簡易檢索 / 詳目顯示

研究生: 胡俊宇
Jiun-yu Hu
論文名稱: 利用厚膜技術製作固態氧化物燃料電池之單電池及降低電解質燒結溫度與其電性量測
Fabricate single cell of solid oxide fuel cell by thick film technology and decrease sintering temperature of electrolyte and electric property
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 鄭逸琳
Yih-Lin Cheng
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 刮刀成型電解質陽極共燒平整度釔安定氧化鉍釔安定氧化鋯交流組抗
外文關鍵詞: tape casting, electrolyte, anode, co-fire, error of uniformity, YSB, YSZM, AC
相關次數: 點閱:380下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用厚膜技術的刮刀成型手法製作電解質(Electrolyte)和陽極(Anode),並使用網印的方式製作電極(Electrode),將電極網印在單獨燒結與電解質和陽極共燒之後的電解質表面。而電解質改質則藉由YSB( 75mol%Bi2O3 + 25mol%Y2O3 )的微量添加,使 (ZrO2)0.92 (Y2O3)0.075 (MgO)0.005 ( YSZM )材料系統之燒結溫度下降,改善與電極共燒溫度限制。
    由實驗結果可以發現,漿料之溶劑為異丙醇、正丁醇、甲醇混合溶劑時,固定固含量的條件下,黏度將會隨著溶劑的增加而下降;電解質及陽極漿料利用此混合溶劑系統,皆可刮出良好的薄帶,其漿料黏度皆在1100cp,而漿料呈現所需的假塑性流體型態。為了得到更好的薄帶,由黏結劑與分散劑技術資料可知選用適合的溶劑,分別為丁酮與乙醇,經過實驗可以清楚的知道溶劑改為丁酮與乙醇之混合溶劑之配方,可以得到更良好的薄帶,黏度隨著溶劑的添加而降低,而在1500℃ 3 小時的燒結條件下,其相對密度為98.93%。經過燒結過後可以發現,陽極和電解質共燒之試片,雖然利用掃描三次元量床量測後,平整度誤差Error of Uniformity約為26%,不及電解質單獨燒結之試片來的平整(Error of Uniformity約為21%),而且電解質的緻密性也會受限於陽極的燒結溫度,而無法得到緻密的電解質,因此最後改用電解質單獨燒的方式,得到緻密的電解質後再將陽極和陰極,分別網印在電解質上,並分別燒結電極,最後即可得到所需的單電池。
    YSZM電解質藉由YSB的微量添加改善燒結溫度,經由實驗結果可以知道,當3mol%的YSB添加至YSZM (3YBZM)時可以得到穩定的C相,而燒結溫度在1200℃持溫5小時可以得到緻密的試片,其相對密度為95%,而在800℃的導電率為0.0204 S/cm,相當於YSZM在800℃的導電率0.022 S/cm。
    因此由上述結果可知8YSZ及YSZM若要得到緻密性95%以上之試片,其燒結溫度都必須在1500℃,而在800℃的導電率分別為0.015 S/cm、0.022 S/cm,3YBZM在1200℃的燒結條件下可以到相對密度為95%之試片,而在800℃的導電率為0.0204 S/cm,因此可知3YBZM將有利於與電極共燒。


    Electrolyte and anode thick films were successfully fabricated using tape casting technique and co-firing of electrolyte and anode was implemented by screen printing the anode on electrolyte. In addition, low processing temperature electrolyte made of (ZrO2)0.92(Y2O3)0.075(MgO)0.005 (YSZM) and YSB(75mol%Bi2O3+25mol%Y2O3) is developed in order to co-fire significantly with electrodes.
    Viscosity of the slurry prepared for tape casting was found to decrease with increase of solvent content mixed with isopropyl alcohol, butyl alcohol and methyl alcohol. Better quality tape is achieved with the slurry prepared by mixing appropriate amount of solvent and the slurry become pseudo-plastic fluid type when the viscosity of the slurry is about 1100cP. The relative density of the tape sintered at 1500oC for 3 h is 98.93% of theoretical density. The error in uniformity is about 26%, when the anode is co-fired with electrolyte and the error in uniformity of the electrolyte is lowered when it is sintered separately. Since, in the co-firing process, the sintering temperature of the electrolyte depends on anode, hence the densification of the electrolyte is poor. Therefore, in the present study electrolyte is sintered first for better densification and electrodes are sintered after they are screen printed on the surface of electrolyte to fabricate a single cell.
    In addition, low sintering temperature electrolyte of YSZM is developed by adding small amount of YSB. Stabilized cubic phase is observed when the content of YSB is 3mol%, indicating that the minimum content of 3 mol% YSB should be added to pure YSZM electrolyte to stabilized it in cubic phase. All the compositions are sintered at 1200oC for 5hr to achieve densities of about 95% of theoretical density. The ionic conductivity of 3mol%25YSB added YSZM electrolyte is 0.0204 S/cm at 800oC, which is near to the conductivity of pure 8YSZM at the same temperature.
    8YSZ and YSZM electrolytes were found to require the sintering temperature of 1500oC to achieve densities of about 95%. Hence, it can be concluded that the new electrolyte developed by adding 3mol%25YSB to pure YSZM sintered at 1200oC with density of 95% and ionic conductivity of 0.0204S/cm can be replaced for 8YSZ electrolyte for intermediated temperature solid oxide fuel cell application. It is also concluded that this electrolyte is suitable to co-fire with electrode by saving time and energy.

    目錄 中文摘要 I 英文摘要 III 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XV 第一章 前言 1 第二章 文獻回顧 3 2-1 固態氧化物燃料電池簡介 3 2-1-1固態氧化物燃料電池歷史 3 2-1-2固態氧化物燃料電池原理 4 2-2固態氧化物燃料電池元件架構 6 2-2-1電解質 6 2-2-1-1氧化鋯 6 2-2-1-2氧化鉍 7 2-2-2電極 11 2-3固態氧化物燃料電池之製作方式 11 2-3-1漿料的組成 11 2-3-1-1流變性 12 第三章 實驗方法 15 3-1實驗粉末、材料 15 3-2實驗儀器規格 17 3-3實驗流程 18 3-4試片製作 19 3-4-1陽極粉末配製 19 3-4-2陰極粉末配製 20 3-4-3電極膠配製 22 3-4-4漿料配製 22 3-4-5刮刀成型 24 3-4-6疊層 25 3-4-6-1疊壓手法一 25 3-4-6-2疊壓手法二 26 3-4-7網印 27 3-4-8燒結 29 3-5試片量測 30 3-5-1粉末粒徑分析 30 3-5-2密度&孔隙度分析 30 3-5-3 X-ray繞射分析 31 3-5-4尺寸收縮量測 31 3-5-5平整度分析 31 3-5-6 SEM微觀結構分析 32 3-5-7 EDS元素分析 32 3-5-8熱分析 33 3-5-8-1熱-力學分析(Thermomechanical analysis , TMA) 33 3-5-8-2 熱重量法(Thermogravimetry , TG) 33 3-5-9交流阻抗 34 第四章 厚膜技術之刮刀成形技術建立 35 4-1黏度及搖變性指數檢測 35 4-1-1甲醇、正丁醇、異丙醇混合溶劑之漿料系統 35 4-1-2乙醇、丁酮混合溶劑之漿料系統 44 4-2密度量測與微觀分析 52 4-2-1甲醇、正丁醇、異丙醇混合溶劑之漿料系統 52 4-2-2乙醇、丁酮混合溶劑之漿料系統 59 4-3平整度量測 65 4-3-1甲醇、正丁醇、異丙醇混合溶劑之漿料系統 65 4-3-2乙醇、丁酮混合溶劑之漿料系統 69 第五章 微量添加YSB至YSZM電解質使其燒結溫度下降 71 5-1粉末配製X-ray繞射分析 71 5-1-1 YSB粉末X-ray繞射分析 71 5-1-2 YSZM粉末X-ray繞射分析 72 5-1-3 YBZM系統X-ray繞射分析 73 5-2 YSB的添加對燒結密度之影響 76 5-3 EDS及SEM微觀分析 78 5-4 交流阻抗分析 82 第六章 結論 100 未來研究方向 102 參考文獻 103 圖目錄 圖2-1 固態氧化物燃料電池的研究發展 4 圖2-2 SOFC工作原理 5 圖2-3 氧化鉍相的溫度範圍 8 圖2-4 氧化鉍各相隨著溫度變化的導電率情況 9 圖2-5 (Bi2O3)1-x(Y2O3)x 在空氣中的離子導電率 9 圖2-6 Bi2O3與Y2O3的二元相圖 10 圖2-7兩平板之間粘度變化 13 圖2-8 流體類型 14 圖3-1 實驗流程 15 圖3-2 陽極粉末配置流程圖 20 圖3-3 陰極粉末配置流程圖 21 圖3-4 電極膠配置流程圖 22 圖3-5 Part A(分散液) 23 圖3-6 Part B(黏結液) 23 圖3-7 Part C(漿料Part A 與Part B混合球磨) 24 圖3-8 刮刀機 24 圖3-9 盛料槽 25 圖3-10 完成品 25 圖3-11熱壓配置圖 26 圖3-12薄帶負荷情況 26 圖3-13熱壓模具 27 圖3-14網印結果 28 圖3-15 網印流程圖 28 圖3-16 燒結時薄帶擺放方式 29 圖3-17 電解質破裂情況 29 圖 3-18量測密度天秤之示意圖 30 圖3-19 平面量測 32 圖4-1粒徑分析,8YSZ粉末 35 圖4-2刮出之薄帶於自然陰乾之情況 37 圖4-3 固定B/A,改變C/A比例情況下所量測之黏度 39 圖4-4固定C/A,改變B/A比例情況下所量測之黏度 39 圖4-5不同組實驗之搖變性指數 41 圖4-6不同組實驗之漿料的流體型態 41 圖4-7陽極漿料呈現假塑性型態 42 圖4-8陽極漿料的搖變性指數 43 圖4-9 陽極-第五組的實驗參數,B/A=20%, C/A=100%,所刮出之薄帶於自然陰乾之情況 43 圖 4-10不同漿料配比 50 圖4-11 不同配方之流體型態,呈現假塑性流體型態 50 圖4-12 不同配方之搖變指數 51 圖4-13 黏結劑固含量減少1%之薄帶自然晾乾後,表面呈現光滑狀態 51 圖 4-14 光學顯微鏡尺規 52 圖4-15 利用光學顯微鏡觀測薄帶熱壓後,橫截面情況 53 圖4-16 利用光學顯微鏡觀測薄帶熱壓後,橫截面情況 53 圖4-17 TG-8YSZ-薄帶粉末 54 圖4-18 燒結條件 55 圖4-19 SEM微觀分析,薄帶於1500℃燒結4小時 55 圖4-20 SEM微觀分析,電解質燒結後表面情況 56 圖4-21 SEM微觀分析,電解質燒結後破斷面情況 56 圖4-22 電解質面積為98*97㎜2,陽極面積為45*43㎜2,燒結條件分別為1500℃ 4小時、1300℃ 4小時 57 圖4-23 電解質面積為98*97㎜2陰極面積為45*43㎜2,燒結條件分別為1500℃ 4小時、1100℃ 1.5小時 57 圖4-24 SEM-電解質與陰極破斷面情況,其燒結溫度分別為1500℃4小時、1100℃1.5小時 58 圖4-25 SEM-電解質與陽極破斷面情況,其燒結溫度分別為1500℃4小時、1350℃2小時 59 圖4-26 NO.4黏結劑減少1%條件下之薄帶,利用光學顯微鏡觀測,熱壓後沒有分層的情況 60 圖4-27 NO.4黏結劑減少1%條件下,利用光學顯微鏡觀測,燒結後沒有分層的情況 60 圖4-28利用SEM觀察 NO.4黏結劑減少1%之破斷面,沒有分層情況 61 圖4-29 不同參數的薄帶燒結後之相對密度關係圖 62 圖4-30 利用SEM觀察NO.5塑化劑增加1%之破斷面 64 圖4-31 NO.5塑化劑增加1%條件下,利用光學顯微鏡觀測,燒結後有破裂的情況 64 圖4-32 電解質1500℃ 4小時燒結 65 圖4-33電解質平整度量測,( a )上視圖,( b )立體圖 66 圖4-34 TMA測試,升溫速率每分鐘5℃,(a) 8YSZ,(b) 60wt%NiO+40wt%8YSZ 68 圖4-35電解質與陽極1400℃4小時共燒,試片彎曲,( a ) 陽極面,( b ) 電解質面 68 圖4-36電極與電解質共燒情況 68 圖4-37平整度 69 圖4-38 電解質薄帶1500℃ 1小時燒結後情況 70 圖4-39 電解質平板之平整度為14 % 70 圖5-1 X-Ray繞射分析圖 72 圖5-2 X-Ray繞射分析圖 73 圖5-3 X-Ray繞射分析圖,1YBZM、2YBZM、3YBZM 的塊材在燒結條件1200℃ 5 h時 75 圖5-4 X-Ray 繞射分析圖,1YBZM、2YBZM、3YBZM 的塊材燒結條件1300℃ 5 h時 75 圖5-5 Bi2O3-ZrO2二元相圖 76 圖5-6 YBZM系列的相對密度與成分含量關係圖 77 圖5-7 SEM 微觀分析, YBZM之破斷面情況 79 圖5-8 EDS分析, 3YBZM 破斷面情況 80 圖5-9 EDS 分析, 3YBZM 破斷面之情況 81 圖5-10 刮刀成型8YSZ整體導電率曲線 82 圖5-11 8YSZ電解質之交流阻抗圖 83 圖5-12 8YSZ電解質整體導電率之Arrhenius圖 83 圖5-13 8YSZ與Zr0.92Y0.16-XMgXO2.08-0.5X之整體導電率之Arrhenius圖 86 圖5-14 1YBZM-1200℃ 5h在不同溫度範圍之交流阻抗圖 87 圖5-15 1YBZM-1300℃ 5h在不同溫度範圍之交流阻抗圖 88 圖5-16 2YBZM-1200℃ 5h在不同溫度範圍之交流阻抗圖 89 圖5-17 2YBZM-1300℃ 5h在不同溫度範圍之交流阻抗圖 90 圖5-18 3YBZM-1200℃ 5h在不同溫度範圍之交流阻抗圖 91 圖5-19 3YBZM-1300℃ 5h在不同溫度範圍之交流阻抗圖 92 圖5-20 1YBZM,晶粒與晶界的導電率之Arrhenius圖 93 圖5-21 1YBZM,晶粒與晶界的導電率之Arrhenius圖 93 圖5-22 1YBZM,晶界的導電率之Arrhenius圖 94 圖5-23 2YBZM,晶粒與晶界的導電率之Arrhenius圖 94 圖5-24 2YBZM,晶粒與晶界的導電率之Arrhenius圖 95 圖5-25 2YBZM,晶界的導電率之Arrhenius圖 95 圖5-26 3YBZM,晶粒與晶界的導電率之Arrhenius圖 96 圖5-27 3YBZM,晶粒與晶界的導電率之Arrhenius圖 96 圖5-28 3YBZM,晶界的導電率之Arrhenius圖 97 圖5-29 3YBZM與YSZM試片,晶界的導電率之Arrhenius圖 97 圖5-30 YBZM系統在1200℃及8YSZ、YSZM整體導電率之Arrhenius圖 98 圖5-31 YBZM系統在1300℃及8YSZ、YSZM整體導電率之Arrhenius圖 98 圖5-32 YBZM系列之不同成分含量與整體離子導電性關係 99 表目錄 表2-1 (Bi2O3)1-x(Y2O3)x (20-30 mol%)在空氣中隨著溫度變化的離子導電率 10 表3-1實驗粉末、材料 15 表3-2實驗粉末、材料 15 表3-3實驗儀器 17 表4-1不同粒徑配製漿料之黏度 36 表4-2 固定黏結劑、分散劑、塑化劑之間之比例,與固定甲醇、正丁醇、異丙醇之間之比例,改變B/A、C/A之比例,除泡30分鐘 38 表4-3 不同漿料配比 45 表4-4 8YSZ不同燒結溫度之相對密度 56 表4-5 薄帶燒結後情況 63 表5-1 YBZM系統的密度 78

    參考文獻
    [1] 黃鎮江,. ”燃料電池”,. 全華科技圖書股份有限公司, (2003) pp1-2
    [2] 陳俊偉,. ”固態氧化物燃料電池氧化鋯電解質之韌性與金屬雙極板抗氧化性反應”,. 國立台灣科技大學機械工程系研究所碩士學位論文(2005).
    [3] 許崴棋,. ”異價離子共摻雜對氧化鋯與氧化鈰之晶體結構與導電性質之影響”,. 國立台灣科技大學材料科技研究所碩士學位論文(2005).
    [4] 張建松,. ” 固態氧化物燃料電池(SOFC)”單電池結構製作”,. 國立清華大學碩士論文(2003).
    [5]羅文志,. ”氧空缺控制對氧化鋯離子導電率之研究”,. 國立台灣科技大學,. 材料科技研究所, 碩士論文,. (2005).
    [6] N. Q. Minh,. ” High-Temperature Fuel Cells. Part 2: The Solid Oxide Cells”,. Chemtech, 21, (1991) pp120-26.
    [7] A. H. Heuer, L. W. Hobbs,. “Advances in Ceramics, Science and Technology of Zircoma”,. American Ceramic Society. Columbus, OH. vol. 3, (1981).
    [8] N. Claussen, M. Rühle, A. H. Heuer,. “Advances in Ceramics, Science and Technology of Zirconia II,. American Ceramic Society, Columbus, OH, vol. 12, (1984).
    [9] N. Jiang, E. D. Wachsman , S. H. Jung,. “A higher conductivity Bi2O3-based electrolyte”,. Solid State Ionics, vol 150, (2002) pp347– 353.
    [10] N. M. Sammes, G. A. Tompsett, H. N. Fea and F. Aldingera,. “Bismuth Based Oxide Electrolytes Structure and Ionic Conductivity”,. Journal of the European Ceramic Society, vol 19, (1999) pp1801-1826.
    [11] K. V. Kale, K. M. Jadhav, G. K. Bichile. “Investigations on a high-conductivity solid electrolyte system, Bi2O3-Y2O3”,. Journal of Materials Science Letters, vol 18, (1999) pp9-11.
    [12] W. Changzhen, X. Xiuguang, L. Baozhen,. “Ionic and Electeronic Cconduction of Oxygen Ion Conductorsin the Bi2O3-Y2O3 System”,. Solid State Ionics, vol 13 (1984) pp135-140.
    [13] T. Takahashi, H. Iwahara,. “Oxide Ion Cconductors Based on Bismuthsesquioxide”,. Mat. Res. Bull. vol. 13, ( 1978) pp. 1447-1453.
    [14] H. Itoh, Y. Hiei, T. Yamamoto, M. Mori, T. Watanabe,. “Optimized Mixture Ratio in YSZ-Supported Ni-YSZ Anode Material for SOFC”,. Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium.
    [15] A. A. Khanlou, F. Tietz, I. C. Vinke, D. Stover,. “Electrochemical and Microstructural Study of SOFC Cathode Based on La0.65Sr0.3MnO3 and Pr0.65Sr0.3MnO3”,. Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding, vol 16 (2001) pp476-484.
    [16] R. Moreno,. “The Role of Slip Additives in Tape-Casting Technology: Part 1 Solvents and Dispersants”,. Laboratory Report, vol 71, NO.10, October(1992)pp1521-1531.
    [17] R. Moreno,. “The Role of Slip Additives in Tape-Casting Technology: Part 2 Binder and Plasticizers”,. Laboratory Report, vol 71, NO.11, November(1992)pp1647-1657.
    [18] 汪建民,. ”陶瓷技術手冊”,. 中華明國產業科技發展協進會, 中華民國粉末冶金協會, pp52-53, pp81-85.
    [19] 鄭乃熒,.”改良電極以提昇壓電元件的抗疲勞特性”,. 國立台灣科技大學材料科技研究所碩士學位論文(2004).
    [20] J. J. Aklonis, W. J. MacKnight,. “Introduction to Polymer Viscoelasticity”,. John Wiley & Sons Inc., New York, (1983) p122.
    [21] T. Alfrey, Jr., “Mechanical behavior of high polymers”, Interscience, New York, (1948) pp 23-66.
    [22] R. B. Bird, W. E. Stewart, E. N. Lightfoot, “Transport phenomena, Wisconsin”, (1960) pp 3-14.
    [23] R. W. Fox, A. T. Mc Donald,. “Introduction to Fluid Mechanics 5th”,. WILEY(2003)
    [24] 趙承琛,.”界面科學基礎”,. 復文書局, (2000) pp 67-68.
    [25] 游歩光, 葦文誠,. “微細陶瓷複合粉體之膠體製程”,. 陶業,(1993) pp5-16.
    [26] J. Ceranano,. “Processing Concentrated Aqueous Alpha-Alumina suspension stabilized with polyelectrolytes”,. J. Am. Ceram. Soc,. vol.12 (1971) pp1062-1067.
    [27] Y. Suzuki, T. Takahashi, denki Kagaku, vol39, (1971) p406.
    [28] J. Cheng, S. Zha, X. Fang, X. Liu, G. Meng,. “On the green density sintering behavior and electrical property of tape cast Ce0.9Gd0.1O1.95 electrolyte films”,. Materials Research Bulletin, vol 37 (2002) pp2437~2446.
    [29] J. H. Feng, F. Dogan,. “Aqueous processing and mechanical properties of PLZT green tapes”,. Materials Science and Engineering A283(2000)pp56-64
    [30] K. Prabhakaran, Asha Narayanan, C. Pavithran,. “Cardanol as a dispersant plasticizer for an alumina/toluene tape casting slip”,. Journal of the European Ceramic Society, vol 21(2001) pp2873-2878
    [31] B. Bitterlich, C. Lutz, A. Roosen,. “Rheological characterization of water-based slurries for the tape casting process”,. Ceramics International , vol 28(2002)pp675~683.
    [32] L. Fei, W. Chun-ming, H. Ke-ao,. “Optimization of non-aqueous nickel slips for manufacture of MCFC electrodes by tape casting method”,. Materials Research Bulletin, vol37(2002)pp1907~1921.
    [33] C. Xuemin, O. Shixi, Y. Zhiyong, W. Changan, H. Yong,. “A study on green tapes for LOM with water-based tape casting processing”,. Materials Letters, vol57(2003)pp1300~1304.
    [34] F. Snijkers, A. de Wilde, S. Mullens, J. Luyten,. “Aqueous tape casting of yttria stabilized zirconia using natural product binder”,. Jounal of the European Ceramic Society, vol 24(2004)pp1107~1110.
    [35] A. Roosen, F. Dogan,. “Aqueous colloidal processing and green sheet properties of lead zirconate titanate(PZT)ceramics made by tape casting”,. Journal of European Ceramic Society, vol 24(2004)pp1073~1076.
    [36] S. M. Olhero, J. M. F. Ferreira,. “Rheological characterization of water-based AlN slurries for the tape casting process”,. Journal of Materials Processing Technology, vol 169(2005)pp206~213.
    [37]韓敏芳, 彭蘇萍,. “固態氧化物燃料電池材料及製備”,. 科學出版社(2004)pp79~81.
    [38] S. C. Singhal, K. Kendall,. “High Temperature Solid Oxide Fuel Cell: Fundamentals, Design and Applications”,. ELSEVIER,(2003)pp8~11.
    [39] E. M. Levin, C. R. Robbins, H. F. McMurdie,. “Phase Diagrams for Ceramists”,. The American Ceramic Society, 5th (1985).
    [40] F. V. Lenel,. “Sintering in Presence of a Liquid Phase”,. Trans. AIME, vol 175 (1948) p878.
    [41] H. S. Cannor, F. V. Lenel,. “Some Observations on the Mechanism of Liquid Phase Sintering”,. Proc. 1st Plansee-Seminar, ed. F. Benesovsky, Metallwerk Plansee, Reutte, Austria (1953) p106.
    [42] J. Gurland, J. T. Norton,. “Role of Binder Phase in Cemented Tungsten Carbide-Cobalt Alloy”,. Trans. AIME, vol 194 (1952) p1051.
    [43] W. D. Kingery,. ”Densification During Sintering in the Presence of a Liquid Phase. I. Theory”,. J. Appl. Phy., vol 30 (1952) p301.
    [44] W. D. Kingery, E. Niki, M. D. Narasimhan, “Sintering of Oxide and Carbide-Metal Compositions in Presence of a Liquid Phase”, J. Am. Ceram. Soc., vol 44 (1961) p29.

    QR CODE