簡易檢索 / 詳目顯示

研究生: 陳俊偉
Jyun-Wei Chen
論文名稱: 固態氧化物燃料電池氧化鋯電解質之韌性與金屬雙極板抗氧化性研究
Investigations on Toughness of ZrO2-Based Electrolytes and Oxidation-Resistance of Metallic Interconnects of an Solid Oxide Fuel Cell
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 王朝正
Chaur-Jeng Wang
黃鶯聲
Ying-Sheng Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 142
中文關鍵詞: 韌性金屬雙極板氧化鋯燃料電池
外文關鍵詞: zirconia, toughness, SOFC, metallic interconnects
相關次數: 點閱:386下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態氧化物燃料電池元件裡,電解質、電極及金屬雙極板為許多學者研究探討的主題。本文主要以探討氧化鋯電解質所需的機械性質與韌化行為,及改善金屬雙極板在高溫大氣下之氧化問題及導電特性。
    在氧化鋯電解質韌化行為的研究裡,將添加不同含量的Y2O3及YNbO4等相安定劑於氧化鋯材料,利用XRD分析判定結構,利用維克氏壓痕硬度試驗了解各氧化鋯電解質之硬度及韌化性質,且由SEM觀察顯微結構之晶粒大小,最後利用即時單軸向壓應力之XRD、同步輻射XRD及拉曼光譜分析材料受壓應力時其結構之變化。
    研究結果顯示,氧化鋯(3YSZ)的t相結構為介穩態結構,因存在t-to-m相變韌化機制、鐵彈性域轉換等吸收破壞能的機制存在,因此能表現不錯的機械性質及韌化行為,在同步輻射及拉曼光譜也觀察到t相結構受壓應力變化的結果。而氧化鋯(3YSZ)添加鈮酸釔卻可以穩定其正方性,抑制t相結構的變化,藉由同步輻射XRD及拉曼光譜散射分析觀察到c相結構變化較t相劇烈且Zr4+和O2-之間的C相振動Raman mode受到循環應力的影響而變化,說明氧化鋯c相結構具有吸收韌性的行為發生,說明此氧化鋯系統c相為介穩態結構,且表現出的韌化特性優於ZrO2(3Y),此時並沒發現t-to-m相變韌化機制的存在,卻觀察到c相結構受到外力而產生結構自我調整的特殊行為。這對氧化鋯電解質於固態氧化物燃料電池的應用時,提升了抵抗循環熱應力及機械振動的影響,進而增加燃料電池的壽命。
    在金屬雙極板抗氧化性研究的研究裡,藉由Sol-Gel浸鍍法及射頻磁控式濺鍍法在不銹鋼雙極板(SUS430、SUS304)披覆一層錳酸鍶鑭(LSMO)導電氧化物薄膜,經成相處理後再長時間高溫熱處理,並利用XRD、SEM觀察不銹鋼雙極板氧化問題。
    研究結果顯示利用射頻磁控式濺鍍LSMO薄膜,可均勻披覆於不銹鋼雙極板,其成相溫度為800℃之成相性最佳。而經過長時間高溫熱處理發現,LSMO披覆於不銹鋼雙極板會使得不銹鋼的氧化路徑因為Mn含量的增加使得易生成Cr2O3的氧化行為轉變成易生成(Mn, Fe)Cr2O4,而抑制了Cr2O3的成長,另外(Mn, Fe)Cr2O4的高溫電阻率較Cr2O3低數千倍,提升金屬雙極板氧化後的高溫導電性特性。


    In order to develop an outstand electrolyte that owns high mechanical and electric properties and a metallic interconnect that exhibits better oxidation-resistance for Solid Oxide Fuel Cell (SOFC) application in intermittent operation at high temperature. The purpose of this thesis is to investigate the mechanical properties and toughness behavior of zirconia electrolyte. Besides, the electric properties and oxidative problem of metallic interconnect were discussed in this study. A systematic study involves mechanical properties measurements, phase-composition characteristics and microstural analysis were conducted by micro-indentation hardness testing, X-ray diffractometer, in-situ compression-diffraction using synchrotron radiation source and Raman scattering spectrum, respectively.
    The experimental results show that coexistence of two mechanisms, the ferroelastic domain switching and the stress-induced phase transformation were not observed in the YNbO4-modified ZrO2 (3Y) ceramics under stress loading at different levels. It is different from the results in the past literature. In the in-situ compression-diffraction experiment using synchrotron radiation, the results suggest there is a lattice adjustment of cubic phase occurred under stress loading. Besides the O2- and Zr4+ ions vibration varied under cyclic loading was observed using Raman scattering spectrum.
    The La0.7Sr0.3MnO3 (LSMO) layer was coated on stainless steels (SUS430 and SUS304) using Sol-gel method and radio frequency (RF) sputtering. The results exhibit the best annealing temperature is 800℃ and LSMO coating layer produces high conductivity of (Mn,Fe)Cr2O4 that is one thousand times the electric conductivity of Cr2O3 and decreases the content of Cr2O3, because of Mn3+ content increase. This seems that t’-to-m’ phase transformation and cubic phase to adjust itself might be the primary energy-absorbing mechanism in the ZrO2-based electrolyte and LSMO coating layer improves the oxidation-resistance of metallic interconnect for SOFC application.

    中文摘要......................................................................i 英文摘要....................................................................iii 目錄..........................................................................v 表目錄.......................................................................ix 圖目錄........................................................................x 第一章 文獻回顧.............................................................1 1.1固態氧化物燃料電池簡介...................................................1 1.1.1固態氧化物燃料電池之歷史.............................................4 1.1.2固態氧化物燃料電池基本原理...........................................6 1.1.3燃料電池元件架構.....................................................8 1.1.3.1電解質...........................................................8 1.1.3.2電極.............................................................9 1.1.3.3雙極板...........................................................9 1.2固態氧化物燃料電池電解質之韌化機構.......................................9 1.2.1氧化鋯晶體結構與正方性之安定性.......................................9 1.2.2氧化鋯陶瓷韌化機構之討論............................................12 1.2.2.1應力誘發相變韌化................................................12 1.2.2.2鐵彈性韌化......................................................13 1.2.2.3鐵彈性t'-ZrO2觀察...............................................16 1.2.3 氧化鋯摻雜不同價電子的影響..........................................17 1.2.4 鈮酸釔的晶體結構....................................................18 1.2.5 氧化鋯添加鈮酸釔之相關研究..........................................19 1.2.5 氧化鋯添加鈮酸釔之相關研究..........................................22 1.2.6.1拉曼散射原理.....................................................22 1.2.6.2共振拉曼散射原理.................................................25 1.2.6.3氧化鋯相關拉曼光譜分析...........................................26 1.3 固態氧化物燃料電池雙極板之抗氧化性之研究...............................29 1.3.1雙極板材料的需求....................................................29 1.3.2雙極板材料的種類....................................................30 1.3.3雙極板材料氧化及鈍化之情形..........................................31 1.3.4 導電型氧化物之種類及其特性.........................................34 1.3.4.1 導電型氧化物...................................................35 1.3.4.2錳酸鍶鑭氧化物電極..............................................37 1.3.5各種氧化物薄膜配製方法..............................................40 1.3.5.1溶膠-凝膠(Sol-Gel)法備製雙極板導電抗氧化層薄膜..................41 1.3.5.2磁控式濺鍍(Sputter)法備製雙極板導電抗氧化層薄膜.................43 二、實驗方法.................................................................45 2.1 實驗藥品規格及儀器總表.................................................45 2.1.1氧化鋯電解質提升破壞韌性探討之研究..................................45 2.1.2金屬雙極板抗氧化性之研究............................................46 2.2實驗流程................................................................49 2.2.1氧化鋯電解質提升破壞韌性探討之研究流程..............................49 2.2.1.1粉末備製........................................................51 2.2.1.2乾壓成型........................................................52 2.2.1.3燒結............................................................52 2.2.1.4 機械性質的量測.................................................52 2.2.1.5應力-應變曲線...................................................54 2.2.1.6微觀結構研究....................................................54 2.2.1.7研磨測試........................................................56 2.2.1.8原位(In-situ)即時壓應力-繞射實驗................................56 2.2.1.9 Renishaw WiRE2.0模擬軟體之使用方法.............................58 2.2.2金屬雙極板抗氧化性之研究流程........................................59 2.2.2.1不銹鋼試片之備製................................................59 2.2.2.2不銹鋼試片表面處理..............................................61 2.2.2.3錳酸鍶鑭2-inch靶材的製備........................................61 2.2.2.4錳酸鍶鑭Sol-Gel溶液配置.........................................63 2.2.2.5 RF磁控式濺鍍LSMO氧化物電極薄膜.................................65 2.2.2.6 薄膜特性量測...................................................65 三、結果與討論-氧化鋯電解質提升破壞韌性探討之研究............................67 3.1 利用氧化物法備製氧化鋯電解質之X-ray分析................................67 3.2不同成分之氧化鋯電解質之硬度值及破壞韌性分析............................70 3.3不同成分之氧化鋯電解質之微觀分析........................................70 3.4不同成分之氧化鋯電解質之X-ray單軸向即時壓應力分析.......................75 3.5氧化鋯電解質之同步輻射即時單軸向壓應力X-ray繞射分析.....................78 3.5.1氧化鋯添加氧化釔之電解質同步輻射即時單軸向壓應力X-ray繞射分析.......78 3.5.2 氧化鋯添加鈮酸釔之電解質同步輻射即時單軸向壓應力X-ray繞射分析......85 3.6不同材料之氧化鋯電解質之單軸向即時壓應力拉曼光譜分析....................92 3.6.1氧化鋯添加氧化釔電解質之單軸向即時壓應力拉曼光譜分析................92 3.6.2氧化鋯添加鈮酸釔電解質之單軸向-即時壓應力拉曼光譜分析...............96 第四章 結果與討論-金屬雙極板之抗氧化性研究..................................103 4.1不同製程披覆LSMO於不銹鋼雙極板之效果...................................103 4.2 射頻磁控式濺鍍LSMO薄膜於不銹鋼上之成相分析............................104 4.3射頻磁控式濺鍍LSMO薄膜於不銹鋼上之破斷面FE-SEM、EDX微觀分析............108 4.4射頻磁控式濺鍍LSMO薄膜於不銹鋼上之表面FE-SEM微觀分析...................109 五、結論....................................................................114 5.1氧化鋯電解質提升破壞韌性探討之研究.....................................114 5.2金屬雙極板之抗氧化性研究...............................................115 參考文獻....................................................................116 表目錄 表1-1氧化鋯與鈮酸釔材料特性相關表............................................18 表1-2氧化鋯基本結構的Raman mode..............................................28 表1-3各型態的氧化鋯之紅外線(IR)和拉曼(R) active mode.........................29 表1-4 14種高溫合金的成分表...................................................33 表1-5 常用電極材料之結晶構造、電阻率和熱膨脹係數.............................36 表1-6 La1-xSrxMnO3 晶格結構與電性之關係.....................................39 表1-7氣相與液相鍍膜法於各式製程參數的差異....................................41 表2-1各氧化物原料之相關資料..................................................45 表2-2使用之溶劑細目表........................................................46 表2-3實驗藥品表..............................................................47 表2-4儀器設備規格表..........................................................48 表2-5不銹鋼鋼材成分表及其物理特性............................................60 表2-6 LSMO氧化物薄膜之濺鍍條件...............................................65 表3-1各氧化鋯電解質機械性質表................................................70 圖目錄 圖 1-1 燃料電池的歷史.........................................................5 圖 1-2 固態燃料電池的原理發現者及發明者.......................................6圖 1-3 燃料電池的基礎架構.....................................................7 圖 1-4 SOFC運作流程...........................................................7 圖 1-5 氧化鋯的三個同質異形體 (a) cubic phase (b) tetragonal phase (c) monoclinic phase.............................................................11 圖 1-6 氧化鋯基陶瓷受外應力時,壓應力區示意圖…..............................13 圖 1-7鈰安定氧化鋯材料在施加應力後,鐵彈性域轉換現象.........................15 圖1-8 鈮酸釔t↔m相變過程的示意圖.............................................19 圖1-9為ZrO2(3Y) + 5mol%YNbO4在不同的燒結條件下,表現出的超彈性行為...........21 圖1-10為ZrO2(3Y) + 5mol%YNbO4同步輻射即時壓應力X-ray繞射分析.................22 圖1-11雷利散射與拉曼散射之圖示...............................................24 圖1-12 Si的Rayleigh、Anti-Stoke和Stoke Raman line............................25 圖1-13為一般拉曼散射與共振拉曼散射的光譜能階圖...............................26 圖 1-14 (a)鈣鈦礦結構結構示意圖,(b)當溫度低於居禮溫度點(Tc)時中心離子會產生輕微偏移的情況.................................................................38 圖1-15(a)電漿撞擊之濺鍍示意圖,(b)磁控式濺鍍法之匹配電路結構...........................................................................44 圖2-1氧化鋯試片製作流程......................................................49 圖2-2實驗流程................................................................50 圖2-3維克氏硬度壓痕圖示及破壞韌性和硬度之計算式..............................53 圖2-4 JCPDS cards (a) c相、(b) t相、(c) m相繞射峰............................55 圖2-5同步輻射原位壓力-繞射實驗之夾治具圖.....................................57 圖2-6利用Renishaw WiRE2.0軟體模擬peak之情形..................................58 圖2-7 LSMO導電氧化物薄膜披覆不銹鋼雙極板之實驗流程圖.........................60 圖2-8 LSMO預備溶液與薄膜製作流程............................................64 圖3-1 (a)8YSZ、(b) ZrO2(3Y)+20mol%YNbO4、(c) 3YSZ、(d) ZrO2(3Y)+5mol%YNbO4 氧化鋯電解質之塊材利用X-ray繞射分析之結果分別為(a)c相、(b)c + t 相,“○”殘留YNbO4、(c)t相、(d)c + t相....................................................69 圖3-2 (a)8Y-FSZ 1500℃/1hr、(b)ZrO2(3Y) + 20mol%YNbO4 1500℃/1hr 利用維克氏壓痕硬度試驗機,其壓痕利用OM觀察發現具穩定結構的氧化鋯電解質,其硬度及破壞韌性值不高,顯示材料內部缺乏吸收外來應力之機制.......................................71 圖3-3 (a) 3YSZ 1500℃/1hr、(b)ZrO2(3Y) + 5 mol%YNbO4 1500℃/1hr利用維克氏壓痕硬度試驗機,其壓痕利用OM觀察發現具介穩態結構的氧化鋯電解質,其硬度及破壞韌性值較高,顯示材料內部具有吸收外來應力之機制.......................................72 圖3-4 (a)8Y-FSZ 1500℃/1hr、(b)ZrO2(3Y) + 20mol%YNbO4 1500℃/1hr 利用SEM觀察發現平均粒徑約3~5μm,且孔洞較多................................................73 圖3-5 (a) 3YSZ 1500℃/1hr、(b)ZrO2(3Y) + 5mol%YNbO4 1500℃/1hr 利用SEM觀察發現平均粒徑約0.5~0.8μm,孔洞少且較為緻密,3YSZ平均晶粒較小,但少部分可能因氧化矽等不純物的關係,導致晶粒異常成長,而有大晶粒存在...............................74 圖3-6 3Y-TZP電解質受到單軸向-即時壓應力之X-ray繞射分析(a)整體觀察、(b)各別觀察,發現(111)t、(002)t、(200)t、(112)t、(222)t等繞射鋒值稍微下降,(202)t、(220)t、(113)t、(311)t稍微上升,說明介穩態晶粒受單軸向壓應力造成晶面發生晶域轉向之行為...........................................................................76 圖3-7 ZrO2(3Y) + 5 mol%YNbO4 電解質受到單軸向壓應力後,利用X-ray繞射分析(a)整體觀察、(b)各別觀察,發現施壓卸載後之相對強度的變化,說明晶粒的擇優取向;破斷面與研磨面的繞射峰值強度大幅下降是因為,單位截面積不同所致,繞射峰位置不變,相對強度也未有太大之變化...........................................................78 圖3-8 3Y-TZP利用同步輻射即時單軸向壓應力X-ray繞射分析,掃描範圍2θ在(a)35∘、(b)60∘、(c)74∘附近,發現35∘的位置,會因施加壓力的大小出現繞射峰,說明材料受到外力會誘發新相產生...........................................................82 圖3-9 3Y-TZP利用同步輻射即時單軸向壓應力X-ray繞射分析,(a)35∘、(b)60∘、(c)74∘附近,分別為各晶面經壓應力施加、卸載後,繞射強度的變化量.................83 圖3-10 Renishaw WiRE軟體模擬3Y-TZP利用同步輻射即時單軸向壓應力X-ray繞射分析之(002)t、(200)t繞射峰值,(a)單純模擬(002)t、(200)t,(b)於35.1∘加入1個繞射峰值之情形,(c)施加壓力至2000με時,模擬35.1∘繞射峰值出現之情形。發現圖(c)為最接近實際繞射之圖形.................................................................84 圖3-11 ZrO2(3Y) + 5 mol%YNbO4 電解質利用同步輻射即時單軸向壓應力X-ray繞射分析的結果,2θ在(a) 35.1∘、(b) 59.7∘、(c) 73.6∘ 等位置的繞射峰會隨著壓力的施加與卸載而改變,説明繞射峰強度的變化為吸收破壞能量的主因.........................87 圖3-12 Renishaw WiRE軟體模擬ZrO2(3Y) + 5 mol%YNbO4 電解質利用同步輻射即時單軸向-壓應力X-ray繞射分析的結果,此為繞射峰於35∘附近,(a)模擬2個繞射峰之情形、(b)於73.6∘附近模擬添加1個繞射峰之情形、(c)於35∘附近模擬添加1個繞射峰之情形。發現若模擬添加2個繞射峰結構,在高角度時並未有雙峰分離之現象,違背了布拉格繞射定理...........................................................................89 圖3-13 ZrO2(3Y)+5mol%YNbO4利用同步輻射即時單軸向-壓應力X-ray繞射分析,(a)(b)(c)分別為各晶面經壓應力施加、卸載後,繞射強度的變化量...........................................................................91 圖3-14為ZrO2(3Y)單軸向-即時壓應力拉曼光譜分析,發現147cm-1、260cm-1、321cm-1、465cm-1、609cm-1、640cm-1為t相之Raman mode,480cm-1、620cm-1為氧化鋯c相mode.........................................................................93 圖3-15 Renishaw WiRE軟體模擬ZrO2(3Y)單軸向-即時壓應力拉曼光譜圖(a)部分模擬(b)初始狀態(Initial)及(c)施壓卸載Loading & Released 1 time、(d)5 times、(e)20 times,發現逐漸有m相之Raman mode出現...........................................................................95 圖3-16為ZrO2(3Y) + 5mol%YNbO4單軸向-即時壓應力拉曼光譜分析,發現147cm-1、260cm-1、321cm-1、465cm-1、609cm-1、640cm-1為t相之Raman mode,480cm-1、620cm-1為氧化鋯c相mode,770cm-1為Nb-O Raman mode.........................................................................97 圖3-17 Renishaw WiRE軟體模擬ZrO2(3Y) + 5mol%YNbO4單軸向即時壓應力拉曼光譜圖(a)部分模擬(b)初始狀態(Initial)及(c)施壓卸載Loading & Released 、(d)After grinding、(e)Fracture surface,發現Nb-O的Raman mode的積分強度不受應力的影響,說明YNbO4穩定材料的正方晶結構..........................................................................100 圖4-1 LSMO薄膜披覆於不銹鋼材之效果(a)Sputter Method, (b)Sol-Gel Method......................................................................103 圖4-2 LSMO73 利用射頻磁控式濺鍍薄膜披覆於不銹鋼基材(a)SUS430(b)SUS304,於700、800、900℃持溫30min成相處理,利用X-ray繞射分析發現以800℃熱處理之成相性最佳,900℃開始有Fe-Cr-Mn Spinel(●)氧化物產生..........................................................................105 圖4-3不銹鋼基材(a)SUS304、(b)SUS430,LSMO披覆於不銹鋼基材(c)LSMO/SUS304、(d)LSMO/SUS430,分別在常壓大氣下長時間800℃熱處理24hrs、48hrs、96hrs,利用X-ray繞射分析,發現披覆LSMO73能抑制Cr2O3成長速率,但(Mn ,Fe)Cr2O4容易形成..........................................................................107 圖4-4 (a)SUS304長時間熱處理800℃/168hrs,(b)LSMO73披覆於SUS304長時間熱處理800℃/168hrs之破斷面分析....................................................109 圖4-5不銹鋼基材(a)SUS430、(b)SUS304,LSMO披覆於不銹鋼基材(c)LSMO/SUS430、(d)LSMO/SUS304,分別在常壓大氣下長時間800℃熱處理48hrs,利用SEM觀察表面生成之氧化物..........................................................................113 圖4-6於不同氧分壓之Ar-H2-H2O環境下之金屬及其生成之氧化物(Metal/Oxide) ..............................................................113

    1.黃鎮江,“燃料電池”,全華科技圖書,第6-1頁,中華民國九十二年十一月。
    2.N. Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
    3 F. J. Rohr, in: P. Hagnemuller, W. van Gool (Eds.), Solid Electrolytes, Academic Press, New York, (1978), p. 431.
    4 Y. Sakaki, Y. Esaki, M. Hattori, H. Miyamoto, T. Satake,F. Nanjo, T. Matudaira, K. Takenobu, in: U.Stimming, S.C. Singhal, H. Tagawa, W. Lehnert (eds), Proceeding of the fifth International Symposium on Solid Oxide Fuel Cells, (1997), p. 61.
    5.S. Linderoth, P.V. Hendriksen, M. Mogensen, N. Langvad, J. Mater.Sci. 31 (1996) 5077.
    6.D. Herbstritt, C. Warga, A. Weber, and E. I. Tiffée, “Long Term Stability of SOFC with Sc Doped Zirconia Electrolyte.”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, PP. 349-357.
    7.C. C. Huang, and K. Z. Fung, “Degradation of Rhombohedral (Y0.25Bi0.75)2O3 Solid Electrolyte.”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, PP. 393-402.
    8.H. Yokokoawa, N. Sakai, T. Horita, K. Yamaji, and Y. P. Xiong, “Thermodynamic Considerations on Ceria-Based Fluorite-Type Oxides with Emphases on Miscibility Gap, Electron Concentration and Proton Solubility.”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, PP.339-348.
    9.H. Itoh, Y. Hiei, T. Yamamoto, M. Mori, and T. Watanabe, “Optimized Mixture Ratio in YSZ-Supported Ni-YSZ Anode Material for SOFC.”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, PP.750-758.
    10.A. A. Khanlou, F. Tietz, I. C. Vinke, and D. Stöver, “Electrochemical and Microstructural Study of SOFC Cathode Based on La0.65Sr0.3MnO3 and Pr0.65Sr0.3MnO3.”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, PP.476-484.
    11.H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Fuel Cells 1 (2001)117.
    12.J. M. Ralph, A.C. Schoeler, M. Krumpelt, J. Mater. Sci. 36 (2001)1161.
    13.S. P. S. Badwal, Solid State Ion. 143 (2001) 39.
    14.D. J. Garvie, R. H. J. Hannink, and M. V. Swain, “Transformation Toughening of Ceramics ”, PP.41, CRC Press, Inc. (1989).
    15.R. C. Garvie, “Zirconia Dioxide and Some of Its Binary System”, in High Temperature Oxides, Vol.5 ,Ed. By A. M. Alper, Academic Press, New York, (1970), Chap. 4.
    16.R. C. Garive, “The Occurrence of Metastable Tetragonal Zirconia As a Crystallite Size Effect”, J. Phys. Chem., 69 [4] 1283-43 (1965).
    17.R. C. Garive, R. H. Hannink and R. T. Pascoe, “Ceramic Steel?”, Nature(London), 258(5537), 703-704, (1975).
    18.R. P. Engel, D. Lewis, B. A. Bander and R. W. Rice, “Temperature Dependence of Strength and Fracture Toughness of ZrO2 Single Crystal” J. Am. Ceram. Soc. 65 [9] C-150~C-151 (1982).
    19.R. P. Engel, D. Lewis, B. A. Bender and R. W. Rice, “Physical Microstructure and Thermomechanical Properites of ZrO2 Single Crystals”, PP.408-14 in Advances in Ceramics, Vol.12, Science and Telenology of ZirconiaII. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American Ceramic Society, Columbus, OH, 1984.
    20.D. Michel, L. Mazerolles, and M. Perezy Jorba, “Polydomain Crystal of Single-Phase Tetragonal ZrO2 : Structure Microstructure and Fracture Toughness”, PP.131-38, Vol.12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer, American Ceramics Society, Columbus, OH, (1984).
    21.V. K. Wadhawan, “Ferroelasticity and Related Properties of Crystal”, Phase Transition, 3, 3-103 (1982).
    22.C. J. Chen, F. F. Lange, Manfred Ruhle, J. F. Jue and A. V. Virkar, “Ferroleastic Domain Switching in Tetragonal Zirconia Single Crystal-Microstructure Aspects”, J. Am. Ceram. Soc. 74 [4] 807-13 (1991).
    23.A. V. Virkar and R. L. K. Matsumoto, “Ferroleastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia”, 69 [10]. C-224~C-226 (1986).
    24.G. V. Srinivasan, T. F. Jue, S. Y. Kuo, and A. V. Virkar, “Ferroelastic Domain Switching in Polydomain Tetragonal Zirconia Single Crystal,” J. Am. Ceram. Soc., 72 [11]. 2098-103 (1989).
    25.E. H. Kisi, S. J. Kennedy and C. Howard, “Neutron Diffraction Observation of Ferroelastic Domain Switching and Tetragonal to Monoclinic Transformation in Ce-TZP”, J. Am. Ceram. Soc. 80 [3] 621-28 (1997).
    26.L. S. Pan, and S. Horibe, “Anelastic Behavior of Zirconia Ceramics under Monotoic and Cyclic Loading”, Acta Mater. Vol. 45, No.2, PP.463-469 (1997).
    27.H. Yong, P. Guaugbin, Z. Zhaoqiang, S. Qingping, and S. Wenjie, “Shape Memory Effect of Ce-TZP Ceramics with Different CeO2 Content”, PP.359-64, in Advance Structural Materials, Edited by Y. Han, Elsevier Science Publishers B. V. (1991).
    28.L. Ruiz, and M. J. Readey, “Effect of Heat Treatment on Grain Size, Phase Assemblage, and Mechanical Properties of 3 mol% Y-TZP”, J. Am. Ceram. Soc. 79 [9] 2331-40 (1996).
    29.Y. Zhou, and T. C. Lei, “Diffusionless Cubic-to- Tetragonal Phase Transition and Microstructural Evolution in Sintered Zirconia Yttria Ceramics”, J. Am. Ceram. Soc. 74 [3] 633-40 (1991).
    30.M. Yashima, T. Hirose, M. Kakihana, Y. Suzuki, and M. Yoshimura, “Size and Charge Effect of Dopant M on the Unit Cell Parameters of Monoclinic Zirconia Solid Solution Zr0.98M0.02O2-8(M=Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca) ”, J. Am.Ceram. Soc., 80 [1] 171-75 (1997).
    31.C. Quinn, and R. Wusirika, “Twinning in YNbO4”, J. Am. Ceram. Soc. 74 [2] 431-32 (1991).
    32.V. S. Stubican, “High Temperature Transitions in Rare-Earth Niobates and Tantalates”, J. Am. Ceram. Soc. 47 [2] 55-58 (1964).
    33.賴元章, “鈮酸釔添加對氧化鋯之鐵彈性的影響及其增韌作用之研究”, 國立台灣科技大學機械工程研究所碩士學位論文 (1995)。
    34.游文獻,“二氧化鋯添加鈮酸釔之燒結行為與韌化機構探討”, 國立台灣科技大學機械工程研究所碩士學位論文 (1997).
    35.S. D. Yuh, and C. C. Chou, “Domain Switching in Monoclinic YNbO4-Modified ZrO2(3Y)”, Scripta Materialia, Vol. 41, No. 10 PP. 1097-1102, (1999).
    36.S. D. Yuh, Y. C. Lai, and C. C. Chou, “YNbO4 – Addition on the Fracture Toughness of ZrO2(3Y) Ceramics”, Journal of Materials Science 36 1-9 (2001).
    37.S. D. Yuh, and C. C. Chou, “In situ X-ray Diffraction Investigation of Elastic Behavior of YNbO4 –Modified ZrO2(3Y) Using Synchrotron Radiation”, Jpn. J. Appl. Phys. Vol. 40 PP.L1-L4 (2001).
    38.陳清煒, “氧化鋯添加氧化鈰韌化機制之研究”, 國立台灣科技大學機械工程研究所碩士學位論文 (2002).
    39.高君陶、劉祥麟, “單層奈米碳管之共振及低溫拉曼散射光譜研究”, 國立台灣師範大學物理研究所碩士學位論文(2002).
    40.E. F. López, V. S. Escribano, M. Panizza, M. M. Carnasciali, and G. Busca, “Vibrational and Electronic Spectroscopic Properties of Zirconia Powder.”, J. Mater. Chem.,(2001), 11, 1891-1897.
    41.D. R. Clarke, and F. Adar, “Measurment of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia.”, J. Am. Ceram. Soc. 65 PP.284-288 (1982).
    42.M. T. Dorn, and K. G. Nickel, “Local T/M-Phase Amount Determination in the Vicinity of Indentations and Scratches in Zirconia.”, Indentation Techniques in Ceramic Materials Characterization, Ceramic Transactions, Vol. 156 (2004).
    43.D. Y. Lee, J. W. Jang, and D. J. Kim, “Raman spectral characterization of existing phase in the ZrO2-Y2O3-Nb2O5 system.”, Ceramics International 27 (2001) PP. 291-298.
    44.T. Merle, R. Guinebretiere, A. Mirgorodsky, and P. Quintard, “Polarized Raman Spectra of Tetragonal Pure ZrO2 Measured on Epitaxial Films.”, Phys. Rev. B, Vol. 65 144302 (2002).
    45.D. Casellas, F. L. Cumbrera, F. S. Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the Transformation of Y-ZrO2 Ceramics with Mixed Y-TZP/PSZ microstructures.”, J. Eur. Ceram. Soc. 21 PP. 765-777 (2001).
    46.V. G. Keramidas, and W. B. White, “Raman Scattering Study of the Crystallization and Phase Transformations of ZrO2 .”, J. Am. Ceram. Soc. Vol. 57, No. 1 PP22-24, (1974).
    47.J. Cai, Y. S. Rapits, and E. Anastassakis, “Stabilized Cubic Zirconia: A Raman Study under Uniaxial Stress.”, Appl. Phys. Lett. 62(22), 31 (1993).
    48.S. Shin, and M. Ishigame, “Defect-Induced Hyper-Raman Spectra in Cubic Zirconia.”, Phys. Rev. B, Vol. 4 No. 12 PP. 8875-8882 (1986).
    49.W. Weppner, in: O. Yamamoto, M. Dokia, H. Tagawa (Eds.), Proceedings of the International Symposium on Solid Oxide Fuel Cells, Science House, Tokyo, Japan, (1990).
    50.H. Tenmei, H. Michibata, T. Namikawa, Y. Yamazaki, Denki Kagaku 58 (1990) 1072.
    51.E. Ivers-Tiffee, W.Wersing, M. Schliessl, H. Greiner, Ber. Bunsenges., Phys. Chem. 94 (1990) 978.
    52.S. de Souza, S. J. Visco, L.C. De Jonghe, Solid State Ionics 98 (1997) 57.
    53.H. Kurokawa, K. Kawamura, T. Maruyama, Solid State Ionics 168 (2004) 13.
    54.S. Elangovan , J. Hartvigsen, McDermott Technology, Inc.(2000).
    55.Z. Zeng,K.Natesan, Solid State Ionics167(2004) 9.
    56.S. Barison, A. De Battisti, M. Fabrizio, S. Daolio, C. Piccirillo, “Surface Chemistry of RuO2/IrO2/TiO2 Mixed-Oxide Electrodes: Secondary Ion Mass Spectrometric Study of the Changes Induced by Electrochemical Treatment”, Rapid commun. Mass Spectrom., 14[11], 2165-2169(2000).
    57.S. Madhukar, S. Aggarwal, A. M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, “Effect of Oxygen Stoichiometry on the Electrical Properties of La0.5Sr0.5CoO3 Electrodes”, J. Appl. Physi., 81[8], 3543-3547(1997).
    58.J. Qiao, and C. Y. Yang, “High-Tc Superconductors on Buffered Silicon:Materials Properties and Device Applications”, Mater. Sci. Eng., R14, 157-202(1995).
    59.Y. S. Touloukian, “Thermo-physical Properties of Matter”, Vol.12 Thermal Expansion—Metallic Elements and alloys, IFI, New York, (1970).
    60.Y. S. Touloukian, “Thermo-physical Properties of Matter”, Vol.13 Thermal Expansion—Nonmetallic Solids, IFI, New York, 1970.
    61.J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim, and C. Y. Kim, “Microstructures and Electrical Resistivities of The RuO2 Electrode on SiO2/Si Annealed in The Oxygen Ambient.”, J. Mater. Res.,Vol.11[1], 137-140(1996).
    62.N. Q. Minh, and T. Takehiko, “Science and Technology of Ceramic Fuel Cells”, Elsevier, New York, 136-137(1995).
    63.J. Santen, and G. Jonker, “Electrical Conductivity of Ferromagnetic Compounds of Manganese with Perovskite Structure”, Physica XVI, No.7-3, 599-560(1950).
    64.G. Jonker, and J. Santen, “Magnetic Compounds with Perovskite Structure III. Ferromagnetic Compounds of Cobalt”, Physica XIX, 120-130(1953).
    65.J. Li, Q. Huang, Z. W. Li, L. P. You, S. Y. Xu, and C. K. Ong, “Enhanced Magnetoresistance in Ag-Doped Granular La2/3Sr1/3MnO3 Thin Films Prepared by Dual-Beam Pulsed-Laser Deposition”, J. Appl. Physi., 89[6], 7428-7430(2001).
    66.J. Y. Gu, C. Kwon, M. Robson, Z. Trajanovic, K. Ghosh, and R. Sharma, “Growth and Properties of C-axis Textured La0.7Sr0.3MnO3-δ Films on SiO2/Si Substrates with a Bi4Ti3O12 Template layer ”, Appl. Phys. Lett., 70[1], 1763-1765(1997).
    67.P. Broussard, V. Browning, and V Cestone, “X-ray Photoemission Characterization of La0.67(CaxSr1-x)MnO3 Films”, J. Appl. Phys., 85[4], 5414-5416 (1999).
    68.J. Y. Gu, S. Ogale, M. Rajeswari, T. Venkatesan, R. Ramesh, “In-Plane Grain Broundary Effects on the Magnetotransport Peoperties of La0.7Sr0.3MnO3-δ”, Appl. Phys. Lett., 72[12], 1113-1115 (1998).
    69.A. Tiwari, A. Chug, C. Jin, D. Kumar, and J. Narayan, “Integration of Single Crystal La0.7Sr0.3MnO3 Films with Si(001)”, Solid State Commum., 121[11], 679-682(2002).
    70.A. Chakraborty, P. S. Devi , and H. S. Maiti, “Preparation of La1-xSrx MnO3 (0≦x≦0.6) Powder by Autoignition of Carboxylate-Nitrate Gels”, Mater. Lett., 20, 63-69(1994).
    71.M. Schiessl, E. Ivers-Tiffee and W. Wersing, “Ceramic Cathode Materials (La1-uSruMn1-xCoxO3-δ) for Solid Oxide Fuel Cell (SOFC) Application”, 2607-2614 in Materials Science Monographs, Vol. 66D, Ceramic Today-Tomorrow’s Ceramics. Edited by P. Vincenzini. Proceedings of the 7th International Meeting on Modern Ceramics Technologies (7th CIMTEC-World Ceramics Congress 1990), Elsevier Sience, New York, 1991.
    72.N. Zhang, W. P. Ding, Z. B. Guo, W. Zhong, D. Y. Xing, Y. W. Du, G. Li, Y. Zheng, “Large Lattice Compression Coefficient and Uniaxial Piezoresistance in CMR Perovskite La1-xSrx MnO3 (0.15≦ x ≦0.25)”, ZEITSCHRIFT FUR PHYSIK B, vol. 102, Issue 4, 461-465 (1997).
    73.M. J. Villafuerte, S. Duhalde, M. C. Terzzoli, G. Polla, G. Leyva, L. Correra, “Structural and Transport Properties of La0.67Sr0.33 Mn1-xSnxO3 Thin Films”, Appl. Phys. A (Materials Science & Processing), vol. 69, Issue 7, 565-567(1999).
    74.C. Xiong, Y. Tang, J. Gao, H. Zhu, L. Pi, K. Li, J. Zhu and Y. Zhang, “Magnetoresistivity effect in La0.67Sr0.33MnO3/Pr0.7Sr0.33MnO3/ La0.67Sr0.33MnO3 trilayered films,” American Phys. Soc., vol.59, no.14, 9437-41 (1999).
    75.T. Namikawa, K. Kaneta, N. Matsushita, S. Nakagawa and M. Naoe, “Annealing effect on magnetic characteristics on (La,Sr)MnO3 sputter films,” IEEE Transactions on magnetics, vol.35, no.5, 2850-52 (1999).
    76.N. Floquet, J. Hector and P. Gaucher, “Correlation between structure, microstructure, and ferroelectric properties of PbZr0.2Ti0.8O3 integrated film:influence of the sol-gel process and the substrate,” J. Appl. Phys., vol.84, no.7, 3815-26 (1998)
    77.F. Wang and S. Leppavuori, “Properties of epitaxial ferroelectric PbZr0.56Ti0.44O3 heterostructures with La0.5Sr0.5CoO3 metallic oxide electrodes,” J. Appl. Phys., vol.82, no.3, 1293-98 (1997).
    78.S. M. Yoon, E. Tokumitsu and H. Ishiwara, “Preparation of PbZrxTi1-xO3/La1-xSrxCoO3 heterostructures using the sol-gel method and their electrical properties,” Appl. surface science, 117, 447-52 (1997).
    79.周嘉峰,“雷射退火低溫製備鈦鋯酸鉛薄膜之研究” 國立台灣科技大學機械工程研究所碩士學位論文 (2001).
    80.T. Shiosaki, T. Yamamotot, T. Oda, K. Harada and Kawabata, “Low temperature growth of piezoelectric AlN film for surface and bulk wave transducers by RF reactive plannar magnetron sputtering”, IEEE Ultrasonic Symposium, 451-54(1980).
    81.A. Hachigo, H. Nakahata, K. Higki, S. Fujii and S. Shikata, “Heterepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering”, Appl. Phys. Lett., 65, 2556-58 (1994).
    82.W. D. Westwood, “Reactive sputter deposition, handbook of plasma processing technology”, Springer-Verlag Berlin Heidelberg, U.S.A., Chap. 9 (1992).
    83.“ASTM HANDBOOK”, vol. 6, ASM International the Materials Information Society, P. 677-707.
    84.F. D. Hardcastle. I. E. Wachs, “Determination of Niobium-Oxygen Bond Distances and Bond Orders by Raman Spectroscopy”, Solid State Ionics 45 PP. 201-13 (1991).
    85.M. Yashima, J. H. Lee, M. Kakihana, and M. Yoshimura, “Raman spectral characterization of existing phase in the Y2O3-Nb2O5 system”, Journal of Physics and Chemistry of Solids 58 (10) (1997).
    86.J.P. Abellan, V. Shement, F. Tietz, L. Singheiser, W.J. Quadakkers, A. Gil, in: H. Yokokawa, S.C. Singhal (Eds.), Solid Oxide Fuel Cells(SOFC), vol. VII, The Electrochemical Society, Pennington. NJ, 2001, P. 811, PV2001-16.
    87.M.G.E. Cox, B. Mcenanay, V.D. Scott, Philia. Mag. 26 (1972) 839.
    88.R.K. Wild, Corros. Sci. 17 (1977) 87.
    89.R.E. Lobnig, H.P. Schmidt, K. Hennesen, H.J. Grabke, Oxide. Met. 37 (1992) 81.
    90.I. Barin, “Thermochemical Data of Pure Substances”, 3rd edition, VCH Verlagsgesellschaft, Weinheim, (1995).
    91.A. V. Virkar, D. M. England, Solid State Fuel Cell Interconnector, United States Patent 6,054,231 (2000).

    QR CODE