簡易檢索 / 詳目顯示

研究生: 張鈞源
Chun-Yuan Chang
論文名稱: 複合材料電極濺鍍於鐵電材料之電性研究
Electric Properties of Composite Materials Thin Films on Ferroelectric Materials Prepared by Sputtering
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 周賢鎧
Shian-Kai Jou
余志成
Jr-Cheng Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 複合材料鐵電材料薄膜電極
外文關鍵詞: Composite materials, ferroelectric materials, thin films electrodes
相關次數: 點閱:310下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鐵電薄膜多為氧化物,且製程溫度都是在高溫,因此大多搭配使用抗高溫氧化之電極材料作為電極。貴金屬Pt是常使用之材料,然而Pt電極的價格偏高,若能使用較便宜的金屬電極來代替,又能維持導電性,進一步又能降低成本,那麼對元件的製程的成本會大幅的降低,所以本文以Ag電極來取代Pt電極,藉由實驗來了解銀薄膜電極在不同溫度的揮發狀況,試圖匹配緩衝層(buffer Layer )或降低製程溫度和改變製程方法,來了解銀電極應用於鐵電材料的可能性。實驗中並利用XRD、SEM、四點探針,來探討Ag和LSMO-Ag複合材料薄膜電極在不同退火溫度下之薄膜結構、電性以及導電機制。
      由實驗結果中, SEM微觀分析知道以銀做為下電極,銀電極在溫度超過300℃時會產生突起現象,且在鍍製LSMO-Ag(1:1)電極時,在鍍膜過程中,銀已開始擴散,雖然在400℃內,複合材料(LSMO-Ag)電極可以防止銀的擴散,但溫度一旦超過400℃時,銀會開始產生團聚突起現象,當溫度超過700℃時,下電極銀在高溫時,開始從未析出區域析出,這說明銀在此溫度開始揮發,也顯示銀含量的多寡,對整個下電極品質的影響有很大的關聯。最後試圖重新配製電極材料成份,以複合材料(LSMO-Ag)來代替純銀電極,並研究此複合材料代替Pt電極後,鐵電材料的特性為何。
    研究中發現,電極雖然經過重新的配製後,可以順利量測出鐵電性,而PZT/LSMO-Ag結構在不同溫度退火熱處理後,PZT薄膜的殘留極化值會受到底下基材不同溫度的退火條件而有不同的電性表現,當LSMO-Ag熱處理溫度 600℃時,其PZT的殘留極化值為11.10μC/cm2,而隨著退火溫度增加到700℃∼800℃時,殘留極化值降低到5.50μC/cm2,所以殘留極化值會隨著溫度的上昇而減少。這是因為底電極的LSMO-Ag複合材料中,銀隨著溫度的上昇產生不穩定的擴散與揮發,隨著熱處理溫度的增高,電阻率大幅提升,底電極與PZT的介面擴散越嚴重,造成量測的漏電流越大。
    研究最後以CO2雷射退火,來減少底電極與鐵電薄膜在爐管熱處理時,介面所產生的擴散或半導化的問題。PZT薄膜在經由雷射退火後,在底電極熱處理600℃的試片,其殘留極化值Pr約為15.48 μC/cm2,與爐管退火PZT的殘留極化值11.10μC/cm2高,而在底電極熱處理700℃的試片殘留極化值Pr約為14.42 μC/cm2,與爐管退火PZT的殘留極化值7.78μC/cm2比較,其殘留極化值以增加二倍。由此可知,CO2雷射直接能量處理後的試片,已減少內部元素交互擴散的問題,可以改善其元件結構的鐵電特性。


    In order to lower the price of the processing, we substitute Ag for Pt as an electrode material. Since most ferroelectric thin films are oxide and the temperature of the processing must be higher, one of the properties of electrode materials must have high-temperature resistance. In this work, we estimate the possibility of applying pure Ag to ferroelectric components by utilizing buffer layer or lower the temperature of the processing, and improve process method. We discuss microstructures, electrical properties and the conductivity mechanism of Ag and Ag-doped LSMO composite thin films through different annealing temperature.
    SEM microanalysis shows that diffusion behavior using Ag as bottom electrode is occurred when annealing temperature is beyond 300℃. Also, when we deposit LSMO-Ag(1:1)electrode, Ag begins to diffuse during depositing at the same condition. However, LSMO-Ag electrode is able to prevent the diffusion of Ag under 400℃, but clustering beyond 400℃.When temperature is beyond 700℃, Ag precipitates from non-precipitate-zone. This result represents that the quality of bottom electrode significantly depends on the amount of Ag. Therefore, we attempt to redesign a compatible electrode using LSMO-Ag replacing pure Ag, and study the properties of this composite replacing noble Pt electrode.
    During this research, we discovered that we could get ferro-electric ability with our electrode, but after PZT/LSMO-Ag structure annealed under different temperature, remained polarization of PZT would effected by the different material which annealed in the different conditions. When heat treatment were operated under 600 degree Celsius on LSMO-Ag. the remained polarization of PZT were 11.10μC/cm2, when the annealing temperature were up to 700~800, remained polarization were reduced to 5.50μC/cm2, In accordance with it, remained polarization would be reduced when the annealing temperature grow higher. this phenomenon means that when the heat treatment temperature is higher, diffusion would happened in the interface between bottom electrode and PZT, because of the silver in bottom electrode of LSMO-Ag material would unstably diffuse and evaporated, so the leakage current would be detected more when annealing temperature were higher.
    In the last part of this research, we would use CO2 laser annealing method to reduce the problem that diffusion and semiconductirization happened between bottom electrode and ferroelectric thin film, and improve the ferroelectric ability of this structure.
    After laser annealing method operated on PZT thin film, the remained polarization Pr was 15.48μC/cm2 which the bottom electrodes on substrates heat treated at 600℃. Compared with the substrates which coated PZT on them and heat treated with furnace, remained polarization was 11.10μC/cm2. The remained polarization Pr of the substrates which were heat treated with laser annealing at 700℃ was 14.42μC/cm2, compared with the bottom electrodes which heat treated with furnace, remained polarization was 7.78μC/cm2. So we were informed that laser annealing method operated on substrates could reduce inter diffusion and enhance ferroelectric properties.

    中文摘要……………………………………………………….i 英文摘要……………………………………………………….iii 誌 謝………………………………………………………..v 目 錄……………………………………………………vii 圖 目 錄………………………………………………………..x 表 目 錄..……………………………………………………..xv 第一章 前言……………………………………………………………1 第二章 文獻回顧……………………………………………………...3 2.1 鐵電材料………………………………………………………3 2.1.1鐵電材料的定義………...…………………………………….…3 2.1.2鈣鈦礦結構之鐵電材料…...…………………………………….4 2.1.3鐵電薄膜….………………..…………………………………….6 2.2電極材料……………………………………………………….…9 2.2.1銀電極…………..………………………………………………11 2.2.2 錳酸鍶鑭氧化物電極…………………………………………15 2.2.3銀與錳酸鍶鑭複合電極…….…………………………………20 2.3薄膜製備方法……………..………………………………………21 2.3.1熔膠-凝膠法製備鐵電薄膜錳酸鍶鑭…………………………22 2.3.2反應式磁控濺鍍製備氧化物電極……………………………23 2.4雷射退火製備鈦鋯酸鉛薄………………………………………27 第三章 實驗方法與步驟…………………………………………..31 3.1實驗藥品與儀器總表…..………………………………………31 3.2實驗步驟……………..…………………………………………34 3.3錳酸鍶鑭靶材的備製..…………………………………………35 3.3.1 配粉……………………………………………………………36 3.3.2 濕球磨(Wet ball milling)………………………………………36 3.3.3 烘乾……………………………………………………………36 3.3.4 過篩……………………………………………………………37 3.3.5 煆燒(Calcination)……………………………………………...37 3.3.6 成型(Forming) ………………………………………………...37 3.3.7 燒結(Sintering)………..………………………………………38 3.4 鈦鋯酸鉛溶液配製….………..…………………………………38 3.5 鍍膜基板之製作………………………………………………..40 3.6 試片之電極鍍膜製程……………………………………………41 3.6.1 DC磁控式濺鍍銀電極薄膜…………………………………..41 3.6.2 RF磁控式濺鍍LSMO氧化物電極薄膜……………………..41 3.6.3 PZT鐵電薄膜之製作………………………………………….42 3.6.4掀去法( lift-off )製作氧化物及金屬上電極…………………..43 3.7薄膜特性量測……………………………………………………..45 3.7.1 X-Ray繞射分析儀…………………………………………….45 3.7.2電極電阻率四點探針量測…………………………………….45 3.7.3電滯曲線與漏電流量測…………………….…………………46 3.7.4掃描式電子顯微鏡…………………………………………….47 3.8二氧化碳雷射退火………………………………………………..47 第四章 實驗結果與討論…………………………………………48 4.1 錳酸鍶鑭粉末與靶材X-ray分析……………………………….48 4.2薄膜沈積速率……………………………………………………49 4.3薄膜之X-ray分析……………………………………………52 4.3.1 Ag薄膜之X-ray分析…………………………………………52 4.3.2錳酸鍶鑭薄膜之X-ray分析…………………………………53 4.3.3錳酸鍶鑭與銀共濺鍍薄膜之X-ray分析……………………55 4.3.4鈦鋯酸鉛薄膜之X-ray分析…………………………………56 4.4電性分析…………………………………………………………..57 4.4.1電阻率……………….………………………………................57 4.5 SEM微觀分析…………………………………………………….60 4.5.1 Ag電極微觀分析……………………………………………...60 4.5.2 LSMO-Ag電極微觀分析……………………………………...62 4.5.3 PZT微觀分析………………………………………………….64 4.6散佈光譜儀分析…………………………………………………..65 4.7改善下電極的方法………………………………………………..69 4.7.1 SEM微觀分析…………………………………………………70 4.7.2電極電阻率………………………………………………….....72 4.7.3鐵電量測……………………………………………………….73 4.7.4漏電流量測…………………………………………………….75 4.8雷射退火改善鐵電性……………………………………………..76 第五章 結論…………………………………………………………78 參 考 文 獻…………………………………………………………80 圖 目 錄 圖2.1典型鐵電電滯曲線………………………………………………...4 圖2-2(a)當溫度低於Tc時,鈣鈦礦中心的離子會產生輕微的偏移; (b)鈣鈦礦結構示意圖.......................................................................4 圖.2.3 A+2B+4O-23鈣鈦礦結構內各離子半徑大小對其結構影響之關係.5 圖2.4 PbTiO3-PbZrO3之相圖…………………………………………….7 圖2.5 (a) PZT介電常數與機電耦合係數隨Zr 含量之變化,虛線即為 MPB。(b) PZT之壓電性質與成分之關係………………………7 圖2.6 鐵電材料受外力作用前後不對稱中心偏移的情形……………..8 圖2.7薄膜電阻率與厚度的關係……………………………………….13 圖2.8薄膜(5W 70sec)濺鍍在玻璃基板上在(a)25 (b)100(c)200℃之 SEM表面結構…………………………………………………...13 圖2.9薄膜濺鍍在TiN/SiO2/Si上在(a) 500 (b)600(c)650(d)700℃之SEM 表面結構………………………………………………………….14 圖. 2.10氧化物電極LSMO隨著(1-x)LaMnO3 – xSrMnO3的不同成份 比例其電阻率變化情形(a)為不同溫度下各種比例之LSMO電 阻率. (b) 為不同的成分在100K溫度下LSMO所表現之電阻 率……………………………………………………………….17 圖2.11(a)PZT/LSMO/Pt/Ti/SiO2/Si薄膜。膜厚0.2m在600℃,0.5hr 下退火後經1kHz反覆電場切換之電滯曲線圖、(b) LSMO/Pt/ Ti/SiO2/Si經650℃/4hr退火後之元素縱深分佈圖……………18 圖2.12(a) 熱處理溫度650℃持溫30min之PZT 鐵電薄膜極化量受不 同退火溫度LSMO氧化物電極之影響(b)不同退火溫度之 LSMO薄膜對PZT漏電流之影響……………………………...18 圖 2.13(a)銀藉由擴散方式大部份逐漸沉積分佈在錳酸鍶鑭的晶界及 孔隙中,此為將LSMO和Ag以PLD 共濺鍍方式鍍製在LAO 基材上加熱400℃之HRTEM圖形 (b) 當少量銀掺雜(doping) 到錳酸鍶鑭中將使其晶粒變大……………………………….21 圖2.14 (a)電漿撞擊之濺渡示意圖,(b)磁控式濺鍍法之匹配電路結 構……………………………………………………………….24 圖2.15 LSMO膜厚別為100Å、300Å、500Å於(a) 基板加熱600℃ 30 mTorr氧分壓條件下鍍膜、(b)900℃/1 bar氧分壓退火1小 時後,LSMO之電阻率隨溫度變化的情形………..…………25 圖2.16 (a)AFM、SPM量測LSMO薄膜於不同膜厚下的斷面分布情 形,(b)上圖為LSMO膜厚為200Å的電阻率、下圖為2000Å 的電阻率……..………………………………………………...26 圖 2.17鈦鋯酸鉛薄膜旋鍍於Pt/Ti/SiO2/Si基板已不同溫度在退火的 電滯曲線變化情形……………………….……………………28 圖2.18鈦鋯酸鉛薄膜旋鍍於Pt/Ti/SiO2/Si基板以CO2雷射在功率 350W時,施以不同退火時間的電滯曲線變化情形…………28 圖2.19鈦鋯酸鉛薄膜旋鍍於Pt/Ti/SiO2/Si基板以CO2雷射在功率 400W時,施以不同退火時間的電滯曲線變化情形…………29 圖2.20鈦鋯酸鉛薄膜旋鍍於Pt/Ti/SiO2/Si基板以CO2雷射在功率 450W時,施以不同退火時間的電滯曲線變化情形…………29 圖3.1 實驗流程圖………………………………………………………34 圖3.2 氧化物法製備LSMO粉末流程圖……………………………...35 圖3.3 PZT預備溶液與薄膜製作流程………………………………..39 圖3.4 上電極製作流程(a)在下電極上鍍製PZT鐵電薄膜後上光阻,並利用光罩進行光阻曝光顯影來定義圖形(b)、(c)將LSMO氧化物薄膜和Ag金屬薄膜共鍍製在試片之後,在鍍上一層銀電極。(d)以丙酮去除光阻後上電極圖形立刻定義製作出來……44 圖3.5 在PZT/LSMO-Ag/Cr/SiO2/Si上鍍製LSMO-Ag上電極圖形的4 吋Wafer………………………………………………………….45 圖3.6 電阻率換算公式中矯正因子的對照圖…………………………46 圖3-7 CO2雷射退火示意圖…………………………………………….47 圖4.1 (a) LSMO粉末經煆燒1050℃/2h後的X-ray結晶性分析(b) 經造 粒後的LSMO粉末經過600℃去黏結劑後經1250℃燒結後收並 連上銅背板完成2-inch大小的靶材尺寸………………………..48 圖4.2以鍍膜壓力1.8×10-2Torr,鍍膜氣氛為Ar : O2 =3 : 1下 (a) 以直 流(DC)電源製作金屬Ag電極薄膜之濺鍍速率 (b)以射頻(RF) 電源製作氧化物LSMO電極薄膜之濺鍍速率………………..51 圖4.3 Ag電極薄膜鍍製於Cr/SiO2/Si基板上並利用200℃~500℃不 同退火溫度下持溫30分鐘後之X-ray繞射圖形………………53 圖4.4 LSMO氧化物電極薄膜鍍製於SiO2/Si基板上並利用600℃~ 900℃不同退火溫度下持溫30分鐘後之X-ray繞射圖形……..54 圖4.5以鍍膜氣氛Ar:O2 = 3:1下製作LSMO-Ag氧化物電極薄膜 於Ag/Cr/SiO2/Si基板上並在700oC熱處理溫度下持溫30分鐘後 之X-ray繞射圖形………………………………………………..55 圖4.6 PZT薄膜鍍製於LSMO-Ag/Ag/Cr/SiO2/Si基板上,以退火溫度650℃下持溫30分鐘之X-ray繞射圖形……………..………..56 圖4.7 LSMO-Ag薄膜鍍製於Ag/Cr/SiO2/Si基板上,於600、700、 800℃下持溫30 min之電阻率變化之情形……………………57 圖4.8 Ag薄膜鍍製於Cr/SiO2/Si基板上,於不同溫度下之電阻率變化 之情形…………………………………………………………….59 圖4.9 LSMO-Ag薄膜鍍製於Ag/Cr/SiO2/Si基板上,於200、300、 400℃下持溫30 min之電阻率變化之情形……………………60 圖4.10 Ag薄膜鍍製於Cr/SiO2/Si基板上,(a)200℃(b) 300℃(c)400℃ (d)500℃(e)600℃熱處理30分鐘之SEM表面微觀結構……..61 圖4.11 LSMO-Ag薄膜鍍製於Ag/Cr/SiO2/Si基板上,(a)無熱處理(b)200 ℃(c)300℃(d)400℃(e)600℃(f)700℃(g)800℃熱處理30min之 SEM表面微觀結構…………………………………………….63 圖4.12 PZT薄膜鍍製於 LSMO-Ag/Ag/Cr/SiO2/Si基板上,於400℃下 持溫30 分鐘焦化與600℃下持溫30 分鐘熱處理退火 (a) 800 倍(b)6000倍之SEM表面微觀結構……………………………64 圖4.13 Ag薄膜鍍製於Cr/SiO2/Si基板上,於300℃下持溫30 min之 EDS圖…………………………………………………………...66 圖4.14 LSMO-Ag薄膜鍍製於Ag/Cr/SiO2/Si基板上,於700℃下持溫 30 分鐘之EDS圖………………………………………………67 圖4.15 LSMO-Ag薄膜鍍製於Ag/Cr/SiO2/Si基板上,於800℃下持溫 30 分鐘之EDS圖……………………………………………….68 圖4.16以銀和錳酸鍶鑭複合電極的元件結構圖……………………...69 圖4.17 LSMO-Ag薄膜鍍製於(a) 鉻 (b) 銀 基板上在無熱處理時之 SEM表面微觀結構……………………………………………..70 圖4.18 LSMO-Ag薄膜鍍製於Cr/SiO2/Si基板上,熱處理(a)600℃(b) 700℃(c)800℃(d) 900℃時間30分鐘之6000倍的SEM表面微 觀結構…………………………………………………………..71 圖4.19 LSMO-Ag薄膜鍍製於Cr/SiO2/Si基板上,熱處理(a)600℃(b) 700℃(c)800℃(d) 900℃ 時間30分鐘之電阻率變化情形…..72 圖4.20 LSMO-Ag薄膜鍍製於Cr/SiO2/Si基板上,熱處理600℃、700 ℃、800℃時間30分鐘之電滯曲線變化情形………………...73 圖4.21 (a) Ag/LSMO-Ag/PZT/LSMO-Ag/Cr/SiO2/Si電極結構於5 ~10V 的操作電壓下,PZT薄膜於漏電流密度的變化情形………..75 圖4.22 PZT薄膜鍍製於LSMO-Ag/Cr/SiO2/Si基板上,照射功率為250 W/cm2、照射時間為9 秒之電滯曲線變化情形………………76 表 目 錄 表2.1常用電極材料之結晶構造、電阻率和熱膨脹係數…..…………11 表2.2 La1-xSrxMnO3 晶格結構與電性之關係…………………………19 表2.3氣相與液相鍍膜法於各式製程參數的差異…………………….22 表3.1使用之溶劑細目表……………………………………………….31 表3.2實驗藥品表……………………………………………………….32 表3.3儀器設備規格表………………………………………………….33 表3.4 Ag金屬薄膜之濺鍍條件…………………………………………41 表3.5 LSMO氧化物與Ag金屬薄膜之濺鍍條件……………………..42 表4.1 LSMO氧化物與Ag金屬薄膜之濺鍍條件……………………...50 表4.2 LSMO-Ag 氧化物電極薄膜製作條件參數表…………………..51 表4.3銀電極薄膜濺鍍條件…………………………………………….52 表4.4 LSMO氧化物電極薄膜濺鍍條件……………………………….54

    1. A. Springer, R.Weigel, A. Pohl and F. Seifert, “Wireless identification and sensing using surface acoustic wave devices,” Mechatronics, 9, 745-56 (1999).
    2.G. Feuillard, M. Lethiecq and L. Pourcelot, “Comparative performance of piezoceramic and crystal SAW filters,” IEEE Transactions on ultrasonics, ferroelectrics and frequency control, vol. 44, no. 1, 303-06 (1997).
    3.J. Y. Yoo, K. H. Yoon, S. M. Hwang, S. J. Suh, J. S. Kim, C. S. Yoo,“Electrical Characteristics of High Power Piezoelectric Transformer for 28W Fluorescent Lamp”, Sens. Actuators. A Phys., 90[5], 132-137(2001).
    4.J. Y. Yoo, K. H. Yoon, Y. W. Lee, S. J. Suh, J. S. Kim, C. S. Yoo, “Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio”, Jpn. J. Appl. Phys., 39[5], 2680-2684(2000).
    5.S. Ezhilvalavan, T. Y. Tseng,“Progress in The Developments of (Ba,Sr)TiO3 (BST) Thin Films for Gigabit Era DRAMs”, Mater. Chem. Phys., 65[8], 227-248(2000).
    6.S. R. Gilbert, D. Ritchey, M. Tavassoli, J. Amano, L. Colombo, S. R. Summerfelt,“Cross-Contamination during Ferroelectric Nonvolatile Memory Fabrication”, J. Electrochem. Soc., 148[4], 195-199(2001).
    7.南台科技大學MEMS and Nano Technology 網站介紹
    8. M. S. Chen, T. B. Wu, J. M. Wu, “Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films”, Appl. Phys. Lett., 68[10], 1430-1432(1996).
    9. W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang,“Top-Interface-Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443(2000).
    10.I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, M. Tsukada“Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric capacitors”, Appl. Phys. Lett., 74[6], 3552-3554(1999).
    11. F. Wang and S. Leppavuori, “Properties of epitaxial ferroelectric PbZr0.56Ti0.44O3 heterostructures with La0.5Sr0.5CoO3 metallic qxide electrodes,” J. Appl. Phys., vol.82, no.3, 1293-98 (1997).
    12.S. M. Yoon, E. Tokumitsu and H. Ishiwara, “Preparation of PbZrxTi1-xO3/La1-xSrxCoO3 heterostructures using the sol-gel method and their electrical properties,” Appl. surface science, 117, 447-52 (1997)
    13. FRANCO JONA, G. SHIRANE, “Ferroelectric Crystals”, Dover Publications, Inc., p11~p14, (1993).
    14.Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 102(1991).
    15.A. L. Moulson, I. M. Herbert, “Electroceramics”, Chapman and Hall,New York U.S.A. (1990).
    16.J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, S. B. Warner, “The science and design of engineering materials”, Richard D. Irwin. Inc., Chicago U.S.A.(1995), pp497-503.
    17. G. H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram. Soc., Vol. 82, No. 4, pp797-818, (1999).
    18. T. Yamamoto, M. Saho and K. Okazaki, “Electrical Properties and Microstructure of Ca Modified PbTiO3 Ceramics”, Jpn. J. Appl. Phys., Vol. 26, pp. 57~63, (1987).
    19. Márta Déri, “Ferroelectric Ceramics”, Maclaren and Sons LTD, London, 8-9(1966).
    20. Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 102(1991).
    21. A. L. Moulson, I. M. Herbert, “Electroceramics”, Chapman and Hall,New York U.S.A. (1990).
    22. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, S. B. Warner, “The science and design of engineering materials”, Richard D. Irwin. Inc., Chicago U.S.A.(1995), pp497-503.
    23. 吳朗,“電子陶瓷”,全欣科技(1994)。
    24.S. Barison, A. De Battisti, M. Fabrizio, S. Daolio, C. Piccirillo, “Surface Chemistry of RuO2/IrO2/TiO2 Mixed-Oxide Electrodes: Secondary Ion Mass Spectrometric Study of the Changes Induced by Electrochemical Treatment”, Rapid commun. Mass Spectrom., 14[11], 2165-2169(2000).
    25.J. H. Ahn, W. J. Lee, H. G. Kim, “Oxygen diffusion through RuO2 bottom electrode of integrated ferroelectric capacitors”, Mater. Lett., 38[2], 250-253(1999).
    26.M. S. Chen, T. B. Wu, J. M. Wu, “Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films”, Appl. Phys. Lett., 68[10], 1430-1432(1996).
    27.W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang,“Top-Interface-Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443(2000).
    28.S. Madhukar, S. Aggarwal, A. M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, “Effect of Oxygen Stoichiometry on the Electrical Properties of La0.5Sr0.5CoO3 Electrodes”, J. Appl. Physi., 81[8], 3543-3547(1997).
    29.I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, M. Tsukada, “Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric capacitors”, Appl. Phys. Lett., 74[6], 3552-3554(1999).
    30. Y. S. Touloukian, “Thermo-physical Properties of Matter”, Vol.12 Thermal Expansion—Metallic Elements and alloys, IFI, New York, (1970).
    31.Y. S. Touloukian, “Thermo-physical Properties of Matter”, Vol.13 Thermal Expansion—Nonmetallic Solids, IFI, New York, 1970.
    32.J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim, C. Y. Kim,
    “Microstructures and Electrical Resistivities of The RuO2 Electrode on
    SiO2/Si Annealed in The Oxygen Ambient.”, J. Mater. Res.,
    Vol.11[1], 137-140(1996).
    33.N. Q. Minh, T. Takehiko, “Science and Technology of Ceramic Fuel Cells”, Elsevier, New York, 136-137(1995).
    34.J. Santen, G. Jonker, “Electrical Conductivity of Ferromagnetic Compounds of Manganese with Perovskite Structure”, Physica XVI, No.7-3, 599-560(1950).
    35.G. Jonker, J. Santen, “Magnetic Compounds with Perovskite Structure III. Ferromagnetic Compounds of Cobalt”, Physica XIX, 120-130(1953).
    36.S. Sato, Y. Nakano, A. Sato, T. Nomura, “Mechanism of Improvement of Resistance Degradation in Y-doped BaTiO3 Based MLCCs with Ni Electrodes under Highly Accelerated Life Testing”, J. Eur. Ceram. Soc., 19[6], 1061-1065(1999).
    37.S. Caston, R. McCarley, “Characteristics of Nanoscopic Au Band Electrodes”, J. Electroanal. Chem., 259[7], 124-134(2002).
    38.B. Vilquin, G. Le Rhun, R. Bouregba, G. Poullain, H. Murray,“Effect of In Situ Pt Bottom Electrode Deposition and of Pt Top Electrode Preparation on PZT Thin Films Properties”, Appl. Surf. Sci., 515[12], 63-73(2002).
    39.R. H. Zuo, L. T. Li, Z. L. Gui,“Effects of BaTiO3 Additive on Densification Mechanism of Silver–Palladium Paste”, Mater. Chem. Phys., 74[3], 182-186(2002).
    40.L. Szpyrkowicz, J. Naumczyk, F. Grandi, “Electrochemical Treatment of Tannery Wastewater Using Ti/Pt and Ti/Pt/Ir Electrodes”, Water Res., 29[2], 517-524(1995).
    41.S. F. Wang, J. P. Dougherty, W. Huebner, J. G. Pepin, “Silver-Palladium Thick-Film Conductors”, J. Am. Ceram. Soc., 77 [12], 3051-3072(1994).
    42. Mehran ArbabU, “The base layer effect on the d.c. conductivity and structure of
    direct current magnetron sputtered thin films of silver” , Thin Solid Films 381 2001
    (15~21)
    43. K.H. Choi,, J.Y. Kim, Y.S. Lee, H.J. Kim, “ITO/Ag/ITO multilayer films for
    the application of a very low resistance transparent electrode” , Thin Solid Films
    341 152~155(1999)
    44. T.L. Alford, Linghui Chen , Kaustubh S. Gadre, “Stability of silver thin films on
    various underlying layers at elevated temperatures” , Thin Solid Films 429
    (2003) 248–254
    45. J. Li, Q. Huang, Z. W. Li, L. P. You, S. Y. Xu, C. K. Ong, “Enhanced
    Magnetoresistance in Ag-Doped Granular La2/3Sr1/3MnO3 Thin Films Prepared by
    Dual-Beam Pulsed-Laser Deposition”, J. Appl. Physi., 89[6], 7428-7430(2001).
    46.A. Tiwari, A. Chug, C. Jin, D. Kumar, J. Narayan, “Integration of Single Crystal La0.7Sr0.3MnO3 Films with Si(001)”, Solid State Commum., 121[11], 679-682(2002).
    47.J. Santen, G. Jonker, “Electrical Conductivity of Ferromagnetic Compounds of Manganese with Perovskite Structure”, Physica XVI, No.7-3, 599-560(1950).
    48.A. Chakraborty, P. S. Devi , H. S. Maiti, “Preparation of La1-xSrx MnO3 (0≦x≦0.6) Powder by Autoignition of Carboxylate-Nitrate Gels” , Mater. Lett., 20, 63-69(1994).
    49.M. Schiessl, E. Ivers-Tiffee and W. Wersing, “Ceramic Cathode Materials (La1-uSruMn1-xCoxO3-δ) for Solid Oxide Fuel Cell (SOFC) Application”, 2607-2614 in Materials Science Monographs, Vol. 66D, Ceramic Today-Tomorrow’s Ceramics. Edited by P. Vincenzini. Proceedings of the 7th International Meeting on Modern Ceramics Technologies (7th CIMTEC-World Ceramics Congress 1990), Elsevier Sience, New York, 1991.
    50.N. Zhang, W. P. Ding, Z. B. Guo, W. Zhong, D. Y. Xing, Y. W. Du, G. Li, Y. Zheng, “Large Lattice Compression Coefficient and Uniaxial Piezoresistance in CMR Perovskite La1-xSrx MnO3 (0.15≦ x ≦0.25)”, ZEITSCHRIFT FUR PHYSIK B, vol. 102, Issue 4, 461-465 (1997).
    51.M. J. Villafuerte, S. Duhalde, M. C. Terzzoli, G. Polla, G. Leyva, L. Correra,
    “Structural and Transport Properties of La0.67Sr0.33 Mn1-xSnxO3 Thin Films”, Appl.
    Phys. A (Materials Science & Processing), vol. 69, Issue 7, 565-567(1999).
    52.D. Nicolaescu , Valeriu Filip, Junji Itoh, Fumio Okuyama,” Analysis of a pressure sensor using n-Si/nitrogen doped diamond cathodes”, J. Vac. Sci. Technol. B 18(2) , Mar/Apr 2000, American Vacuum Society, pp1077-1080
    53.S. H. Xia, J. Liu, D. F. Cui, J. H. Han, S. F. Chen and L. Wang, “Investigation on a novel vacuum microelectronic pressure sensorwith stepped field emission array”, J. Vac. Sci. Technol. 15(4), Jul/Aug 1997, American Vacuum Society. pp1573-1576.
    54.蔣志陽,逢甲大學自動控制工程研究所碩士論文,1990年。
    55.H .Z. Jin and Jing Zhu, ”Size effect and fatigue mechanism in ferroelectric thin films”, J.Appl.Phys.,92(8),4594(2002)
    56.C. Xiong, Y. Tang, J. Gao, H. Zhu, L. Pi, K. Li, J. Zhu and Y. Zhang, “Magnetoresistivity effect in La0.67Sr0.33MnO3/Pr0.7Sr0.33MnO3/ La0.67Sr0.33MnO3 trilayered films,” American Phys. Soc., vol.59, no.14, 9437-41 (1999).
    57.F. Wang and S. Leppavuori, “Properties of epitaxial ferroelectric PbZr0.56Ti0.44O3 heterostructures with La0.5Sr0.5CoO3 metallic oxide electrodes,” J. Appl. Phys., vol.82, no.3, 1293-98 (1997).
    58.S. M. Yoon, E. Tokumitsu and H. Ishiwara, “Preparation of PbZrxTi1-xO3/La1-xSrxCoO3 heterostructures using the sol-gel method and their electrical properties,” Appl. surface science, 117, 447-52 (1997).
    59.S. Aggarwal, S. R. Perusse, B. Nagaraj and R. Ramesh, “Oxide electrodes as barriers to hydrogen damage of Pb(Zr,Ti)O3-based ferroelectric capacitors”, J. Appl. Phys., vol.74, no.20, 3023-25 (1999).
    60.江進富, “以溶膠凝膠法製備鋯鈦酸鉛鐵電薄膜與錳酸鍶鑭氧化物電極薄膜及應用元件製程規劃”, 國立台灣科技大學碩士論文, 民國90年6月。
    61.范明忠, “磁控式濺鍍法製備氧化物電極薄膜之研究及元件應用”, 國立台灣科技大學碩士論文, 民國91年6月。
    62. J. Li, C. K. Ong, Q. Zhan, D. X. Li, “Microstructure and inter-grain magnetoresistance in Ag-doped polycrystalline La0.67Sr0.33MnO3 thin films”, J. Phys:condens. Matter 14,
    6341-6351, 2002.
    63.T. Shiosaki, T. Yamamotot, T. Oda, K. Harada and Kawabata, “Low temperature growth of piezoelectric AlN film for surface and bulk wave transducers by RF reactive plannar magnetron sputtering”, IEEE Ultrasonic Symposium, 451-54(1980).
    64.A. Hachigo, H. Nakahata, K. Higki, S. Fujii and S. Shikata, “Heterepitaxial growth of ZnO films on diamond(111) plane by magnetron sputtering”, Appl. Phys. Lett., 65, 2556-58 (1994).
    65.W. D. Westwood, “Reactive sputter deposition, handbook of plasma processing technology”, Springer-Verlag Berlin Heidelberg, U.S.A., Chap. 9 (1992).
    66.N. Okawa, H. Tanaka, R. Akiyma, T. Matsumoto and T. Kawai, “Effects of film thickness on surface flatness and physical properties in La1-xSrxMnO3 thin films investigated by scanning tunneling microscopy,” Solid state communications, 114, 601-05 (2000).
    67.H. L. Ju, K. M. Krishnan, “Evolution of strain-dependent transport properties in ultrathin La0.67Sr0.33MnO3 films”, J. Appl. Phys., vol.83, no.11, 7073-75 (1998).
    68.C. Xiong, Y. Tang, J. Gao, H. Zhu, L. Pi, K. Li, J. Zhu and Y. Zhang, “Magnetoresistivity effect in La0.67Sr0.33MnO3/Pr0.7Sr0.33MnO3/ La0.67Sr0.33MnO3 trilayered films,” American Phys. Soc., vol.59, no.14, 9437-41 (1999)
    69.T. Namikawa, K. Kaneta, N. Matsushita, S. Nakagawa and M. Naoe, “Annealing effect on magnetic characteristics on (La,Sr)MnO3 sputter films,” IEEE Transactions on magnetics, vol.35, no.5, 2850-52 (1999).
    70.N. Floquet, J. Hector and P. Gaucher, “Correlation between structure, microstructure, and ferroelectric properties of PbZr0.2Ti0.8O3 integrated film:influence of the sol-gel process and the substrate,” J. Appl. Phys., vol.84, no.7, 3815-26 (1998).
    71.T. Omori, T. Suzuki, K. Hashimoto and M. Yamaguchi, “Selective area preparation of PZT discs and their ultrasonic applications,” IEEE Ultrasonics Symposium, 991-95 (2000).
    72.S. Y. Chen and J. W. Chen, “Texture development, microstructure evolution, and crystallixation of chemically derived PZT thin films,” J. Am. Ceram. Soc., vol.81, no.1, 97~105 (1998).
    73.N. Soyama, K. Maki, S. Mori and K. Ogi, “Preparation of PZT thin films for low voltage application by sol-gel method,” IEEE, 611-14 (2001).
    74.R. T. Young, C. W. White, G. J. Clark, J. Narayan, W. H. Christie, M. Murakami, P.
    W. King, and S. D. Kramer, “Laser annealing of boron-implanted silicon”, Appl.
    Phys. Lett., 32(3), pp.139~141 (1978).
    75.H. Qatanabe, H. Miki, S. Sugau, K. K. and T. Kioda, “Crystallization Process of
    Polycrystalline Silicon by KrF Excimer Laser Annealing”, Jpn. J. Appl. Phys.,
    Vol.33, No.8, part 1, pp.4491~4498 (1994).
    76.A. Gat, J. F. Gibbons, T. J. Magee, J. Peng, V. R. Deline and P. Williams, “Physical and electrical properties of laser-annealed ion-implanted silicon”, Appl. Phys. Lett., 32(5), pp.276~278 (1978).
    77.D. Bersani, P. P. Lottici, A. Montenero, S. Pigoni, “Phase transformations in sol-gel
    prepared PbTiO3”, Journal of Materials Science, 31, pp.3153~3157 (1996).
    78.Y. Matsui, M. Okuyama, N. Fujita, and Y. Hamakawa, “Laser annealing to produce
    ferroelectric-phase PbTiO3 thin films”, J. Appl. Phys. 52(8), pp.5107~5111 (1981).
    79.A. Ito, A. Machida and M. Obara, “Epitaxial Growth of BaTiO3 Optical Thin Films
    by Pulsed KrF Laser Deposition and in situ Pulsed Laser Annealing”, Jpn. J. Appl.
    Phys. Vol.36, No.6B, part 2, pp.L805~L807 (1997).
    80.Y. Zhu, J. Zhu, Y. J. Song, and S. B. Desu, “Laser-assisted low temperature
    processing of Pb(Zr, Ti)O3 thin film”, Applied Physics Letters, Vol.73, No.14,
    pp.1958~1960 (1998).
    81.X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin, and Y. N. Wang, “Laser-induced phaser
    transformation from amorphous to perovskite in PbZr0.44Ti0.56O3 films with the
    substrate at room temperature”, Appl. Phys. Lett., 65(16), pp.2015~2017 (1994).
    82. 周嘉峰, “雷射退火低溫製備鈦鋯酸鉛薄膜之研究”, 國立台灣科技大學碩士論文, 民國90年6月。

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE