyethylene glycol, PEG)以製備親水性聚酯,再以熔融紡絲製成吸濕發熱聚酯纖維。製程優化透過田口方法結合灰關聯分析法(Grey relational analysis, GRA)進行品質優化,探討改質聚酯纖維之吸濕發熱溫升、丹尼數、拉伸強度及斷裂伸長率等性質。結果顯示,最佳化吸濕發熱聚酯纖維之吸濕發熱溫升為1.3℃,拉伸強度為4.16 g/d,斷裂伸長率為44.89%,丹尼數為75.02 d/72f,表面電阻為107 Ω,證實本研究透過SIPE與PEG改質聚酯材料之親水性,能有效賦予其纖維吸濕發熱及抗靜電之機能。
    最後結合兩部分纖維獲得機能性暖感織物,其性質為:遠紅外線放射率89%、發熱溫升8.1°C及表面電阻為107Ω,相較於市售發熱衣物,本研究所開發之暖感織物具有較高之發熱溫升且具有多機能性,能適用於高緯度之寒帶國家。


    This series study develops a multi-functional poly(ethylene terephthalate) (PET) fabric with far-infrared function and moisture absorption heating properties for warming clothing application. The study is divided into two parts:
    In Part I, polyethylene terephthalate (PET) is used as the polymer matrix, and nano germanium powder is uniformly mixed with PET by the melt blending process for modification, in order that the PET composite has far-infrared function. Afterwards, the modified PET is made into 75d/72f fully drawn yarn (FDY) by melt spinning and melt drafting. The properties of the yarn, including tensile strength, elongation at break, yarn count (in denier), far-infrared emissivity, and far-infrared heating are discussed. In order to optimize the quality of yarn in the melt spinning process, this study designs process parameters consisting of germanium powder addition, melt temperature, mold temperature, nozzle temperature, gear pump speed, and take-up speed using the Taguchi method. Then, the analytic hierarchy process (AHP) is applied to obtain the weights of each quality, which will be used in the technique for order preference by similarity to an ideal solution (TOPSIS) to obtain the optimal processing parameters for multi-quality yarn. The results show that the tensile strength of the optimized modification PET yarn is 4.84 g/d, the elongation at break is 41.26%, yarn count is 74.39d/ 72f, the far-infrared emissivity is 89% and the far-infrared heating is 6.3°C. The properties of the optimized modified yarn are obviously better than general PET yarn.
    In part II, the moisture absorption heating PET yarn is made by the hydrophilic PET, and the process parameters optimization for melt spinning is presented. First, in order to improve the hydrophilicity of PET, the modified PET is polymerized by terephthalic acid (TPA), ethylene glycol (EG), polyethylene glycol (PEG) oligomers, and sodium-5-s ulfobis(β-hydroxyethyl) isophthalate (SIPE). Then, the hydrophilic PET is made into a moisture absorption heating PET yarn, specified to a 75d/72f FDY by melt spinning. The properties of this yarn including hygroscopic heating, surface resistance, tensile strength, elongation at break, and yarn count are presented. In order to improve the properties of this yarn, the Taguchi method combined with grey relational analysis (GRA) is used to obtain the optimal multi-quality process parameters for melt spinning. From experiment results, this modified yarn has excellent hygroscopic heating, surface resistance and elongation. At the same time, it is shown that the warming fabric forms from part I and this modified yarn can get the properties as far-infrared radiation of 89%, textile heating of 8.1°C and surface resistance of 107Ω. Compared with the commercially available heating clothes, the warm fabric developed by this research institute has a high heat-increasing has multi-functionality, and can be applied to a cold latitude country at a high latitude.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.2.1 吸濕發熱纖維改質開發 4 1.2.2 遠紅外線纖維改質開發 6 1.2.3 最佳化參數設計理論 7 1.3 研究規劃及目的 9 1.4 論文大綱與流程圖 10 第二章 材料加工及檢測 14 2.1 機能性纖維機制 14 2.1.1 遠紅外線釋放機制 14 2.1.2 織物吸濕發熱機制 16 2.2 材料加工製程 20 2.2.1 材料混煉製程 20 2.2.2 熔融紡絲製程 21 2.3 檢測及分析 23 2.3.1 熱重損失分析 23 2.3.2 表面觀測 24 2.3.3 纖維機械性質分析 25 2.3.4 纖維丹尼數檢測 26 2.3.5 遠紅外線放射及溫升檢測 27 2.3.6 吸濕發熱溫升檢測 29 2.3.7 表面電阻檢測 29 第三章 品質分析與最佳化理論 31 3.1 田口方法 31 3.1.1 田口方法概述 32 3.1.2 實驗因子 33 3.1.3 直交表 34 3.1.4 直交表之選用 34 3.1.5 S/N比 34 3.1.6 品質特性之種類 35 3.1.7 主效果分析 36 3.1.8 變異數分析 37 3.2 層級分析法 40 3.3 理想解類似度順序偏好法 43 3.4 灰關聯分析法 46 第四章 結果與討論 48 4.1 實驗規劃 49 4.1.1 遠紅外線聚酯纖維最佳化 49 4.1.2 吸濕發熱聚酯纖維最佳化 52 4.2 遠紅外線聚酯纖維優化 55 4.2.1 單品質最佳化 56 4.2.2 多品質最佳化 65 4.2.3 品質優化驗證 68 4.2.4 性質比較驗證 69 4.2.5 熱重損失分析 70 4.2.6 纖維表面觀測 71 4.3 吸濕發熱聚酯纖維優化 74 4.3.1 單品質最佳化 74 4.3.2 多品質最佳化 86 4.3.3 品質優化驗證 88 4.3.4 性質比較驗證 89 4.4 複合織物探討 91 第五章 結論 93 參考文獻 95 Publication List 102

    [1] 巫佳宜,機能性時尚紡織品形成策略聯盟之市場利基分析,紡織綜合研究所產業報告,2015。
    [2] 2016台灣紡織工業概況,紡拓會,2016。
    [3] 鄭筱雯、安大中,暖感基能性纖維之發展,紡織速報,Vol. 20, No. 3,2012。
    [4] 巫佳宜,機能性時尚紡織品形素材的應用與發展趨勢,紡織綜合研究所產業報告,2016。
    [5] 楊宜蓁,2015年台灣聚酯纖維業回顧與2016年展望,塑料技術論壇,2016。
    [6] Niedermann R and Rossi RM. Objective and subjective evaluation of the human thermal sensation of wet fabrics. Text Res J 2012; 82(4): 374-384.
    [7] Greenwald EK. Electrical hazards and accidents: Their cause and prevention, New York, Van Nostrand Reinhold Publications, 1991.
    [8] Shang L and Zhang YJ. A study of wear abilities of softwarm heating warm fiber fabric. Adv Mater Res 2013; 709: 233-237.
    [9] Pinar A, Oleksiewicz I and Wróbel S. Assessment of the electrostatic properties of polyester knitted fabrics containing carbon fibres after enzymatic modification for the improving of hygroscopic properties. Fibres Text East Eur 2014; 22: 84-90.
    [10] Zhou Z, Fang LF, Wang SY and Matsuyama H. Improving bonding strength between a hydrophilic coating layer and poly (ethylene terephthalate) braid for preparing mechanically stable braid‐reinforced hollow fiber membranes. J Appl Polym Sci 2018; 135(14): 46104.
    [11] Chetouane D, Fafet JF, Barbet R and Dieval F. Hydrophilic- impermeable modified polyethylene terephthalate for selective endothelialization. IOP Conference Series: Mater Sci Eng 2017; 254(6): 062003.
    [12] Tamizifar M and Sun G. Surface modification of polyethylene terephthalate fibers via controlled radical graft polymerization. J Appl Polym Sci 2018; 135(11): 45990.
    [13] Takke V, Behary N, Perwuelz A and Campagne C. Surface and adhesion properties of polyethylene glycol on polyester (polyethylene terephthalate) fabric surface: Effect of air‐atmospheric plasma treatment. J Appl Polym Sci 2011; 122(4): 2621-2629.
    [14] 陳見忠,聚酯織物親水加工研究,國立台灣科技大學纖維及高分子工程技術研究所,碩士論文,1997。
    [15] 黃晉男,以含PEG末端酯醚共聚合物水性PU寡聚合物對特多龍織物親水加工之研究,國立台灣科技大學纖維及高分子工程技術研究所,碩士論文,1999。
    [16] Hsiao KJ, Kuo JL, Tang JW and Chen LT. Physics and kinetics of alkaline hydrolysis of cationic dyeable polyethylene terephthalate (CDPET) and polyethylene glycol (PEG)–modified CDPET polymers: Effects of dimethyl 5‐sulfoisophthalate sodium salt/PEG content and the number‐average molecular weight of the PEG. J Appl Polym Sci 2005; 98(2): 550-556.
    [17] Miranda TMR, Santos J and Soares GMB. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol. IOP Conference Series: Mater Sci Eng 2017; 254(3): 032005.
    [18] Zhao ML, Li FX, Yu JY and Wang XL. Preparation and characterization of poly (ethylene terephthalate) copolyesters modified with sodium‐5‐sulfo‐bis‐(hydroxyethyl)‐isophthalate and poly (ethylene glycol). J Appl Polym Sci 2014; 131(3): 39823.
    [19] Eisenberg A, Hird B and Moore RB. A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 1990; 23(18): 4098-4107.
    [20] Pal SK, Gandhi RS and Kothari VK. Effect of comonomer on structure and properties of textured cationic dyeable polyester. J Appl Polym Sci 1996; 61(3): 401-406.
    [21] Kogyo G. Light selective absorbing materials. Japanese patent, 55-038582, 1980.
    [22] Furuta T. Excellent solar-energy absorbing and retaining fabric material. Sen’i Gakkaishi 34(5), 134-136, 1989.
    [23] Lin JH, Jhang JC, Lin TA, Huang SY, Chen YS and Lou CW. Manufacturing techniques, mechanical properties, far infrared emissivity, and electromagnetic shielding effectiveness of stainless steel/polyester/bamboo charcoal knits. Fiber Polym 2017; 18(3): 597-604.
    [24] 李冠儒,李貴琪,張偉瑤及林榮敏,「WPU/BC 被覆棉織物遠紅外線放射率之研究」,華岡紡織期刊,16卷2期,pp. 132-139,2009。
    [25] 邱垂豪,「遠紅外功能之聚乙烯醇纖維」,纖維與複合材料所,碩士論文,2002。
    [26] Huang CL, Huang YT, Li TT, Chiang CH, Lou CW and Lin JH. Composite processing and property evaluation of far-infrared/electromagnetic shielding bamboo charcoal/phase change material/stainless steel elastic composite fabrics. J Polym Eng 2016; 32(2): 211-220.
    [27] Bahng GW and Lee JD. Development of heat generating polyester fiber harnessing catalytic ceramic powder combined with heat generating super microorganisms. Text Res J 2014; 84(11): 1220-1230.
    [28] Chen Z, Wang J, Li J, Zhu Y and Ge M. Negative air ion release and far infrared emission properties of polyethylene terephthalate/germanium composite fiber. J Eng Fiber Fabr 2017; 12(1): 56-65.
    [29] Kuo CFJ, Fan CC, Su TL, Chen SH and Lan WL. Nano composite fiber process optimization for polypropylene with antibacterial and far-infrared ray emission properties. Text Res J 2016; 86(16): 1677-1687.
    [30] Park DY, Shin DS, Cho H and Park SJ. Effects of material and processing conditions on powder-binder separation using the Taguchi method. Powder Technol 2017; 321:369-379.
    [31] Moayyedian M, Abhary K and Marian R. Optimization of injection molding process based on fuzzy quality evaluation and Taguchi experimental design. CIRP J Manuf Sci Technol, available online, 2018.
    [32] Chauhan R, Singh T, Kumar N, Patnaik A and Thakur NS. Experimental investigation and optimization of impinging jet solar thermal collector by Taguchi method. Appl Therm Eng 2017; 116: 100-109.
    [33] Karaman S, Toker OS, Yüksel F, Çam M, Kayacier A and Dogan M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. J Dairy Sci 2014; 97(1): 97-110.
    [34] Kuo CFJ, Lan WL, Chang YC and Lin KW. The preparation of organic light-emitting diode encapsulation barrier layer by low-temperature plasma-enhanced chemical vapor deposition: a study on the SiOxNy film parameter optimization. J Intell Manuf 2016; 27: 581-593.
    [35] Yoon S, Choi S and Ko W. An integrated multicriteria decision-making approach for evaluating nuclear fuel cycle systems for long-term sustainability on the basis of an equilibrium model: Technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory combined with analytic hierarchy process. Nucl Eng Technol 2017; 49(1): 148-164.
    [36] Kluczek A and Gladysz B. Analytical hierarchy process/technique for order preference by similarity to ideal solution-based approach to the generation of environmental improvement options for painting process e Results from an industrial case study. J Clean Prod 2015; 101(15): 360-367.
    [37] Chamoli S. Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle roughened rectangular channel. Energy 2015; 84(1): 432-442.
    [38] Pervez H. Mozumder MS and Mourad, AHI. Optimization of injection molding parameters for HDPE/TiO2 nanocomposites fabrication with multiple performance characteristics using the Taguchi method and grey relational analysis. Materials 2016; 9(8): 710.
    [39] Najarian F, Alipour R, Rad MS, Nejad AF and Razavykia A. Multi-objective optimization of converting process of auxetic foam using three different statistical methods. Measurement 2018; 119: 108-116.
    [40] 李其然,遠紅外線完全健康手冊:低能量遠紅外線照射療法,世茂出版社,2012。
    [41] Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY and Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol photo 2006; 22(2): 78-86.
    [42] Lin CC, Chang CF, Lai MY, Chen TW and Lee PC. Far-infrared therapy:anovel treatment to improve access blood flow and unassisted patency of arteriovenous fistulain hemodialysis patients. J Am Soc Nephrol 2007; 18( 3): 985-992.
    [43] Bikiaris DN, Vassilioua A, Pavlidoub E and Karayannidisa G. Compatibilisation effect of PP-g-MA copolymer on iPP/ SiO2 nanocomposites prepared by melt mixing. Eur Polym J 2005; 41(9): 1965-1978.
    [44] Tanaka K, Hirata K and Kamata Y. Heat of sorption induced by sweating affects thermoregulatory responses during heat load. Eur J Appl Physiol 2001; 84:69-77.
    [45] Sachdeva RC. Fundamentals of engineering heat and mass transfer, 2nd ed., Publisher New Age International(P) Ltd, India, 2005.
    [46] 羅琪禎,吸濕發熱衣性能評估方法之研究,國立台北科技大學有機高分子研究所碩士論文,2014。
    [47] Woo SS, Shalev I and Barker L. Heat and moisture transfer through nonwoven fabrics, Part II: Moisture diffusivity. Text Res J 1994; 64(4):190-197.
    [48] Yoon HN and Buckley A. Improved comfort polyester, Part I: Transport properties and thermal comfort of polyester/cotton blend fabrics. Text Res J 1987; 289-298.
    [49] Nenws AC. Trans. Faraday Soc 1956; 52:1533.
    [50] Barnes JC and Holcombe BV. Moisture sorption and transport in clothing during wear. Text Res J 1996; 66(12): 777-786.
    [51] Chatterjee PK. Absorbency. Elsevier Science Publishing Company, New Jersy, 1985.
    [52] Incropera FP and DeWitt DP. Fundamentals of heat mass transfer. 4th ed, John Wiley and Sons, New York, USA, 1996.
    [53] Holmer I. Protection against cold. Textiles in Sport, Woodhead Publishing Limited, Cambridge, England, 2005.
    [54] 范致嘉,具遠紅外線放射特性及抗菌性聚丙烯開發之奈米複合纖維製程最佳化,國立台灣科技大學材料科學與工程系,碩士論文,2014。
    [55] Yang PC, Lee CM and Hsing WH. The Textiles of Test Method for Heat Generating by Moisture Absorption Properties. Journal of the Hwa Gang Textile 2017; 24(2): 72-77.
    [56] 葉怡成,實驗計劃法-製程與產品最佳化,五南圖書出版股份有限公司,2001。
    [57] 蘇朝墩,產品穩健設計:田口品質工程方,三民書局出版,2002。
    [58] 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司出版,2003。
    [59] 梁辛瑋,應用雷射刻劃微晶矽薄膜太陽能電池絕緣製程參數最佳化之研究,國立臺灣科技大學自動化及控制研究所,2009。
    [60] Evangelos T. Multi-criteria decision making methods: A comparative study. Springer, 2000.
    [61] 溫坤禮,灰關聯模型方法與應用,高立圖書有限公司出版,2003。
    [62] Zhang D ed. Advances in filament yarn spinning of textiles and polymers. (ISBN: 978-0-85709-917-4). United Kingdom: Woodhead Publishing Limited in association with the Textile Institute. Apr, 2014.

    無法下載圖示 全文公開日期 2024/02/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2029/02/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE