簡易檢索 / 詳目顯示

研究生: 劉柏亨
Bo-Heng Liou
論文名稱: CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不同基材之電性研究
LOW TEMPERATURE PREPARATION OF PZT THIN FILMS ON DIFFERENT SUBSTRATES BY CO2 LASER ANNEALING
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡顯榮
Hsien-Lung John Tsai
潘漢昌
Han-Chang Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 錳酸鍶鑭鈦鋯酸鉛CO2雷射退火
外文關鍵詞: PZT, LSMO, SUS430, CO2 laser annealing
相關次數: 點閱:297下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用430型不銹鋼(SUS430)取替Pt電極與矽晶片基板,搭配CO2低溫雷射退火製程,以改善傳統爐管之退火中導致元件產生介面擴散與氧化等問題,使得PZT鐵電薄膜與LSMO氧化物電極能成功鍍製於SUS430基材。
    SUS430中添加元素以Cr元素佔有最高成份比例,一般Cr金屬在元件中主要是作為黏結層,本實驗討論以Cr作為金屬電極,並使用傳統爐管退火與CO2雷射退火製程比較對Cr金屬氧化的情形。X-ray繞射圖顯示純Cr金屬電極鍍製於矽晶片基板時,當爐管退火溫度超過350℃時開始有Cr2O3與CrO2氧化物產生,當改用CO2雷射退火製程, Cr金屬電極仍會形成Cr2O3氧化物,使得底電極電阻率增加,造成元件之驅動電壓耗損,對鐵電特性影響極大,因此測得PZT薄膜其殘留極化值為11.94 μC/cm2 ,矯頑電場高達358.2 kV/cm,漏電流密度較未退火處理時1×10-8增加至1×10-4 A/cm2。因此本研究採用SUS430取替Cr金屬電極與矽晶片基板,研究CO2雷射退火是否能抑制SUS430的氧化,維持底電極的導電性,以得到良好的電性。
    研究中發現,PZT厚度為0.2 μm鍍製於非結晶LSMO氧化物電極上,PZT/LSMO/SUS430元件結構進行CO2雷射退火後,發現薄膜中形成Cr2O3氧化物與Fe-Cr-Mn spinel,導致PZT表面微觀結構膜裂嚴重,且無法測得出典型的電滯曲線,漏電流密度為1×10-3 A/cm2。改良熱處理製程將PZT與LSMO分段進行CO2雷射退火,首先以退火條件為雷射功率與照射時間467 W/cm2_70 s進行LSMO 結晶化處理,接著旋鍍上PZT薄膜,再以雷射功率267 W/cm2_55 s與334 W/cm2_35 s對PZT進行退火處理,獲得PZT殘留極化值分別17.20 μC/cm2與18.08 μC/cm2,漏電流密度為1×10-5 A/cm2,由此可知,藉由分段CO2雷射退火處理LSMO氧化物電極與PZT鐵電薄膜,將能抑制Cr2O3的產生與降低Fe-Cr-Mn spinel形成,同時LSMO可做為緩衝層以改善PZT 與SUS430基板介面特性,以獲得緻密PZT膜層組織,且有效減少元素互相擴散問題,改善元件的鐵電特性。研究中同時探討不同PZT薄膜厚度,PZT厚度為0.1 μm時其殘留極化最高值僅為6.07 μC/cm2,漏電流密度為1×10-5 A/cm2;PZT厚度為0.4 μm時其殘留極化最高值為 24.01 μC/cm2,且漏電流密度可維持在1×10-9 A/cm2內,因此以CO2雷射退火製程可以實現0.4 μm膜厚PZT/不銹鋼材元件製作的可能性。


    In order to lower cost of processing and increase applications of ferroelectric devices, we substitute Cr and SUS430 for Pt on Si as an electrode material and substrate. In this work, we evaluate the possibility of applying as SUS430 to be the electrode and substrate for ferroelectric devices using a continuous wave CO2 laser annealing technique. We investigated microstructures, electrical properties and conductivity mechanism of Cr thin films and SUS430 substrates through different laser annealing conditions.

    The Cr electrode oxidizes easily after furnace annealing at temperature higher than 350℃, so the devices structure of PZT/LSMO/Cr/SiO2/Si was annealed by CO2 laser at the present work, but the Cr electrode still oxidized, which deteriorate electrical properties of specimens. The PZT films deposited on LSMO/Cr/SiO2/Si substrate crystallize well by CO2 laser annealing, the SEM images of PZT thin films are also smooth and without cracks. However, the remanent polarization (Pr) of PZT is 11.94 μC/cm2, and the coercive field (Ec) is 358.2 kV/cm. This result represents that Cr bottom electrode oxidized, and high resistivity as well as high leakage current deteriorate ferroelectric properties of PZT thin films.

    The coefficient of thermal expansion of SUS430 was close to the (La0.7Sr0.3)MnO3. The LSMO thin films (0.2 μm) sputtered on SUS430 substrate without crystallization and spin-coated PZT films (0.2 μm) by laser annealed at 334 W/cm2 for 35 s. SEM images show that PZT thin films crack seriously, Fe-Cr-Mn spinel appeared at the interfaces due to the reaction of LSMO and SUS430. So the leakage current increases badly when LSMO was amorphous. To resolve this problem, the LSMO oxide electrode crystallized after sputtering using laser annealing at 467 W/cm2 for 70 s, and then the PZT thin films was coated and annealed at 267 and 334 W/cm2. SEM images show that PZT thin films are smooth and crack-free. The specimens exhibit remanent polarization of PZT (0.2 μm) from 17.20 μC/cm2 to 18.08 μC/cm2, and the leakage current is 1×10-6 A/cm2.
    To compare effect of thickness of PZT thin films, we prepared the PZT thin films of 0.1 μm and 0.4 μm. The remanent polarizations and leakage currents of PZT thin films of 0.1 μm is 6.07 μC/cm2 and 1×10-5 A/cm2. On the other hand, those of 0.4 μm specimens is 24.01 μC/cm2 and 1×10-9 A/cm2. CO2 laser annealing not only improves ferroelectric and electric leakage properties of PZT films, but also avoids inter-diffusion of elements in electrode and ferroelectrics. Moreover, laser annealing decreases oxidation of SUS430 and enhances the electrical performance of materials.

    中文摘要……………………………………………………….i 英文摘要……..……………………………………………….iii 誌 謝………..……………………………………………..v 目 錄………..……………………………………………vii 圖 目 錄…………..…………………………………………..x 表 目 錄..…………..………………………………………..xv 第一章 前言…………………………………………………...1 第二章 文獻回顧……………………………………………...3 2.1 鐵電材料…………………………………………………………3 2.1.1鐵電材料的定義……………………………………………….3 2.1.2鈣鈦礦結構之鐵電材料……………………………………….4 2.1.3鐵電薄膜……………………………………………………….5 2.2電極材料………………………………………………………….5 2.2.1錳酸鍶鑭氧化物電極…………………………………………8 2.2.2不銹鋼基板……………………………………………………9 2.2.3不銹鋼基板相關文獻回顧……………………………………10 2.3薄膜製備方法……………………………………………………14 2.3.1溶膠-凝膠法製備鐵電薄膜…………………………………...14 2.3.2反應式磁控濺鍍製備氧化物電極…………………………….14 2.4雷射退火…………………………………………………………...16 2.4.1雷射退火處理的光源………………………………………….16 2.4.1.1準分子雷射退火….………………………………………...16 2.4.1.2 連續波長雷射退火………………………………………...17 2.4.2 雷射退火熱傳機制……………………………………………17 2.4.3 雷射退火吸收機制……………………………………………19 2.5雷射退火相關應用回顧……………………………………………20 2.5.1雷射退火於矽晶的應用……………………………………….20 2.6雷射退火於材料改質的應用………………………………………21 第三章 實驗方法與步驟……………………………………..24 3.1實驗藥品與儀器總表……………………………………………24 3.2實驗步驟…………………………………………………………27 3.3錳酸鍶鑭2 inch靶材的備製……………………………………28 3.3.1 配粉…………………………………………………………...29 3.3.2 濕球磨………………….…………………………………......29 3.3.3 烘乾………………………………………...…………………29 3.3.4 過篩…………………………………………………………...30 3.3.5 煆燒(Calcination)……...……………………………………..30 3.3.6 成型(Forming) ……...………………………………………..30 3.3.7 燒結(Sintering)………………………………………………..31 3.4 鈦鋯酸鉛溶液配製………………………………………...……31 3.5 鍍膜基板之製作………………………………………………...33 3.6 試片之電極鍍膜製程…………………………………………...34 3.6.1 DC磁控式濺鍍Cr電極薄膜………………………..……….34 3.6.2 430型不銹鋼基板…………………………………………….34 3.6.3 RF磁控式濺鍍LSMO氧化物電極薄膜……………………..34 3.6.4 PZT鐵電薄膜之製作…………………………………………35 3.6.5掀去法( lift-off )製作氧化物及金屬上電極…………………36 3.7薄膜特性量測……………………………………….……………38 3.7.1 X-ray繞射分析儀……………………………………………38 3.7.2電極電阻率四點探針量測……………………………………38 3.7.3電滯曲線與漏電流量測………………………………………39 3.7.4掃描式電子顯微鏡……………………………………………39 3.8二氧化碳雷射退火……………………………………………….40 第四章 結果與討論………………………………………………...41 4.1錳酸鍶鑭粉末與靶材X-ray繞射分析…………………………41 4.2薄膜濺鍍參數……………………………………………………42 4.3 薄膜X-ray繞射分析……………..…..………………………..43 4.3.1 Cr薄膜之X-ray繞射分析……..…………..……………….43 4.3.2鋯鈦酸鉛薄膜之X-ray繞射分析………..…..……………..44 4.4電阻率分析………………………………………………………45 4.4.1電阻率量測…………………………………………………...45 4.5 SEM微觀分析…………………………………………………...48 4.5.1 CO2雷射退火PZT微觀分析………………………………..48 4.6 電性分析………………………………………………………...50 4.6.1鐵電量測……………………………………………………...50 4.7 SUS430基材特性分析…………………………………………..53 4.7.1 PZT/LSMO/SUS430 X-ray繞射分析………..…………..….53 4.7.2 CO2雷射同時退火PZT/LSMO/SUS430微觀分析…………54 4.7.3 CO2雷射同時退火PZT/LSMO/SUS430鐵電量測…………56 4.8 改良退火製程之SUS430基材特性分析………………………58 4.8.1 LSMO/SUS430 X-ray繞射分析……………………....…….58 4.8.2 PZT/LSMO/SUS430 X-ray繞射分析…..……………..…….59 4.8.3 CO2雷射分開退火PZT/LSMO/SUS430微觀分析…………62 4.8.4 CO2雷射分開退火PZT/LSMO/SUS430電性量測….............64 第五章 結論………………………………………………………….73 參 考 文 獻…………………………………………………..75

    1. A. Springer, R.Weigel, A. Pohl and F. Seifert, “Wireless identification and sensing using surface acoustic wave devices”, Mechatronics, 9, 745-56 (1999).

    2. G. Feuillard, M. Lethiecq and L. Pourcelot, “Comparative performance of
    piezoceramic and crystal SAW filters”, IEEE Transactions on ultrasonics, ferroelectrics and frequency control, vol. 44, no. 1, 303-06 (1997).
    3. J. Y. Yoo, K. H. Yoon, S. M. Hwang, S. J. Suh, J. S. Kim and C. S. Yoo,“Electrical Characteristics of High Power Piezoelectric Transformer for 28W Fluorescent Lamp”, Sens. Actuators. A Phys., 90[5], 132-137 (2001).

    4. J. Y. Yoo, K. H. Yoon, Y. W. Lee, S. J. Suh, J. S. Kim and C. S. Yoo,“Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio”, Jpn. J. Appl. Phys., 39[5], 2680-2684 (2000).

    5. S. R. Gilbert, D. Ritchey, M. Tavassoli, J. Amano, L. Colombo and S. R. Summerfelt, “Cross-Contamination during Ferroelectric Nonvolatile Memory Fabrication”, J.Electrochem. Soc., 148[4], 195-199 (2001).
    6. M. S. Chen, T. B. Wu and J. M. Wu,“Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films”, Appl. Phys. Lett., 68[10], 1430-1432 (1996).
    7. W. B. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang,“Top-Interface-Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443 (2000).

    8. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukad,“Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3
    Ferroelectric capacitors”, Appl. Phys. Lett., 74[6], 3552-3554 (1999).
    9. F. Wang and S. Leppavuori, “Properties of epitaxial ferroelectric PbZr0.56Ti0.44O3 heterostructures with La0.5Sr0.5CoO3 metallic qxide electrodes”, J. Appl. Phys., vol.82, no.3, 1293-98 (1997).

    10.S. M. Yoon, E. Tokumitsu and H. Ishiwara, “Preparation of PbZrxTi1-xO3/La1-xSrxCoO3 heterostructures using the sol-gel method and their electrical properties”, Appl. surface science, 117, 447-52 (1997).
    11. FRANCO JONA, G. SHIRANE, “Ferroelectric Crystals”, Dover Publications, Inc., p11~p14 (1993).
    12. Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 102 (1991).

    13. A. L. Moulson and I. M. Herbert, “Electroceramics”, Chapman and Hall, New York, U.S.A. (1990).

    14. G. H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram. Soc., Vol. 82, No. 4, pp. 797-818 (1999).

    15. T. Yamamoto, M. Saho and K. Okazaki, “Electrical Properties and Microstructure of Ca Modified PbTiO3 Ceramics”, Jpn. J. Appl. Phys., Vol. 26, pp. 57~63 (1987).

    16. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The science and design of engineering materials”, Richard D. Irwin. Inc., Chicago U.S.A., pp. 497-503 (1995).
    17. A. L. Moulson and I. M. Herbert, “Electroceramics”, Chapman and Hall, New York U.S.A. (1990).
    18. W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang,“Top-Interface-Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443(2000).
    19. S. Madhukar, S. Aggarwal, A. M. Dhote, R. Ramesh, A. Krishnan, D. Keeble and E. Poindexter,“Effect of Oxygen Stoichiometry on the Electrical Properties of La0.5Sr0.5CoO3 Electrodes”, J. Appl. Physi., 81[8], 3543-3547 (1997).

    20. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukada,“Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3
    Ferroelectric capacitors”, Appl. Phys. Lett., 74[6], 3552-3554 (1999).
    21. Y. S. Touloukian,“Thermo-physical Properties of Matter”, Vol.12, Thermal Expansion—Metallic Elements and alloys, IFI, New York, (1970).
    22. Y. S. Touloukian,“Thermo-physical Properties of Matter”, Vol.13, Thermal Expansion—Nonmetallic Solids, IFI, New York, (1970).
    23. J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim and C. Y. Kim,“Microstructures and Electrical Resistivities of The RuO2 Electrode on SiO2/Si Annealed in The Oxygen Ambient”, J. Mater. Res.,Vol.11[1], 137-140 (1996).
    24. N. Q. Minh and T. Takehiko,“Science and Technology of Ceramic Fuel Cells”, Elsevier, New York, 136-137 (1995).
    25. J. Santen and G. Jonker,“Electrical Conductivity of Ferromagnetic Compounds of Manganese with Perovskite Structure”, Physica XVI, No.7-3, 599-560 (1950).
    26. G. Jonker and J. Santen,“Magnetic Compounds with Perovskite Structure III. Ferromagnetic Compounds of Cobalt”, Physica XIX, 120-130 (1953).

    27. M. Es-Souni, M. Kuhnke, S. lakovlev, C.-H. Solterbeck and A. Piorra,“Self-poled Pb(Zr,Ti)O3 films with improved pyroelectric properties via the use of (La0.8Sr0.2)MnO3/metal substrate heterostructates”, Appl. Phys. Lett., 86(022907), pp. 022907~022903 (2005).
    28. D. Nicolaescu , Valeriu Filip, Junji Itoh and Fumio Okuyama, ”Analysis of a pressure sensor using n-Si/nitrogen doped diamond cathodes”, J. Vac. Sci. Technol. B 18(2) , Mar/Apr 2000, American Vacuum Society, pp. 1077-1080.
    29. S. H. Xia, J. Liu, D. F. Cui, J. H. Han, S. F. Chen and L. Wang, “Investigation on a novel vacuum microelectronic pressure sensorwith stepped field emission array”, J. Vac. Sci. Technol. 15(4), Jul/Aug 1997, American Vacuum Society. pp. 1573-1576.
    30. R. Seveno and H. W. Gundel,“Preparation of antiferroelectric Pb(ZrxTi1-x)O3 thin films on LaSrMnO3-coated steel substrates”, Appl. Phys. Lett., 79(25), pp. 4204~4206 (2001).
    31. 江進富, “以溶膠凝膠法製備鋯鈦酸鉛鐵電薄膜與錳酸鍶鑭氧化物電極薄膜及應用元件製程規劃”, 國立台灣科技大學碩士論文, 民國90年6月。

    32. 范明忠,“磁控式濺鍍法製備氧化物電極薄膜之研究及元件應用”, 國立台灣科技大學碩士論文, 民國91年6月。
    33. Masaru Oikawa and Kohji Toda, “Preparation of Pb(Zr,Ti)O3 thin film by an electron beam evaporation technique”, Appl. Phys. Lett., 28(8), pp.491~492 (1976).
    34. L. Tsakalakos and T. Sands,“Epitaxial ferroelectric (Pb,La)(Zr,Ti)O3 thin film on tainless steel by excimer laser liftoff ”, Appl. Phys. Lett., 76(2), pp.227~229 (1999).
    35. Q. Zou, H. E. Ruda and B. G. Yacobi,“Dielectric properties of lead zirconate titanate thin films deposited on metal foils”, Appl. Phys. Lett., 77(7), pp.1038~1040 (2000).
    36. Q. Zou,H. E. Ruda and B. G. Yacobi, “Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers” , Appl. Phys. Lett., 78(9), pp.1282~1284 (2001).
    37. Jin-Rong Cheng, Wenyi Zhu, Nan Li and L. Eric Cross,“Electrical properties of sol-gel-derived Pb(Zr0.52Ti0.48)O3 thin film on a PbTiO3-coated stainless steel substrate”, Appl. Phys. Lett., 81(25), pp.4805~4807 (2002).
    38. 潘漢昌, “鐵電薄膜雷射低溫製程與電性提昇研究”, 國立台灣科技大學博士論文, 民國92年7月。
    39. ASM metal reference book (Ta459, As53, 1993).
    40. C. Xiong, Y. Tang, J. Gao, H. Zhu, L. Pi, K. Li, J. Zhu and Y. Zhang, “Magnetoresistivity effect in La0.67Sr0.33MnO3/Pr0.7Sr0.33MnO3/ La0.67Sr0.33MnO3 trilayered films”, American Phys. Soc., vol.59, no.14, 9437-41 (1999).
    41. T. Namikawa, K. Kaneta, N. Matsushita, S. Nakagawa and M. Naoe, “Annealing effect on magnetic characteristics on (La,Sr)MnO3 sputter films”, IEEE Transactions on magnetics, vol.35, no.5, 2850-52 (1999).
    42. F. Wang and S. Leppavuori, “Properties of epitaxial ferroelectric PbZr0.56Ti0.44O3 heterostructures with La0.5Sr0.5CoO3 metallic oxide electrodes”, J. Appl. Phys., vol.82, no.3, 1293-98 (1997).
    43. N. Soyama, K. Maki, S. Mori and K. Ogi, “Preparation of PZT thin films for low voltage application by sol-gel method”, IEEE, 611-14 (2001).
    44. R. T. Young, C. W. White, G. J. Clark, J. Narayan, W. H. Christie, M. Murakami, P. W. King, and S. D. Kramer, “Laser annealing of boron-implanted silicon”, Appl. Phys. Lett., 32(3), pp.139~141 (1978).

    45. Chia-Fong Chou, Han-Chang Pan and Chen-Chia Chou, “Electrical Properties and Microstructures of PbZrTiO3 Thin Films Prepared By Laser Annealing Techniques”, Jpn. J. Appl. Phys. Vol.41, No.11B, part 1, pp.6679~6681 (2002).

    46. Han-Chang Pan, Chen-Chia Chou and Hsien-Lung Tsai, “Low temperature processing of sol-gel derived La0.5Sr0.5MnO3 buffer electrode and PbZr0.52Ti0.48O3 films using CO2 laser annelaing”, Applied Physics Letters, Vol.83, No.15, (2003).
    47. Y. Matsui, M. Okuyama, N. Fujita, and Y. Hamakawa, “Laser annealing to produce ferroelectric-phase PbTiO3 thin films”, J. Appl. Phys. 52(8), pp.5107~5111 (1981).
    48. John Wiley and Sons, “Glow Dischange Processes”, A Wiley-Interscience Publication, U.S.A. (1980).
    49. 許獻文,“準分子雷射退火之低溫高介電常數鈦酸鍶鋇薄膜BaxSr1-xTiO3於動態隨機存取記憶體電容器之研究”,交通大學碩士論文,中華民國八十九年六月。
    50. H. Kuriyame, S. Kiyama, S. Nogchi, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High Performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., Vol.30, pp.3700~3703 (1991).
    51. B. G. Bagley, and H. S. Chen, “Laser-Solid Interactions and Laser Processing”, Am. Inst. Phys., New York, pp.97 (1979).
    52. M. Bertolotti, “Physical Processes in Laser-Materials Interactions”, Plenum Press, New York, pp.190 (1983).
    53. E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayazitov, “ Local laser annealing of implantation doped semiconductor layers”, Sov. Phys. Semicond., 9, 1309 (1975).
    54. E. I. Shtyrkov, M. M. Zaripov and I. B. Khaybullin, “Annealing of ion-implanted layers under the action of laser radiation”, Sov. Phys. Usp., 19, 1032 (1976).
    55. E. I. Shtyrkov, M. F. Galyautdinov, Yu. K. Danileiko, M. M. Zaripov, A. A. Manenkov, A. V. Sidorin and I. B. Kha bullen, “Annealing of implanted layers of silicon by radiation from a pulsed CO2 laser”, Sov. Phys. Dokl., 26, 404 (1981).
    56. Do-Hyun Choi and Masakiyo Matsumura, “The Annealing Effects of Excimer-Laser-Produced Large-Grain Poly-Si Thin-Film Transistors”, Jpn. J. Appl. Phys., Vol. 33, No.1B, Part2, pp.83-86 (1994).
    57. Y. Matsui, M. Okuyama, N. Fujita, and Y. Hamakawa, “Laser annealing to produce ferroelectric-phase PbTiO3 thin films”, J. Appl. Phys. 52(8), pp.5107~5111 (1981).

    58. Y. Zhu, J. Zhu, Y. J. Song, and S. B. Desu, “Laser-assisted low temperature processing of Pb(Zr, Ti)O3 thin film”, Appl. Phys. Lett., Vol.73, No.14, pp.1958~1960 (1998).
    59. T. Zhu, Y. P. Wang, L. Zhou and Z. G. Liu, “Properties of SBT films crystallized by pulsed excimer (KrF) laser annealing”, Materials Science and Engineering, B89, pp.390~393 (2002).

    60. Zhenguo Yang, John S. Hardy, Matt S. Walker, Guanguang Xia, Steven P. Simner, and Jeffry w. Stevenson, “Structure and Conductivity of Thermally Groewn Scales on Ferritic Fe-Cr-Mn steel for SOFC Interconnect Application”, J. Electrochem. Soc., 151(11) A1825-A1831 (2004).

    QR CODE