簡易檢索 / 詳目顯示

研究生: 花敬翰
Ching-Han Hua
論文名稱: 中溫固態氧化物燃料電池之半電池優化與特性研究
Refinement of Half-cell Properties for Intermediate-Temperature Solid Oxide Fuel Cells
指導教授: 周振嘉
Chen-Chia, Chou
口試委員: 曾文甲
Wen-Jea, Tseng
蔡大翔
Dah-Shyang, Tsai
郭俞麟
Yu-Lin, Kuo
段維新
Wei-Hsing, Tuan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 134
中文關鍵詞: 固態氧化物燃料電池複合電極釔安定氧化鉍共摻雜釤釔安定氧化鉍釔安定氧化鋯薄膜
外文關鍵詞: SOFC, composite cathode, yttrium stabilized bismuth oxide, samarium and yttrium co-stabilized bismuth oxide, YSZ thin film
相關次數: 點閱:377下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在中溫型固態氧化物燃料電池發展,多元素摻雜的材料在傳統爐高溫熱燒結的環境產生嚴重的元素擴散與偏析的問題。本研究應用自行發展的混合微波燒結技術來降低鈷基鈣鈦礦結構電極與氧化鈰基電解質燒結溫度,以交流阻抗頻譜分析技術檢視電解質與電極之界面活性,探討微波對材料結構與離子導電行為、微觀結構及催化性之相關性,改良傳統試片需於1,100℃燒結持溫2小時至微波燒結溫度1,000℃、1小時,並擁有較低的阻抗值。
    為進一步降低中溫型固態氧化物燃料電池工作溫度至650℃以下,本實驗製作不同佔比之釔安定氧化鉍複合銀電極,以網印的方式塗佈在電解質兩側形成半電池,陶瓷離子導體與金屬電子導體呈現網絡狀連續均勻地分布,極化阻抗結果說明複合陰極之設計添加釔安定氧化鉍含量可以最佳化,從交流阻抗圖中的極化電阻結果指出,添加共摻雜釤釔安定氧化鉍複合銀電極在650℃下擁有較低的極化電阻(0.16 Ω.cm2),較常用陰極更低之界面極化損失。
    在異質結構中,兩種不同的材料會因為晶格匹配度的差異而產生應力,倘若晶格失配產生拉伸應力場,張應力之界面及存在於界面間的空間電荷區域(space charge region)能提供高移動率及巨量的載子,將有助於離子導電率的提升。本研究以磁控濺鍍技術,分別製作出30nm、70nm及100nm的釔安定氧化鋯(YSZ)薄膜於矽基板,觀察薄膜的型態其結構為柱狀晶,表面緻密且無孔洞之立方晶8YSZ。在YSZ平行矽基板界面方向所產生的巨離子導電效應中,30nm試片在125℃的低溫下就開始產生效應,結果顯示薄膜與基板生成的空間電荷區確實會影響電子與離子傳輸導通的能力。
    經摻雜的氧化鈰雖然有優異的離子導電性,但最大的缺點就是高溫時容易有還原的問題,本實驗利用YSZ純氧離子導體的性質,製備具有空間電荷區及晶格失配的奈米YSZ薄膜複合電解質,結果顯示複合電解質的性能優於單層電解質,濺鍍100nm YSZ薄膜複合電解質之設計降低氧化鈰基電解質的阻抗及導電度。


    In this study, the electrode kinetics of the oxygen reduction reaction at the cathode of solid oxide fuel cells are investigated using electrochemical impedance spectroscopy. Microwave sintering is associated with faster kinetics compared with conventional sintering. As a result, the microwave-sintered cells exhibit more porous structures, lower polarization resistances, and higher exchange current densities at lower operating temperatures.
    Several silver-bismuth oxide composite cathodes were synthesized by a conventional oxide mixing fabrication process. The cathode mixtures consisting of 50 vol%–70 vol% Ag exhibited much lower overpotentials and higher exchange current densities than (La, Sr)(Co, Fe)O3–δ (LSCF) perovskite cathodes below 650 °C. The area specific resistance of the Ag–40 vol% Y0.5Bi1.5O3 cathode decreased to 0.16 Ω.cm2 at 650 °C. The cathode mixtures consisting of Ag–Bi1.5Y0.3Sm0.2O3 or Ag–Y0.5Bi1.5O3 exhibited lower overpotentials and higher exchange current densities than commercial Ag paste and perovskite cathodes. Favorable oxygen reduction reaction properties and lower activation energies were observed when the cell was operated at temperatures near 600 °C, which was an ideal operating temperature range for energy integration of solid oxide fuel cells as part of next generation triple combined cycle.
    In the case of the deposition of YSZ on a Si substrate, interfaces that can be classified into homogeneous phase interfaces and heterogeneous phase interfaces were formed. A colossal ionic conductivity of YSZ film at temperatures higher than 125 °C was observed parallel to the interface. The total ionic conductivity of YSZ thin film is increased significantly in comparison to the bulk YSZ electrolyte.
    By decreasing the YSZ electrolyte thickness and the electrode−electrolyte interfacial resistances, the operating temperature can be further reduced by using higher ionic conductivity GDCSr electrolyte at 650 °C or lower temperatures. The current results demonstrated that application of a thin YSZ protective layer to the GDCSr electrolyte for IT−SOFC not only enhanced oxygen−ion conduction but also provide a pathway for a faster ionic conduction.

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1研究背景 1 1-2研究方法 5 第二章 文獻回顧及理論基礎 9 2-1中溫固態氧化物燃料電池材料系統之發展 9 2-1-1氧化鈰基電解質結構與導電特性 9 2-1-2共掺雜對氧化鈰電性的影響 11 2-1-3氧化鋯基電解質離子導電特性 12 2-1-4空間電荷區域對離子導的影響 15 2-2陰極材料簡介 18 2-2-1螢石結構氧化鉍材料 19 2-2-2鈣鈦礦結構之鑭鍶鈷鐵氧化物 21 2-2-3氧化物複合銀電極 23 2-3微波燒結擴散理論 27 2-4混和離子電子導體材料 31 第三章 實驗量測與分析 35 3-1原料及設備 35 3-2實驗流程 38 3-3實驗分析 39 3-3-1場發射穿透式電子顯微鏡(TEM)分析 39 3-3-2密度之量測與分析(Density analysis) 39 3-3-3 X光繞射分析(X-ray diffraction analysis) 40 3-3-4交流阻抗頻譜(AC Impedance Spectroscopy)分析 41 3-3-5塔弗(Tafel)曲線及循環伏安法(CV)分析 44 第四章 微波優化鈷鐵酸鑭鍶陰極之性能研究 47 4-1 前言 47 4-2 實驗方法 49 4-3 結果分析與討論 51 4-3-1微波處理對陰極微觀結構之影響 51 4-3-2交流阻抗頻譜分析 56 4-3-3微波處理之活化能分析 60 4-3-4 微波處理對陰極活性還原催化反應之分析 62 4-4微波處理小結論 65 第五章 氧化鉍複合銀陰極之特性研究 67 5-1前言 67 5-2實驗方法 69 5-3結果分析與討論 70 5-3-1複合銀電極的微觀結構分析 70 5-3-2釔安定氧化鉍複合銀電極極化電阻及活化能分析 77 5-3-3循環伏安法和交換電流密度的分析 88 5-4 氧化鉍複合銀電極小結論 93 第六章 濺鍍釔安定氧化鋯薄膜對電性影響之研究 95 6-1前言 95 6-2實驗方法 97 6-3 釔安定氧化鋯薄膜濺鍍基板的特性分析 98 6-3-1濺鍍釔安定氧化鋯薄膜微觀結構分析 98 6-3-2濺鍍釔安定氧化鋯薄膜共平面電性分析 103 6-4 YSZ薄膜複合GDC電解質的特性分析 113 6-5濺鍍釔安定化氧化鋯薄膜小結論 120 第七章 總結論與未來展望 122 7-1總結論 122 7-2未來展望 126 參考文獻 127

    1. Maekawa, A., Evolution and Future Trend of Large Frame Gas Turbine for Power Generation. Journal of Power and Energy Systems, 2011. 5(2): p. 161-170.
    2. Bassily, A.M., Modeling, analysis, and modifications of different GT cooling techniques for modern commercial combined cycle power plants with reducing the irreversibility of the HRSG. Applied Thermal Engineering, 2013. 53(1): p. 131-146.
    3. Choi, J.H., J.H. Ahn, and T.S. Kim, Performance of a triple power generation cycle combining gas/steam turbine combined cycle and solid oxide fuel cell and the influence of carbon capture. Applied Thermal Engineering, 2014. 71(1): p. 301-309.
    4. Kobayashi, Y., Y. Ando, M. Nishiura, H. Kishizawa, M. Iwata, N. Matake, and K. Tomida, Recent Progress of SOFC Combined Cycle System with Segmented-In-Series Tubular Type Cell Stack at MHI. ECS Transactions, 2013. 57(1): p. 53-60.
    5. Steele, B.C.H. and A. Heinzel, Materials for fuel-cell technologies. Nature, 2001. 414(6861): p. 345-352.
    6. Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 2000. 45(15–16): p. 2423-2435.
    7. Wachsman, E.D. and K.T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells. Science, 2011. 334(6058): p. 935-939.
    8. Reddy, K. and K. Karan, Sinterability, Mechanical, Microstructural, and Electrical Properties of Gadolinium-Doped Ceria Electrolyte for Low-Temperature Solid Oxide Fuel Cells. Journal of Electroceramics, 2005. 15(1): p. 45-56.
    9. Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002. 6(5): p. 433-455.
    10. Skinner, S.J. and J.A. Kilner, Oxygen ion conductors. Materials Today, 2003. 6(3): p. 30-37.
    11. Inaba, H. and H. Tagawa, Ceria-based solid electrolytes. Solid State Ionics, 1996. 83(1–2): p. 1-16.
    12. Singhal, S.C. and K. Kendall, Chapter 1 - Introduction to SOFCs, in High Temperature and Solid Oxide Fuel Cells, S.C. Singhal and K. Kendal, Editors. 2003, Elsevier Science: Amsterdam. p. 1-22.
    13. Shemilt, J.E., H.M. Williams, M.J. Edirisinghe, j.R.G. Evans, and B. Ralph, Fracture toughness of doped-ceria ceramics. Scripta Materialia, 1997. 36(8): p. 929-934.
    14. Dudek, M., Ceramic oxide electrolytes based on CeO2—Preparation, properties and possibility of application to electrochemical devices. Journal of the European Ceramic Society, 2008. 28(5): p. 965-971.
    15. Dudek, M., A. Rapacz-Kmita, M. Mroczkowska, M. Mosiałek, and G. Mordarski, Co-doped ceria-based solid solution in the CeO2–M2O3–CaO, M = Sm, Gd system. Electrochimica Acta, 2010. 55(14): p. 4387-4394.
    16. Panigrahi, S., R.C. Biswal, S. Anwar, L. Besra, and S. Bhattacharjee, Temperature Dependence of Ionic Conductivity of Ceria Electrolyte at Concentrated Range of Multiple Doping. Journal of the American Ceramic Society, 2013. 96(9): p. 2846-2851.
    17. Steele, B.C.H., Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics, 2000. 129(1–4): p. 95-110.
    18. Kharton, V.V., F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, and J.R. Frade, Ceria-based materials for solid oxide fuel cells. Journal of Materials Science, 2001. 36(5): p. 1105-1117.
    19. Sameshima, S., T. Ichikawa, M. Kawaminami, and Y. Hirata, Thermal and mechanical properties of rare earth-doped ceria ceramics. Materials Chemistry and Physics, 1999. 61(1): p. 31-35.
    20. Dudek, M., M. Mosiałek, G. Mordarski, R. Socha, and A. Rapacz-Kmita, Ionic Conductivity of the CeO2-Gd2O3-SrO System, in Archives of Metallurgy and Materials. 2011. p. 1249.
    21. Badwal, S.P.S. and F.T. Ciacchi, Oxygen-ion conducting electrolyte materials for solid oxide fuel cells. Ionics, 2000. 6(1-2): p. 1-21.
    22. Maier, J., Ionic conduction in space charge regions. Progress in Solid State Chemistry, 1995. 23(3): p. 171-263.
    23. Sata, N., K. Eberman, K. Eberl, and J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000. 408(6815): p. 946-949.
    24. Kosacki, I., C.M. Rouleau, P.F. Becher, J. Bentley, and D.H. Lowndes, Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics, 2005. 176(13–14): p. 1319-1326.
    25. Garcia-Barriocanal, J., A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, and J. Santamaria, Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science, 2008. 321(5889): p. 676-680.
    26. Schichtel, N., C. Korte, D. Hesse, and J. Janek, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009. 11(17): p. 3043-3048.
    27. Emiliana, F., P. Daniele, and T. Enrico, Ionic conductivity in oxide heterostructures: the role of interfaces. Science and Technology of Advanced Materials, 2010. 11(5): p. 054503.
    28. Minh, N.Q., Ceramic Fuel Cells. Journal of the American Ceramic Society, 1993. 76(3): p. 563-588.
    29. Setoguchi, T., K. Eguchi, and H. Arai. Thin film fabrication of stabilized zirconia for solid oxide fuel cells. 1991.
    30. Hibino, T., A. Hashimoto, K. Asano, M. Yano, M. Suzuki, and M. Sano, An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance with Hydrocarbons than with Hydrogen. Electrochemical and Solid-State Letters, 2002. 5(11): p. A242-A244.
    31. Shah, M. and S.A. Barnett, Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3−δ into Gd-Doped Ceria. Solid State Ionics, 2008. 179(35–36): p. 2059-2064.
    32. Leng, Y. J. and S. H. Chan, Anode-Supported SOFCs with Y2O3-Doped Bi2O3 /  Gd2O3-Doped CeO2 Composite Electrolyte Film. Electrochemical and Solid-State Letters, 2006. 9(2): p. A56-A59.
    33. Sarikaya, A., V. Petrovsky, and F. Dogan, Silver Based Perovskite Nanocomposites as Combined Cathode and Current Collector Layers for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 2012. 159(11): p. F665-F669.
    34. Sammes, N.M., G.A. Tompsett, H. Näfe, and F. Aldinger, Bismuth based oxide electrolytes— structure and ionic conductivity. Journal of the European Ceramic Society, 1999. 19(10): p. 1801-1826.
    35. Datta, R.K. and J.P. Meehan, The System Bi2O3–R2O3 (R=Y, Gd). Zeitschrift für anorganische und allgemeine Chemie, 1971. 383(3): p. 328-337.
    36. Iwahara, H., T. Esaka, T. Sato, and T. Takahashi, Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3 Ln2O3 (Ln = La Yb). Journal of Solid State Chemistry, 1981. 39(2): p. 173-180.
    37. Cahen, H.T., T.G.M. Van Den Belt, J.H.W. De Wit, and G.H.J. Broers, The electrical conductivity of δ-Bi2O3 stabilized by isovalent rare-earth oxides R2O3. Solid State Ionics, 1980. 1(5–6): p. 411-423.
    38. Shuk, P., H.D. Wiemhöfer, U. Guth, W. Göpel, and M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, 1996. 89(3–4): p. 179-196.
    39. Lakshminarayanan, N., H. Choi, J.N. Kuhn, and U.S. Ozkan, Effect of additional B-site transition metal doping on oxygen transport and activation characteristics in La0.6Sr0.4(Co0.18Fe0.72X0.1)O3−δ (where X = Zn, Ni or Cu) perovskite oxides. Applied Catalysis B: Environmental, 2011. 103(3–4): p. 318-325.
    40. Kilner, J.A., Fast oxygen transport in acceptor doped oxides. Solid State Ionics, 2000. 129(1–4): p. 13-23.
    41. Kieslich, G., S. Sun, and A.K. Cheetham, An extended Tolerance Factor approach for organic-inorganic perovskites. Chemical Science, 2015. 6(6): p. 3430-3433.
    42. Johnsson, M. and P. Lemmens, Crystallography and chemistry of perovskites. Handbook of magnetism and advanced magnetic materials, 2007.
    43. Simner, S.P., M.D. Anderson, L.R. Pederson, and J.W. Stevenson, Performance Variability of La ( Sr ) FeO3 SOFC Cathode with Pt, Ag, and Au Current Collectors. Journal of The Electrochemical Society, 2005. 152(9): p. A1851-A1859.
    44. Meng, G., M. Zhou, and D. Peng, A new phenomenon — The inductive impedance in Bi2O3 based oxygen ionic conductors. Solid State Ionics, 1986. 18–19, Part 2(0): p. 756-760.
    45. Wang, S.F., J.P. Dougherty, W. Huebner, and J.G. Pepin, Silver-Palladium Thick-Film Conductors. Journal of the American Ceramic Society, 1994. 77(12): p. 3051-3072.
    46. Bhan, M.K., P.K. Nag, G.P. Miller, and J.C. Gregory, Chemical and morphological changes on silver surfaces produced by microwave generated atomic oxygen. Journal of Vacuum Science & Technology A, 1994. 12(3): p. 699-706.
    47. Haanappel, V.A.C., D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H. Wesemeyer, B. Röwekamp, C. Tropartz, and F. Tietz, The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. Journal of Power Sources, 2004. 130(1–2): p. 119-128.
    48. Waterhouse, G.I.N., G.A. Bowmaker, and J.B. Metson, Oxidation of a polycrystalline silver foil by reaction with ozone. Applied Surface Science, 2001. 183(3–4): p. 191-204.
    49. Li, S., Z. Lü, B. Wei, X. Huang, J. Miao, Z. Liu, and W. Su, Performances of Ba0.5Sr0.5Co0.6Fe0.4O3−δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. Journal of Alloys and Compounds, 2008. 448(1–2): p. 116-121.
    50. Center, P.U.T.P.R. and Y.S. Touloukian, Thermophysical Properties of Matter: Specific heat: metallic elements and alloys, by Y. S. Touloukian and E. H. Buyco. 1970: IFI/Plenum.
    51. Brook, R.J., Controlled Grain Growth, in Treatise on Materials Science & Technology, F.Y.W. Franklin, Editor. 1976, Elsevier. p. 331-364.
    52. Rane, S.B., T. Seth, G.J. Phatak, D.P. Amalnerkar, and M. Ghatpande, Effect of inorganic binders on the properties of silver thick films. Journal of Materials Science: Materials in Electronics, 2004. 15(2): p. 103-106.
    53. Tsai, T. and S.A. Barnett, Increased solid-oxide fuel cell power density using interfacial ceria layers. Solid State Ionics, 1997. 98(3–4): p. 191-196.
    54. Camaratta, M. and E. Wachsman, Silver–bismuth oxide cathodes for IT-SOFCs; Part I — Microstructural instability. Solid State Ionics, 2007. 178(19–20): p. 1242-1247.
    55. Wang, S., T. Kato, S. Nagata, T. Honda, T. Kaneko, N. Iwashita, and M. Dokiya, Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9–Ag cathode for ceria electrolyte SOFCs. Solid State Ionics, 2002. 146(3–4): p. 203-210.
    56. Wu, Z. and M. Liu, Ag-Bi1.5Y0.5O3 Composite Cathode Materials for BaCe0.8Gd0.2O3-Based Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 1998. 81(5): p. 1215-1220.
    57. Huang, S., G. Zhou, and Y. Xie, Electrochemical performances of Ag–(Bi2O3)0.75(Y2O3)0.25 composite cathodes. Journal of Alloys and Compounds, 2008. 464(1–2): p. 322-326.
    58. Datta, P., P. Majewski, and F. Aldinger, Synthesis and characterization of gadolinia-doped ceria–silver cermet cathode material for solid oxide fuel cells. Materials Chemistry and Physics, 2008. 107(2–3): p. 370-376.
    59. Vaidhyanathan, B., A.P. Singh, D.K. Agrawal, T.R. Shrout, R. Roy, and S. Ganguly, Microwave Effects in Lead Zirconium Titanate Synthesis: Enhanced Kinetics and Changed Mechanisms. Journal of the American Ceramic Society, 2001. 84(6): p. 1197-1202.
    60. Oghbaei, M. and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 2010. 494(1–2): p. 175-189.
    61. Clark, D.E. and W.H. Sutton, Microwave Processing of Materials. Annual Review of Materials Science, 1996. 26(1): p. 299-331.
    62. Sutton, W.H., Microwave processing of ceramic materials. American Ceramic Society Bulletin, 1989. 68(2): p. 376-386.
    63. Gabriel, C., S. Gabriel, E. H. Grant, E. H. Grant, B. S. J. Halstead, and D. Michael P. Mingos, Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 1998. 27(3): p. 213-224.
    64. Jiao, Z., N. Shikazono, and N. Kasagi, Performance of an anode support solid oxide fuel cell manufactured by microwave sintering. Journal of Power Sources, 2010. 195(1): p. 151-154.
    65. Adler, S.B., Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chemical Reviews, 2004. 104(10): p. 4791-4844.
    66. Wang, L.S., Deposition and Properties of Yttria-Stabilized Bi2O3 Thin Films Using Reactive Direct Current Magnetron Cosputtering. Journal of The Electrochemical Society, 1992. 139(9): p. 2567.
    67. Adler, S.B., Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes. Solid State Ionics, 1998. 111(1–2): p. 125-134.
    68. Co, A.C., S.J. Xia, and V.I. Birss, A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes. Journal of The Electrochemical Society, 2005. 152(3): p. A570-A576.
    69. Yuan, X.Z., C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications. 2009: Springer.
    70. Lai, Y., Y. Li, L. Jiang, W. Xu, X. Lv, J. Li, and Y. Liu, Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution – Tafel and EIS investigations. Journal of Electroanalytical Chemistry, 2012. 671(0): p. 16-23.
    71. Gong, Y., W. Ji, L. Zhang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, Low temperature deposited (Ce,Gd)O2−x interlayer for La0.6Sr0.4Co0.2Fe0.8O3 cathode based solid oxide fuel cell. Journal of Power Sources, 2011. 196(5): p. 2768-2772.
    72. Liu, Y.-F., X.-Q. Liu, and G.-Y. Meng, A novel route of synthesizing La1−xSrxCoO3 by microwave irradiation. Materials Letters, 2001. 48(3–4): p. 176-183.
    73. Kelly, J.P. and O.A. Graeve, Effect of Powder Characteristics on Nanosintering, in Sintering, R. Castro and K. van Benthem, Editors. 2013, Springer Berlin Heidelberg. p. 57-95.
    74. Ciacchi, F.T., S.A. Nightingale, and S.P.S. Badwal, Microwave sintering of zirconia-yttria electrolytes and measurement of their ionic conductivity. Solid State Ionics, 1996. 86–88, Part 2(0): p. 1167-1172.
    75. Jiao, Z., N. Shikazono, and N. Kasagi, Comparison of ultra-fast microwave sintering and conventional thermal sintering in manufacturing of anode support solid oxide fuel cell. Journal of Power Sources, 2010. 195(24): p. 8019-8027.
    76. Bykov, Y.V., K.I. Rybakov, and V.E. Semenov, High-temperature microwave processing of materials. Journal of Physics D: Applied Physics, 2001. 34(13): p. R55.
    77. Lu, K. and F. Shen, Long term behaviors of La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 as cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2014. 39(15): p. 7963-7971.
    78. van Heuveln, F.H. and H.J.M. Bouwmeester, Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia: II. Electrode Kinetics. Journal of The Electrochemical Society, 1997. 144(1): p. 134-140.
    79. Adler, S.B., Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics, 2000. 135(1–4): p. 603-612.
    80. Esquirol, A., N.P. Brandon, J.A. Kilner, and M. Mogensen, Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate-Temperature SOFCs. Journal of The Electrochemical Society, 2004. 151(11): p. A1847-A1855.
    81. Wang, J., L. Jiang, X. Xiong, C. Zhang, X. Jin, L. Lei, and K. Huang, A Broad Stability Investigation of Nb-Doped SrCoO2.5+δ as a Reversible Oxygen Electrode for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 2016. 163(8): p. F891-F898.
    82. KHAN, M., R. RAZA, M. CHAUDHRY, G. ABBAS, A. RAFIQUE, M. ULLAH, A. ALIa, and M. MUSHTAQ, Ceria-based Nanocomposite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (IT-SOFCs). 2016.
    83. Liu, J., A.C. Co, S. Paulson, and V.I. Birss, Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics, 2006. 177(3–4): p. 377-387.
    84. Wachsman, E.D. and K.L. Duncan, Stable high conductivity bilayered electrolytes for low temperature Solid Oxide Fuel Cells, in Other Information: PBD: 31 Mar 2002.
    85. Mosiałek, M., P. Nowak, M. Dudek, and G. Mordarski, Oxygen reduction at the Ag/Gd0.2Ce0.8O1.9 interface studied by electrochemical impedance spectroscopy and cyclic voltammetry at the silver point electrode. Electrochimica Acta, 2014. 120(0): p. 248-257.
    86. Wang, L.S. and S.A. Barnett, Lowering the Air‐Electrode Interfacial Resistance in Medium‐Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 1992. 139(10): p. L89-L91.
    87. Xia, C., Y. Zhang, and M. Liu, Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells. Applied Physics Letters, 2003. 82(6): p. 901-903.
    88. Othman, N.H., Z. Wu, and K. Li, Bi1.5Y0.3Sm0.2O3-δ-based ceramic hollow fibre membranes for oxygenseparation and chemicalreactions. Journal of Membrane Science, 2013. 432(0): p. 58-65.
    89. Kim, J. and Y.S. Lin, Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes. Journal of Membrane Science, 2000. 167(1): p. 123-133.
    90. Wu, W., Z. Liu, Z. Zhao, X. Zhang, D. Ou, B. Tu, D.a. Cui, and M. Cheng, Gadolinia-doped ceria barrier layer produced by sputtering and annealing for anode-supported solid oxide fuel cells. Chinese Journal of Catalysis, 2014. 35(8): p. 1376-1384.
    91. Bauerle, J.E., Study of solid electrolyte polarization by a complex admittance method. Journal of Physics and Chemistry of Solids, 1969. 30(12): p. 2657-2670.
    92. Nolan, M., J.E. Fearon, and G.W. Watson, Oxygen vacancy formation and migration in ceria. Solid State Ionics, 2006. 177(35–36): p. 3069-3074.
    93. Inoue, T., T. Setoguchi, K. Eguchi, and H. Arai, Study of a solid oxide fuel cell with a ceria-based solid electrolyte. Solid State Ionics, 1989. 35(3–4): p. 285-291.
    94. Eguchi, K., T. Setoguchi, T. Inoue, and H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics, 1992. 52(1–3): p. 165-172.
    95. Qian, J., Z. Tao, J. Xiao, G. Jiang, and W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition. International Journal of Hydrogen Energy, 2013. 38(5): p. 2407-2412.
    96. Anderson, H.U., Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics, 1992. 52(1–3): p. 33-41.
    97. Pergolesi, D., E. Fabbri, S.N. Cook, V. Roddatis, E. Traversa, and J.A. Kilner, Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia–CeO2 heterointerfaces. ACS Nano, 2012. 6(12): p. 10524-10534.
    98. Marques, F.M.B. and L.M. Navarro, Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study. Solid State Ionics, 1997. 100(1–2): p. 29-38.
    99. Kim, S.-G., S.P. Yoon, S.W. Nam, S.-H. Hyun, and S.-A. Hong, Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol–gel coating method. Journal of Power Sources, 2002. 110(1): p. 222-228.
    100. Cho, S., Y. Kim, J.-H. Kim, A. Manthiram, and H. Wang, High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochimica Acta, 2011. 56(16): p. 5472-5477.
    101. Yahiro, H., Y. Baba, K. Eguchi, and H. Arai, High Temperature Fuel Cell with Ceria‐Yttria Solid Electrolyte. Journal of The Electrochemical Society, 1988. 135(8): p. 2077-2080.
    102. Shen, W., J. Jiang, and J. Hertz, Using thin films to investigate heterogeneous defect chemistry. Journal of Electroceramics, 2015. 34(1): p. 74-81.
    103. Saraf, L.V., C.M. Wang, M.H. Engelhard, and P. Nachimuthu, Surface and Interface Properties of 10-12 Unit Cells Thick Sputter Deposited Epitaxial CeO2 Films. Research Letters in Materials Science, 2008. p. 5.
    104. Gao, Z., D. Kennouche, and S.A. Barnett, Reduced-temperature firing of solid oxide fuel cells with zirconia/ceria bi-layer electrolytes. Journal of Power Sources, 2014. 260(0): p. 259-263.

    無法下載圖示 全文公開日期 2021/08/08 (校內網路)
    全文公開日期 2026/08/08 (校外網路)
    全文公開日期 2026/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE