簡易檢索 / 詳目顯示

研究生: 吳俊賢
Chun-hsien Wu
論文名稱: 改良燃燒法製程製備奈米級錳酸鍶鑭電極粉末用於鋅鈮鋯鈦酸鉛材料系統之疲勞性質研究
Modified combustion synthesis method to prepare nano (La0.7Sr0.3)MnO3 electrode powders for enhancing fatigue properties of Pb(Zn,Nb,Zr,Ti)O3 material system
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 王朝正
Chaur-Jeng Wang
余宣賦
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞:  電極 錳酸緦鑭 甘胺酸-硝酸物法疲勞 電阻率壓電效應
外文關鍵詞:  electrodes,  LSMO,  Glycine-nitrate process, fatigue,  Resistivity, Piezoelectric effect
相關次數: 點閱:223下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電元件的電極對於電性及抗疲勞特性有一定程度的影響。電極與基材界面間結合的緊密性以及電極表面晶粒的成長會影響到元件Pr值與Ec值的大小,電極與基材界面間的結合強度將改變元件抗疲勞特性的好壞。
    利用改良Glycine(甘胺酸)-Nitrate(硝酸物)Process燃燒法的製程製備奈米級錳酸鍶鑭((La0.7Sr0.3)MnO3) (簡稱GNP-LSMO)電極粉末,並且與傳統氧化物法(Oxide-mixing methode)製備出來的電極粉末 (簡稱傳統-LSMO),進行電性與抗疲勞測試比較。依不同比例將LSMO電極粉末加入銀,以三滾筒混料機,製成電極膠體。利用網版印刷將電極網印於鋅鈮鋯鈦酸鉛(0.3(Pb(Zn1/3Nb2/3)O3) + 0.7(Pb(Zr0.52Ti0.48)O3)) (簡稱PZNZT)壓電陶瓷塊材上,再分別以不同的電極熱處理溫度,將試片上的電極燒結成壓電元件上所需的電極厚膜。針對不同成分及電極熱處理溫度來量測電極試片的電阻率、疲勞特性,並且利用SEM來進行微觀分析。
    研究過程中發現在GNP-LSMO電阻率的變化上跟熱處理溫度以及LSMO粉末的含量有一定的關係。當LSMO粉末添加含量提高時,電阻率也相對提高,而且添加入的LSMO粉末會抑制電極中銀晶粒的成長,並且與揮發的鉛一起析出在銀的晶界上。當LSMO粉末降低至5wt%以下時,銀晶粒開始能夠成長良好並且趨於緻密,因此晶界表面積相對減少。當電極熱處理溫度到900oC時,晶粒成長與電極表面緻密化更為明顯,所以在電阻率的表現上以GNP-LSMO(1wt%),熱處理溫度900oC的電極試片為最低。
    在鐵電陶瓷PZNZT之Pr值與Ec值的表現上,Pr值以GNP-LSMO的較高,Ec的部份也以GNP-LSMO較低,因GNP-LSMO電極具有較為優秀的電阻率,因此有效電極面積較多,相對的有效電場也較多,且電極膠體中的孔洞也較少,所以當施加電場於試片時,電域切換(Domain switching)的數量也較多,因此Pr的提升與Ec的降低則是必然的,因此以GNP法製備的LSMO也優於傳統氧化物法。
    疲勞量測部分可以看到,GNP-LSMO(8wt%)電極試片經疲勞測試後呈現大幅的衰減,但是當GNP-LSMO粉末的添加量降低至5wt%以下時,抗疲勞特性大幅增加,又以電極熱處理溫度為900oC的最為優秀,以GNP-LSMO(1wt%),熱處理溫度900oC的電極疲勞試片經 106 cycles 疲勞測試後Pr值仍有31.95 μC/cm2 而Ec值則為13.36 kV/cm。當GNP-LSMO添加量降低時,使電極表面晶粒成長與緻密化的熱處理溫度得以下降,而且LSMO亦可以藉由擴散作用與基材獲得更好的結合性,因此抗疲勞特性得以提升。但是GNP-LSMO(8wt%)電極試片的抗疲勞特性最差(經 106 cycles 疲勞測試後Pr值為20.46 μC/cm2,而Ec值則為15.87 kV/cm ),甚至低過傳統-LSMO(8wt%)的電極試片(經 106 cycles 疲勞測試後Pr值為25.92 μC/cm2 而Ec值則為14.53 kV/cm )。推斷造成此現象的原因,不外是兩者粉體製程不同所造成的,因為GNP法製備出來的LSMO粉末雖有奈米級球狀粉體結構,但GNP-LSMO粉末顆粒較細,因而造成同重量下體積極表面積較大,所以當製作成電極膠體時GNP-LSMO粉末量需要較多才能達到同樣克重,因此造成電極燒結不易,且GNP-LSMO粉末中依然殘留著些許的團聚組織,而這些團聚組織則造成電極結構形成較為不均勻的結構,而GNP-LSMO(8wt%)又因含量較多,因此熱處理溫度不足以使GNP-LSMO粉末燒結緻密,所以一經疲勞測試後則產生界面剝離的情況。因此本研究亦可以延續改善設備進而將粉體結構製作更為均一。
    綜合上述,利用改良後的GNP-LSMO電極粉末比傳統氧化物法製備出來的 LSMO/銀 電極,在電阻率表現上較佳,在抗疲勞特性方面則是以GNP-LSMO(1wt%),熱處理溫度900oC的電極試片最佳,此條件下的電極試片有良好的電阻率,而電極與基材界面間的結合強度也愈高,使以PZNZT為基材之壓電元件有優越的抗疲勞特性。


    Electrodes exhibit strong on electric properties and fatigue property in ferroelectric materials.
    We use a modified Glycine-Nitrate Process (GNP) to prepare nano electrode powder of (La0.7Sr0.3)MnO3 (LSMO73), and compare electivity and fatigue properties of electrodes with powders prepared using oxide-mixing method (CS-LSMO).
    Electrode pastes were prepared using different composition of LSMO and silver powders, and they were screen printed on 0.3(Pb(Zn1/3Nb2/3)O3) + 0.7(Pb(Zr0.52Ti0.48)O3) (PZNZT) ferroelectrics, and annealed at different temperatures. Resistivity of electrodes were measured using a four point probe method, and electric and fatigue properties of specimens were evaluated.
    Microstructural characteristics were investigates using scanning electron microscopy.
    Resistivity of electrodes changes as a function of annealing temperatures and LSMO content. Addition of LSMO powders depress, the grain growth of silver, and LSMO and lead distributes near the grain boundaries. When content of the LSMO powder is less than 5wt%, silver grains start to grow and higher densification density can be achieved. When the annealing temperature reached 900oC, the grain growth and densification of electrode were more significant, The GNP-LSMO(1wt%)
    -Ag paste annealed at a temperature of 900oC exhibit the lowest resistivity, and the silver grain size of the electrode is much bigger.
    The Pr value of the ferroelectric PZNZT is higher using GNP-LSMO
    -Ag electrodes, the Ec value is much lower for PZNZT with GNP-LSMO electrodes as well. GNP-LSMO-Ag exhibits higher conductivity, and therefore the electric field applied at GNP-LSMO specimens enhances more domain switching, implying the GNP-LSMO powders show special characteristics compared to the CS-LSMO powder.
    The GNP-LSMO(1wt%)-electroded PZNZT specimens after annealed at a temperature of 900oC has Pr = 31.95 μC/cm2 and Ec = 13.36 kV/cm, which shows a relatively good electric and fatigue properties.
    GNP-LSMO(8wt%)-electroded ferroelectric PZNZT has the worst fatigue property, and this may be attributed to the large surface area and tap density of the GNP-LSMO powders. Large surface area and small particle size make the pastes contain large amount of LSMO powders around Ag particles. It is therefore difficult to anneal the electrodes to high density, and good interfacial properties, and therefore the specimens exhibit inferior fatigue properties.
    In summary, the GNP processed LSMO powders exhibits nano-sized characteristics. Ferroelectrics using electrodes with an appropriate amount of GNP-LSMO exhibit enhanced electric and fatigue properties.

    目 錄 中文摘要……………………………………………………….i 英文摘要……..………………………………………….…….v 致 謝………..………………………………………...…..vi 目 錄………..……………………………………….……vi 圖 目 錄…………..……………………………...…………..ix 表 目 錄..…………..………………………………………..xv 第一章 前言……………………………………..……...…….1 第二章 文獻回顧………………………………..……...…….3 2.1 鐵電材料介紹……..………………………………………….…..3 2.1.1鈣鈦礦結構介…………………………….…………………3 2.1.2鐵電材料的定義………………………….…………………5 2.1.3鐵電材料的特性………………………….…………………6 2.1.4鋯鈦酸鉛材料系統介…………………….…………………9 2.1.5改良型0.3(Pb(Zn1/3Nb2/3)O3)+0.7(Pb(Zr0.52Ti0.48)O3)材料系 統…………………….…………………………..…….……11 2.2 電極材料……………….……………………………………….14 2.2.1 錳酸鍶鑭電極……………………………….……………16 2.2.2 氧化物陶瓷粉末合成方法…………………….…………18 2.2.3 新式燃燒合成方法簡介…………….…….………....…...21 第三章 實驗方法與步驟………………………………........26 3.1實驗藥品與儀器規格總表….…………………………….….…..26 3.2 實驗步驟…………………...……………………………………29 3.3 試片的製備…………….….…………………………………….30 3.3.1 配粉………………..………………………………………32 3.3.2濕球磨(Wet ball milling)…………..……….………………35 3.3.3 烘乾……………..………………………………….……...35 3.3.4 過篩……………………………………………………..…35 3.3.5 煆燒(Calcination)…………….……………………………35 3.3.6 成型(Forming)…………….………………….……………36 3.3.7 燒結(Sintering)…………….………………..………..……36 3.3.8 電極膠體製作…………….….……………..………..……37 3.4 GNP新式燃燒法儀器架設………………………….…………38 3.5 電阻率量測………………………………………….…………50 3.6 極化值-電場曲線與疲勞特性之量測…………...….…………53 第四章 實驗結果與討論……………………………………….......57 4.1 GNP新式燃燒法之粒徑與XRD分析……….…….……….…57 4.2 改良後GNP燃燒法與傳統氧化物法之電阻率比較…………66 4.3 GNP法與傳統氧化物法電極膠體之疲勞特性分析………..…72 4.3.1 疲勞量測分析………………..……………………………72 4.3.2 疲勞測試後之微觀界面分析………………..……………92 第五章 結論……………………..………….………........…………105 參 考 文 獻……………………………………………..…..109

    1. 吳朗, “電子陶瓷-壓電”, 全欣科技圖書, 民國83年。
    2.W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang, “Top-Interface- Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.48)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., Vol. 77, No. 10, pp. 3441-3443 (2000).
    3.M. S. Chen, T. B. Wu, J. M. Wu, “Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films” , Appl. Phys. Lett., Vol. 68, No. 10, pp. 1430-1432(1996).
    4.I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, M. Tsukada, “Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric Capacitors” , Appl. Phys. Lett., Vol. 74, No. 6, pp. 3552-3554(1999).
    5.F. McNally, J. H. Kim, F. F. Lange, “Fatigue properties of lanthanum strontium manganate-lead zirconate titanate epitaxial thin film heterostructures produced by a chemical solution deposition method” ,J. Mater. Res., Vol. 15, No. 7, pp. 1546-1550(2000).
    6.C. M. Wayman, C. C. Chou, “Determination of displacement vector on 180o domain boundary and polarization arrangements in lead titanate crystals” ,J. Mater. Res., Vol. 12, No. 2, pp. 457-466(1997).
    7.S. Caston, R. McCarley, “Characteristics of Nanoscopic Au Band Electrodes” , J. Electroanal. Chem., Vol. 259, No. 7, pp. 124-134(2002).
    8.B. Vilquin, G. L. Rhun, R. Bouregba, G. Poullain, H. Murray, “Effect of In Situ Pt Bottom Electrode Deposition and of Pt Top Electrode Preparation on PZT Thin Films Properties” , Appl. Surf. Sci., Vol. 515, No. 12, pp. 63-73(2002).
    9.L. Szpyrkowicz, J. Naumczyk, F. Grandi, “Electrochemical Treatment of Tannery Wastewater Using Ti/Pt and Ti/Pt/Ir Electrodes” , Water Res., Vol. 29, No. 2, pp. 517-524(1995).
    10. T. Satoh, H. Fujikawa, M. Ishii, T. Ohwaki and Y.Taga, “Interfacial Stability Between Ta-Sn-O Films and Indium Tin Oxide Electrodes” , Jpn. J. Appl. Phys., Part 2., Vol. 36, No. 12, pp. 1699-1701(1997).
    11. S. Madhukar, S. Aggarwal, A. M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, “Effect of Oxygen Stoichiometry on the Electrical Properties of La0.5Sr0.5CoO3 Electrodes” , J. Appl. Physi., Vol. 81, No. 8, pp.3543-3547(1997).
    12. L. L. Hench, J. K. West, “Principles of Electronic Ceramic” , John Wiley and Sons, New York, (1990).
    13. 池田拓郎, 基本壓電材料, 陳世春譯, 復漢出版社印行, 1985.
    14. Y. H. Xu, “Ferroelectric Materials and Their Applications” , North-Holland, New York, (1991).
    15. 黃坤祥, “粉末冶金學”, 中華民國粉末冶金協會, 民國92年。
    16. Márta Déri, “Ferroelectric Ceramics” , Maclaren and Sons LTD, London, (1966).
    17. O. Ise, K. Satoh, Y. Mamiya, “High Power Characteristic of Piezoelectric Ceramics in Pb(Mn1/3Nb2/3)O3- PbTiO3-PbZrO3 System” , J. Appl. Phys., Vol. 38, No. 7, pp. 5531-5534(1999).
    18. J. Ryu, J. Choi, H. Kim, “Effect of Heating Rate on the Sintering Behavior and the Piezoelectric Properties of Lead Zirconate” , J. Am. Ceram. Soc., Vol. 84, No. 4, pp. 902–904(2001).
    19. C. Kwon, M. C. Robson, K. C. Kim, J. Y. Gu, S. E. Lofland, S. M. Bhagat, Z. Trajanovic, M. Rajeswari, T. Venkatsan, A. R. Kratz, R. D. Gomez, R. Ramesh, “Stress-Induced Effects in Epitaxial (La0.7Sr0.3)MnO3 Films” , J. Magn. Magn. Mater., Vol. 172, No. 11, pp. 229-236 (1997).
    20. R. H. Zuo, L. T. Li, Z. L. Gui, “Effects of BaTiO3 Additive on Densification Mechanism of Silver–Palladium Paste” , Mater. Chem. Phys., Vol. 74, No. 3, pp. 182-186(2002).
    21. T. Satoh, H. Fujikawa, M. Ishii, T. Ohwaki and Y.Taga, “Interfacial Stability Between Ta-Sn-O Films and Indium Tin Oxide Electrodes” , Jpn. J. Appl. Phys., Part 2., Vol. 36, No. 12, pp. 1699-1701(1997).
    22. 陳思翰, “氧化銦錫薄膜的奈米表面電性研究” , 科儀新知, 新竹, 第22-26頁,民國90年10月。
    23. S. Barison, A. De Battisti, M. Fabrizio, S. Daolio, C. Piccirillo, “Surface Chemistry of RuO2/IrO2/TiO2 Mixed-Oxide Electrodes: Secondary Ion Mass Spectrometric Study of the Changes Induced by Electrochemical Treatment” , Rapid commun. Mass Spectrom., Vol. 14, No. 11, pp. 2165-2169(2000).
    24. J. H. Ahn, W. J. Lee, H. G. Kim, “Oxygen diffusion through RuO2 bottom electrode of integrated ferroelectric capacitors” , Mater. Lett., Vol. 38, No. 2, pp. 250-253(1999).
    25. H. Kurogi, Y. Yamagata, K. Ebihara, N. Inoue, ”Preparation of PZT Thin Films on YBCO Electrodes by KrF Excimer Laser Ablation technique”, Surface and Coatings Technology, 100-101, pp. 424-427(1998).
    26. R. Ramesh, A. Inam, W. K. Chan, F. Tillerot, C. C. Chang, ” Ferroelectric PbZr0.2Ti0.8O3 Thin Films on Epitaxial Y-Ba-Cu-O” , Appl. Phys. Lett., Vol. 59, No. 27, pp. 3542-3544(1991).
    27. S. M. Moussa, B. J. Kennedy, T. Vogt., “Structural Variants in ABO3 Type Perovskite Oxides. On the Structure of BaPbO3”, Solid State Communications, Vol. 119, pp. 549-552(2001).
    28. Y. Kodama, N. Murayama, Y. Torii, M. Yasukawa, “Chemical Preparation and Properties of Semi-Metal BaPbO3 Ceramics”, Journal of Materials Science Letters, Vol.17, pp. 1999-2001(1998).
    29. Y. R. Luo, J. M. Wu, “BaPbO3 Perovskite Electrode for Lead Zirconate Titanate Ferroelectric Thin Films”, Applied Physics Letters, Vol.79, No. 12, pp. 3669-3671(2001).
    30. G. H. Haertling, “Ferroelectric Ceramics:History and Technology” , J. Am. Ceram. Soc., Vol. 82, No. 4, pp. 797-818(1999).
    31. G. Arlt, D. Hennings, G. de With, “Dielectric Properties of Fine Grained Barium Titanate Ceramics”, J. Appl. Phys., Vol. 58, No. 8, pp. 1619-1625 (1985).
    32. 邱繼洋, “添加銀之氧化物電極搭配鋯鈦錳鈮酸鉛壓電陶瓷微結構與電性之研究” ,國立台灣科技大學碩士論文 (2003).
    33. 鄭乃熒, “改良電極以提升壓電元件的抗疲勞特性”, 國立台灣科技大學碩士論文 (2004).
    34. 張恭豪, “磁控式濺鍍法製備La0.7Sr0.3MnO3氧化物薄膜電極於鐵電材料之電性研究”, 國立台灣科技大學碩士論文 (2004).
    35. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, G. J. Exarhos, “Glycine-nitrate combustion synthesis of oxide ceramic powders” , Materials Letters, Vol. 10, No. 1,2, pp. 6-12 (1990).
    36. L. A. Chick, G. D. Maupin, G. L. Graff, L. R. Pederson, D. E. McCready, J. L. Bates, “Redox effects in self-sustaining combustion synthesis of oxide ceramic powders” , Mat. Res. Soc. Symp. Proc., Vol. 249, pp. 159-164 (1992).
    37. L. A. Chick, L. R. Pederson, J. J. Kingsley, D. E. McCready, G. W. Coffey, “COMBUSTION SYNTHESIS OF Sr-SUBSTITUTED LaCo0.4Fe0.6O3 POWDERS” , Materials Research Society, Vol. 271, pp. 113-120(1992).
    38. L. R. Pederson, J. J. Kingsley, “ENERGETIC MATERIALS IN CERAMICS SYNTHESIS” , Materials Research Society, Vol. 296, pp.361-366(1993).
    39. H. S. Potdar, S. B. Deshpande, Y. B. Khollam, A. S. Dechpande, S. K. Date, “Synthesis of nanosized Ce0.75 Zr0.25O2 porous powders via an autoignition: glycine nitrate process” , Materials Letters, Vol. 57, pp. 1066-1071(2003).
    40. Chyi-Ching Hwang, Jih-Sheng Tsai, Ting-Han Huang, “Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates-investigations of precursor homogeneity, product reproducibility, and reaction mechanism” , Materials Chemistry and Physics, Vol. 93, pp. 330-336(2005).
    41. Chyi-Ching Hwang, Jih-Sheng Tsai, Ting-Han Huang, Cheng-Hsiung Peng, San-Yuan Chen, “Combustion synthesis of Ni-Zn ferrite powder-influence of oxygen balance value” , Journal of Solid State Chemistry, Vol. 178, pp. 382-389(2004).
    42. Chyi-Ching Hwang, Tsung-Yung Wu, Jun Wan, Jih-Sheng Tsai, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders” , Materials Science and Engineering B, Vol. 111, pp. 49-56(2004).
    43. Chyi-Ching Hwang, Tsung-Yung Wu, “Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method” , Materials Science and Engineering B, Vol. 111, pp. 197-206(2004).
    44. R. D. Purohit, B. P. Sharma, K. T. Pillai, A. K. Tyagi, “Ultrafine ceria powders via glycine-nitrate combustion” , Materials Research Bulletin, Vol. 36, pp. 2711-2721(2001).
    45. S. T. Aruna, K. S. Rajam, “Mixture of fuels approach for the solution combustion synthesis of Al2O3-ZrO2 nanocomposite” , Materials Research Bulletin, Vol. 39, pp. 157-167(2004).
    46. P. K. Patro, A. R. Kulkarni, C. S. Harendranath, “Combustion synthesis of Sr0.5Ba0.5Nb2O6 and effect of fuel on its microstructure and dielectric properties” , Materials Research Bulletin, Vol. 38, pp. 249-259(2003).
    47. J. C. Toniolo, M. D. Lima, A. S. Takimi, C. P. Bergmann, “Synthesis of alumina powders by the glycine-nitrate combustion process” , Materials Research Bulletin, Vol. 40, pp. 567-571(2005).
    48. Ze Lei, Qingshan Zhu, Shichao Zhang, “Nanocrystalline scandia-doped zirconia (ScSZ) powders prepared by a glycine-nitrate solution combustion route” , Journal of the European Ceramic Society, Vol. 26, pp. 397-401(2005).
    49. M. D. Lima, R. Bonadimann, M. J. de Andrade, J. C. Toniolo, C. P. Bergmann, “Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis” , Journal of the European Ceramic Society, Vol. 26, pp. 1213-1220(2006).
    50. H. Sakai, K. Hanawa, K. Aoyagi, “Preparation and magnetic properties of barium ferrite fine particles by the coprecipitation salt catalysis method” , Magnetics IEEE Transaction on, Vol. 28, pp. 3355-3362(1992).
    51. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders” , Ceramic Bulletin, Vol. 67, No. 10, 1988.
    52. Q. Yitai, X. Yi, C. He, J. Li, Z. Chen, “Hydrothermal preparation and characterization of ultrafine magnetite powders” , Materials Research Bulletin, Vol. 29, No. 9, pp. 953-957(1994).
    53. X. Yi, Q. Yitai, L. Jing, C. Zuyao, Yang Li, “Hydrothermal preparation and characterization of ultrafine powders of ferrite spinels MFe2O4(M=Fe, Zn and Ni)” , Materials Science and Engineering B, Vol. 34, L1-L3(1995).
    54. C. N. R. Rao, “Chemical synthesis of solid inorganic materials” , Materials Science and Engineering B, Vol. 18, pp. 1-21(1993).
    55. “Four point resistivity and conductivity type measurements” , http://mitghmr.spd.louisville.edu/lutz/resources/sops/sop45.html, (2006.07.10).

    QR CODE