簡易檢索 / 詳目顯示

研究生: 葉宗和
Tsung-Her Yeh
論文名稱: 氧化鋯材料相變韌化機制研究與離子導電性之應用
Toughening mechanism investigation and ionic conductivity application of zirconia ceramics
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 程志賢
none
李信義
none
杜正恭
none
盧宏揚
none
沈博彥
none
段維新
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 238
中文關鍵詞: 氧化鋯固態氧化物燃料電池相變韌化機制離子導電性臨場同步輻射X光繞射-(循環)應力試驗拉曼光譜穿透式電子顯微鏡共摻雜應力應變試驗離子半徑平均晶格束縛能陽離子添加量同步輻射X光螢光吸收試驗X光吸收光譜近邊緣X光微細結構傅立葉轉換催化活性交流阻抗圖譜塔弗曲線極化電阻交換電流循環伏安測試新型電極半電池發電效率功率密度
外文關鍵詞: toughening mechanism, In situ compression X-ray diffraction pattern wi, Raman spectrum, ionic radius, average lattice binding energy, dopant concentratio, X-ray absorption spectrum, near edge X-ray absorption fine structure, Fourier transform method, Tafel curve, current-overpotential, polarization loss, helf cell
相關次數: 點閱:442下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討氧化鋯材料相變韌化機制與離子導電性之應用,利用臨場同步輻射X光繞射-(循環)應力試驗、拉曼光譜與穿透式電子顯微鏡等手法分析存在於共摻雜適當含量氧化釔(Y2O3)、氧化鈮(Nb2O5)和氧化釔(Y2O3)、氧化鈰(CeO2)於氧化鋯(3Y)之兩種氧化鋯基材料之韌化機制。結果顯示,兩種共摻雜型氧化鋯基材料在適當量添加時皆具有相當優異的機械性質,屬於立方相與正方相混合之部分安定氧化鋯結構(PSZ),其韌性值遠優於3 mol%釔安定正方相氧化鋯多晶體(3Y-TZP)1-3倍。在臨場同步輻射X光繞射-應力試驗中,共摻雜型氧化鋯試片之繞射圖譜並未發現繞射峰有出現正方晶轉單斜晶(t-to-m)相變化與其他類似正方晶轉菱方晶(t-to-r)與正方晶轉斜方晶(t-to-o)等相變化韌化機制,也尚未觀察到正方相鐵彈域轉換(Ferroelastic domain switching)的韌化機制。有趣的是,我們觀察到一個與立方相(c)和亞安定型正方相(t’)具有相依性的新相變韌化機制,且運用穿透式電子顯微鏡觀察彼此之間結晶學方位關聯性與定義晶格常數。同時搭配應力應變試驗觀察此新相變化對於氧化鋯材料於應力動態循環情況下所扮演的角色。此外,利用不同的熱處理機制觀察氧化鋯材料韌性值變化的情形。
    本文之另一個重點即是對於上述共摻雜型氧化鋯基材料進行離子導電特性量測;結果顯示,添加於氧化鋯中之氧化物若其本身晶格束縛能過大,則會導致材料內部平均晶格束縛能提升,使氧離子於晶格中擴散不易,因而降低整體材料離子導電性。離子半徑也是影響離子導電性的因素之一,若添加離子半徑與母相之離子差異過大,則易使材料內部產生較大的晶格應變,使離子導電性降低。藉由對前述兩種共摻雜型氧化鋯基材料離子導電性研究所歸納出的離子導電性影響因子,依循(1)離子半徑接近母材鋯離子、(2)平均晶格束縛能越小越好、(3)最大的陽離子添加量,設計出共摻雜二價與三價陽離子於氧化鋯材料,結果顯示可有效的原始材料之離子導電性46%以上。
    對於添加過多陽離子之氧化鋯成分進行拉曼光譜與穿透式電子顯微鏡觀察內部結構的變化,發現影響電性下降的來源是因為晶界出現了對稱性較低的結構,並非一般文獻所提及的氧空缺序化或是缺陷叢聚所致;亦利用同步輻射X光螢光吸收試驗:X光吸收光譜(XAS)、近邊緣X光微細結構(NEXAF)與傅立葉轉換(FT)分析共摻雜系統之近邊緣微細結構與電性之關聯性。
    最後,將前章節所開發的電解質材料用以設計出新型電極材料並應用於固態氧化物燃料電池進行催化活性(塔弗曲線)、極化阻抗(交流阻抗分析)與發電效率測試,結果顯示在交流阻抗圖譜與塔弗曲線皆可觀察到本次所開發之新型電極比傳統Ni-YSZ具有較低的極化電阻並具有較高的交換電流(催化性),且其於循環伏安測試中包圍極大的面積,由此可預期新型電極將有助於提升固態氧化物燃料電池的發電能力;於半電池發電效率的測試,利用0.6mm的8YSZ電解質作支撐,以Pt-ZrO2作為參考陰極,並於5%H2無加濕的環境下具有34.54 mW/cm2之功率密度為常用的Ni-YSZ (28.02 mW/cm2)之1.23倍。


    Toughening mechanism and ionic conductivity enhancement in zirconia based ceramics containing Y2O3 and Nb2O5 as co-dopants to ZrO2 as well as Y2O3 and CeO2 as co-dopants to ZrO2 were investigated by using In-situ compression-X-ray diffraction technique with synchrotron radiation, Raman spectrum and Transmission electron microscopy (TEM). The results demonstrated that the co-doping zirconia system containing cubic and tetragonal mixed phases (Partially-stabilized zirconia: PSZ) exhibit outstanding mechanical properties by adding appropriate amount of dopants. The toughness values of PSZ specimens are 1-3 times higher than that of 3mol% yttria stabilized tetragonal zirconia polycrystal (3Y-TZP). Neither tetragonal-to-monoclinic phase transformation nor tetragonal-to-rhombohedral (t-to-r) nor tetragonal-to-orthorhombic (t-to-o) toughening mechanisms nor existence of ferroelastic domain switching of tetragonal phase were observed. Interestingly, a peculiar phase transformation which correlates cubic (c) and metastable tetragonal phases (pseudo-cubic phase: t’) was observed. The crystallographic relationship between c, t’ and new phase was identified as well as lattice parameters of each phase were calculated using TEM in the present study. Besides, the results of dynamic stress-stain curve and in-situ cyclic compression - X-ray diffraction technique with synchrotron radiation were analyzed to understand the contribution of peculiar phase transformation in toughening mechanism. The effect of thermal annealing on the performance of zirconia based ceramics was also discussed.
    Electrical properties of zirconia based ceramics demonstrated that the ionic conductivity of zirconia decreases by doping with high lattice binding energy dopants. Oxygen ion migration is found difficult in co-doped zirconia ceramics due to increase in the average binding energy. Moreover, ionic radius of the dopant is identified as another factor that influences the ionic conductivity. When the difference in radius between the dopant and host ions is too large, then a decrease in conductivity was observed due to serious lattice strain in zirconia crystal. The results of the previous investigation concludes that the influencing factors for the enhancement of ionic conductivity in zirconia system were (1) ionic radius of the dopant should be closer to zirconium cation (2) low average binding energy of doped zirconia (3) dopant concentration should not exceed the maximum interfering oxygen vacancies. In the present study, these principles are applied to achieve better ionic conductivity in divalent and trivalent cations co-doped zirconia system. When the amount of dopants exceeds the maximum interfering oxygen vacancies, the low symmetry phase is found. Due to this reason, ionic conductivity of doped zirconia was explained using Raman spectrum and TEM, instead of using general principles like oxygen vacancy clustering and/or occurring of defect association in zirconia specimens. The correlation between outstanding ionic conductivity and local structure of co-doping zirconia system was analyzed by using X-ray absorption spectrum (XAS), near edge X-ray absorption fine structure (NEXAFS) and Fourier transform (FT) method.
    Finally, novel anodes were developed with the mixture of 40wt% co-doped zirconia material of high ionic conductivity and 60wt% catalytic Ni. The characteristics like Tafel curve, current-overpotential, cyclic voltammetry curves and power density of half cell were studied to understand the mechanisms involved in the present system of specimens. Experimental results shows that the polarization resistance of Ni-8YSZ decreases significantly from 2.32 Ω-cm2 to 1.57 Ω-cm2 (at 800oC) by substituting Zr0.92Y0.155Mg0.005O2.0775 (MgYSZ) instead of 8YSZ, due to enhancement of triple phase boundary (TPB) area. Moreover, a decrease in activation energy for oxygen ion migration in 8YSZ was observed by modifying appropriate elements to 8YSZ, which is good for enhancing the velocity for oxygen ion migration in 8YSZ crystal and electrochemical reaction, containing oxygen ion oxidation and combination of oxygen and hydrogen to become water in modified anode. The catalytic activity of modified anode was correlated with the value of exchange current density (logi0) measured from Tafel plots under 5% H2 condition. The exchange current densities of modified anodes are found to be much higher than that of Ni-8YSZ. The order of catalytic activity in modified anodes follow Ni-MgYSZ> Ni-CaYSZ> Ni-SrYSZ> Ni-YSZ and hence the catalytic activity of anode is observed to depend on the ionic conductivity of co-doping zirconia in modified anode. Besides, the correlation is also found between logi0 and Rp. Increase in exchange current density and decrease in polarization loss were observed due to mass transfer of oxygen ions and easy charge transfer in modified anodes. The electrochemical reactions of anodes were explained using cyclic voltammetry method. Hysteresis loop like curves whose area increases with an increase of catalytic activity of anode is attributed to the easy formation of oxygen ion oxidation (O2-à1/2O2+2e-). The power density of the half cell Ni-MgYSZ/8YSZ with Pt-8YSZ as reference cathode (34.54 mW/cm2) is 23% higher than that of Ni-8YSZ/8YSZ with Pt-8YSZ as reference cathode (28.02 mW/cm2) at 800oC and the tendency of power density in modified anode is similar to that of catalytic activity variation in anode, indicating that the performance of the fuel cell could be enhanced by employing modified anodes with high ionic conductivity zirconia ceramics.

    中文摘要………………………………………………………………………………I 英文摘要……………………………………………………………………………II 致謝 目錄…………………………………………………………………………………IV 圖索引………………………………………………………………………………VII 表索引……………………………………………………………………………XIX 第一章 文獻回顧 1.1 燃料電池的發展……………………………………………………………1 1.2 電解質材料回顧 1.2.1 氧化鋯基電解質材料…………………………………………………3 1.2.2 氧化鈰基電解質材料…………………………………………………5 1.2.3 氧化鉍基電解質材料…………………………………………………7 1.2.4 其他螢石結構複合電解質材料………………………………………8 1.3 陽極材料 1.3.1 Ni基或其添加氧化物(YSZ,GDC,SDC) 與貴金屬(Pt, Pd, Ag, Ru, Rh))複合材料系統…………………………………………………11 1.3.2 適用於碳氫燃料:Cu基或其添加氧化物(YSZ,GDC,SDC)與貴金屬(Pt, Pd, Ag, Ru, Rh))複合材料系統……………………………………13 1.4 陰極材料 1.4.1 La1-xSrxMnO3(LSM)或其添加氧化物(YSZ,GDC,SDC)與貴金屬(Pt, Pd, Ag)複合材料系統……………………………………………………14 1.4.2 La1-xSrxCoO3(LSC)/ (La1-xSrx)zCoyFe1-yO3-δ(LSCF)或其添加氧化物(YSZ, GDC, SDC)與貴金屬(Pt, Pd, Ag)複合材料系統……………15 1.4.3 非La系統之陰極材料………………………………………………19 1.5 交流阻抗原理………………………………………………………………21 1.6 電極動力學 1.6.1 塔弗曲線……………………………………………………………26 1.6.2 循環伏安法量測……………………………………………………28 1.7 陽極操作原理 1.7.1 電極/電解質介面電化學……………………………………………30 1.7.1.1 電極之極化現象……………………………………………………30 1.7.2 活化極化………………………………………………………………32 1.7.3 濃度極化………………………………………………………………33 1.8 同步輻射X光吸收光譜 1.8.1 X光吸收光譜………………………………………………………34 1.8.2 X光吸收近邊緣結構(XANES)……………………………………37 1.8.3 延伸X光吸收微細結構(EXAFS)…………………………………38 1.8.4 EXAFS數據分析……………………………………………………41 1.9 機械性質 1.9.1 相變化方面…………………………………………………………48 1.9.2 麻田散相變…………………………………………………………48 1.9.3 不同型式氧化鋯材料之韌性與結構比較…………………………48 1.9.4 ZrO2 添加 YNbO4 系統…………………………………………49 1.9.5 正方晶轉單斜晶(t-to-m)之潛在問題……………………………49 1.10 鐵彈域轉換 1.10.1 氧化鋯材料的鐵彈域轉換………………………………………50 1.11 氧化鈮與氧化釔共摻雜於氧化鋯系統之機械性質與微觀研究………52 1.12 同步輻射臨場壓力-X光繞射試驗、研磨與熱分析試驗……………56 1.13 研究目的…………………………………………………………………60 第二章 實驗方法 2.1. 實驗藥品規格……………………………………………………………61 2.2. 實驗儀器規格……………………………………………………………62 2.3. 實驗步驟 2.3.1 機械性質方面………………………………………………………63 2.3.2 離子導電性方面……………………………………………………64 2.3.3 燃料電池元件方面…………………………………………………66 2.4 粉末製備 2.4.1 氧化鋯新相變化研究之粉末製備…………………………………67 2.4.1.1 氧化鋯(3Y)粉末…………………………………………………67 2.4.1.2 鈮酸釔(YNbO4)粉末………………………………………………67 2.4.1.3 氧化鋯(3Y)與鈮酸釔(YNbO4)混合粉末…………………………67 2.4.1.4 氧化鋯共摻雜粉末製備…………………………………………67 2.5 試片製作 2.5.1 圓柱狀試片…………………………………………………………68 2.5.2 薄型方狀試片………………………………………………………68 2.5.3 燒結曲線……………………………………………………………68 2.5.4燃料電池半電池元件製作…………………………………………68 2.6 機械性質量測 2.6.1 微硬度量測…………………………………………………………68 2.6.1.1破壞韌性……………………………………………………………68 2.6.2 應力-應變曲線………………………………………………………69 2.7 微觀與結構分析研究 2.7.1 X光繞射圖譜分析……………………………………………………69 2.7.2 電子顯微鏡元素與元素能譜分析…………………………………69 2.7.3 同步輻射臨場壓力-X光繞射試驗…………………………………69 2.8 離子導電性與燃料電池特性量測 2.8.1 交流阻抗量測………………………………………………………71 2.8.2 極化阻抗(Polarization resistance)之測量…………………………72 2.8.3 塔弗曲線(Tafel plot)之測量…………………………………………73 2.8.4 循環伏安法(Cyclic Voltammetry)之測量…………………………73 2.8.5 半電池發電效益(Power density)之測量……………………………74 第三章 三價陽離子與氧化鈮共摻雜於氧化鋯之機械與微觀研究 3.1 氧化釔與氧化鈮摻雜方式對氧化鋯機械性質之影響…………………75 3.2 氧化鈮與不同含量之氧化釔共摻雜於氧化鋯系統機械性質與微觀研究…………………………………………………………………………81 3.3 不同三價陽離子與氧化鈮共摻雜於氧化鋯之機械與微觀研究………87 第四章 氧化鈰固溶於氧化鋯之機械與微觀行為 4.1 氧化鈰固溶於氧化鋯材料之X光繞射圖譜分析………………………94 4.2 氧化鈰固溶於氧化鋯材料之微觀與機械性質分析……………………96 第五章 同步輻射臨場應力繞射試驗分析氧化鋯韌化行為 5.1 出現於氧化鋯(3Y)系統之新型應力誘發相變化行為…………………98 5.2出現於添加鈮酸釔(YNbO4)於氧化鋯(3Y)系統之新型應力誘發相變化行為…………………………………………………………………103 5.3出現於添加氧化鈰(CeO2)於氧化鋯(3Y)系統之新型應力誘發相變化行為…………………………………………………………………106 第六章 氧化鋯新應力誘發相變化之微觀分析 6.1 添加鈮酸釔(5 mol%YNbO4)於氧化鋯(3Y)之掃描式電子顯微鏡(SEM)與能量能譜分析儀(EDS)分析………………………………………112 6.2 同步輻射臨場壓力-X光繞射試驗與持壓測試分析…………………112 6.3 添加鈮酸釔(5 mol%YNbO4)於氧化鋯(3Y)之穿透式電子顯微鏡(TEM)分析………………………………………………………………114 第七章 氧化鋯添加鈮酸釔應力-應變分析…………………………………136 第八章 表面處理/熱處理對氧化鋯材料韌性提升之研究 8.1 微觀結構分析………………………………………………………141 8.2 X-ray繞射圖譜分析………………………………………………144 8.3 晶格畸變模擬分析……………………………………………146 第九章 摻雜型氧化鋯之電性研究 9.1 氧化鈮與不同含量之氧化釔共摻雜於氧化鋯(3Y)系統之電性分析…149 9.2三價陽離子(RE3+)與五價鈮離子(Nb5+)共摻雜於ZrO2(3Y)對離子導電率之影響……………………………………………………………………151 9.3 摻雜氧化鈰於氧化鋯之電性研究………………………………………154 第十章 氧化鋯與氧化鈰共摻雜設計、微觀與電性之研究 10.1摻雜濃度與缺陷型態對於氧化鋯離子導電性與微觀的影響…………158 10.2 不同離子半徑陽離子之氧化鋯共摻雜系統對電性的影響…………169 10.3離子導電性與同步輻射螢光邊緣吸收光譜微細結構分析……………179 10.4 電性劣化與微觀特徵關係……………………………………………181 第十一章 共摻雜型新電極設計與半電池/燃料電池量測 11.1 Ni-YSZ與共摻雜新電極結構與微觀分析……………………………186 11.2 交流阻抗分析改良陽極之極化電阻與電雙層效應...............................190 11.3 塔弗曲線、極化曲線與循環伏安法分析電極活性…………………197 11.4 發電效應(Power density)………………………………………………202 第十二章 結論……………………………………………………………………204 參考文獻……………………………………………………………………………212

    [1]W. R. Grove, “On Voltaic Series and the Combination of Gases by Platinum Philos,” Mag. 14, 127-30 (1839).
    [2]W. Nernst, “Uber Die Elektrolytische Leitung Fester Körper Bei Sehr HohenTemperaturen,” Z. Elektrochem, 641-43 (1899).
    [3]Baur and H. Preis. “Uber Brennsloff-Ketten Mit Festleiten.” Z. Electrochem., 43. 727-32 (1937).
    [4]N. Q. Minh, "High-Temperature Fuel Cells. Part 2: The Solid Oxide Cells, CHEMTECH, 21,120-26 (1991).
    [5]Advances in Ceramics. Vol. 3, Science and Technology of Zircoma. Edited by A. H. Heuer and L. W. Hobbs. American Ceramic Society. Columbus, OH. 1981.
    [6]Advances in Ceramics, Vol. 24, Science and Technology of Zirconia Ⅲ. Edited by S. Somiya, N. Yamamolo, and H. Yanagida. American Ceramic Society, Westerville, OH. 1988.
    [7]J V. Patterson, E. C. Borgen, and R. A. Rapp. "Mixed Conduction in Zr0.85Ca0.15O1.85 and Th0.85Y0.15O1.85 Solid Electrolytes," J. Electrochem. Soc. 114, 752-58 (1967).
    [8]J. F. Baumard and P. Abelard, "Defect Structure and Transport Properties of ZrO2 Based Solid Electrolytes", in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH , (1984) 555.
    [9]B. Choudhary, H. S. Maiti, and E. C. Subbarao, "Defect Structure and transport Properties", pp.1-80 in Solid Electrolyte and Their Applications Edited by E. C. Subbarao. Plenum Press. New York. 1980.
    [10]T. H. Etsell and S. N. Flengas, "The Electrical Properties of Solid Oxide Electrolytes," Chem. Rev., 70, 339-76 (1970).
    [11]S. P. S. Badwal and A. E. Hughes, "Modification of Cell Characteristics by Segregated Impurities": pp. 445-54 in Proceedings of the Second International symposium on Solid Oxide Fuel Cells. Edited by F. Gross, P. Zegers, S. C. Singhal and O. Yamamoto. Commission of The European Communities, Luxemburg, 1991.
    [12]J. E. Bauerle, "Study of Solid Electrolyte Polarization by a Complex Admittance Method,” J. Phys. Chem. Solids. 30, 2,657-70 (1969).
    [13]M. Kleitz, H. Bernard, E. Fernandez, and E. Schouler, "Impedance Spectroscopy and Electrical Resistance Measurements on Stabilized Zirconia", see Ref.5,pp.310-36.
    [14]M. J. Verkerk. B. J. Middelbuis, and A. J. Burggraaf, "Effect of Grain boundaries on the Conductivity of High-Purity ZrO2-Y2O3 Ceramics." Solid State Ionics, 6,159-70 (1982).
    [15]E. P. Butler. R. K. Slotwinski, N. Bonanos, J. Drennan. and B. C. H. Steele. "Microstructural-Electrical Property Relationships in High-Conductivity Zirconia", see Ref. 6, pp.572-84.
    [16]W. Baukal, "Solid Oxide Electrolyte with Time-Dependent Conductivity": pp. 247-54 in From Electrocatalysis to Fuel Cells. Edited by G. Sandstede. University of Washington Press, Seattle, WA. 1972.
    [17]Y. Suzuki, A. Shimada and S. Senda, "Time-Dependent Change in Electrical Resistivity of Polycrystalline YSZ and CSZ," Solid State Ionic,42, 121-25 (1990).
    [18]S. P. S. Badwal and J. Drennan, "Yttria-Zirconia: Effect of Microstructure on Conductivity," J. Muter. Sci. 22, 3231-39 (1987).
    [19]A. G. Evans. "The New High-Toughness Ceramics": pp. 267-91 in Fracture Mechanics: Perspective and Directions (Twentieth Symposium), ASTM STP 1020. Edited by R. P. Wei and R. P. Gangloff. American Society for Testing and Materials. Philadelphia. PA, 1989.
    [20] J. P. Singh, A. L. Bosak, D. V. Dees and C. C. McPheeters, "Improved Fracture Toughness of ZrO2 Electrolyte for Solid Oxide Fuel Cell": pp. 145-48 in 1988 Fuel Cell Seminar Abstracts (Long Beach, CA, Oct. 23-26, 1988). Courtesy Associates, Washington, DC. 1988.
    [21]F. Ishizaki. T. Yoshida, and S. Sakurada, "Effect of Alumina Addition on the Electrical Properties of Yttria-Doped Zirconia": pp. 3-14 in Proceedings of the First international Symposium on Solid Oxide Fuel Cells. Edited by S. C. Singhal. The Electrochemical Society, Pennington, NJ. 1989.
    [22]M. T. Hernandez, J. R. Jurado, and P. Duran, "Effect of Alumina Additions on the Electrical Properties of ZrO2-Y2O3 and ZrO2-Y2O3-CeO2 Electrolytes": see Ref. 14. pp. 421-28.
    [23]O. Yamamoto. Y. Takeda, N. Imanishi. T. Kawahara, G. Q. Shen, M. Mori. and T. Abe, "Electrical and Mechanical Properties of Zirconia-Alumina Composite Electrolyte": see Ref. 14, pp.437-44.
    [24]P. Duran, J. R. Jurado, C. Moure, M. T. Hernandez, and F. Capel, “Improvement of the Mechanical Properties of Yttria-Stabilized Zirconia Electrolyte", see Ref. 14. pp. 401-407.
    [25]W. Weppner, "Tetragonal Zirconia for Solid Oxide Fuel Cells": pp. 83-89 in proceeding of the international Symposium on Solid Oxide Fuel Cells. Edited by O. Yamamoto. M. Dokiya, and H. Tagawa. Science House. Tokyo, Japan, 1990.
    [26]Tsung-Her Yeh and Chen-Chia Chou, “Doping Effect and vacancy Formation on ionic conductivity of Zirconia Ceramics” Journal of Physics and Chemistry of Solids (2007/08) published.
    [27]Tsung-Her Yeh, Wei-Chi Hsu and Chen-Chia Chou, “Mechanical and Electrical properties of ZrO2 doped with RENbO4 (RE=Yb, Er, Y, Dy, Y0.5Nd0.5, Sm, Nd),” 128 J. De. Phys. IV (2005) 213-219.
    [28]T. Sato and M. Shimada. "Crystalline Phase Changes in Yttria-Partially-stabilized Zirconia by Low-Temperature Annealing,”J. Am. Ceram. Soc., 67 [10] C-212-C-213 (1984).
    [29]E. C. Subbarao and H. S. Maiti. "Oxygen Sensors and Pumps": see Ref. 7. pp.731-47.
    [30]A. N. Vlasov and M. V. Perfiliev, "Ageing of ZrO2-Based Solid Electrolytes." Solid Stale Ionics, 25, 245-53 (1987).
    [31]R. N. Blumenthal F. S. Brugner, and J. E. Gamier. "The Electrical Conductivity of CaO-Doped Nonstoichiometric Cerium Oxide from 700oC to 1500 oC" J. Electrochem. Sw., 120, 1230-37 (1973).
    [32]H. L. Tuller and A. S. Nowick. "Doped Ceria as a Solid Oxide Electrolyte." J. Electrochem. Soc., 122, 255-59 (1975).
    [33]Mogensen, H.; Lindegaard, T.; Hansen, U. R.; Mogensen, G., J. Electrochem. Soc. 1994, 141, 2122.
    [34]Yohiro, H.; Eguchi, K.; Arai, H., Solid State Ionics 1986, 21, 37.
    [35]Eguchi, K., Ceramic materials containing rare earth oxides for solid oxide fuel cell. Journal of Alloys and Compounds 1997, 250, (1-2), 486-491.
    [36]Inoue, T.; Setoguchi, T.; Eguchi, K.; Arai, H., Solid State Ionics 1989, 35, 285.
    [37]Yahiro, H.; Baba, Y.; Eguchi, K.; Arai, H., Electrochem. Soc. 1988, 135, 2077.
    [38]Tompseet, G. A.; Sammes, N. M.; Yamamoto, O., Ceria-yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. Journal of the American Ceramic Society 1997, 80, (12), 3181-3186.
    [39]Dokita, M., Second International Meeting of Pacific Rim Ceramics Societies, Cairns, Australia 1996.
    [40]Mogensen, M.; Sammes, N. M.; Tompsett, G. A., Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 2000, 129, (1-4), 63-94.
    [41]Hibino, T.; Kuwahara, Y.; Wang, S., Effect of electrode and electrolyte modification on the performance of one-chamber solid oxide fuel cell. Journal of the electrochemical Society 1999, 146, (8), 2821-2826.
    [42]Hibino, T.; Ushiki, K.; Kuwahara, Y., New concept for simplifying SOFC system. Solid State Ionics 1996, 91, (1-2), 69-74.
    [43]I. Bloom, M. C. Hash, J. P. Zebrowski, K. M. Myles and M. Krumpelt, “Oxide-ion conductivity of bismuth aluminates,”Solid State Ionics 53-56 (1992) 739-747.
    [44]D.W. Stricker and W. G. Carison, “Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 system,” J. Am. Ceram. Soc., 48 [6] 286-289 (1965).
    [45]M. Hirano and E. Kato, “Preparation of Tetragonal-Zirconia Ceramics in ZrO2-Sc2O3 System by Hydrolysis and Homogeneous Precipitation and Their phase stability,” J. Ceram. Soc. Jpn., 105 [1] 37-42 (1997).
    [46]M. Hirano, S. Watanabe, E. Kato, Y. Mizutani, M. Kawai, and Y. Nakamura, “Fabrication, Electrical Conductivity, and Mechanical Properties of Sc2O3-Doped Tetragonal-Zirconia Ceramics,” Solid State Ionics, 111, 161-169 (1998).
    [47]M. Hirano and E. Kato, “Transformation of Sc2O3-Doped Zirconia Polycrystals by Aging under Hydrothermal Conditions,” J. Mater. Sci., 34, 1309-1405 (1999).
    [48]M. Hirano, S. Watanabe, F. Kato, Y. Mizutanim, M. Kawai, and Y. Nakamura, “High Electrical Conductivity and High Fracture Strength of Sc2O3-Doped Zirconia Ceramics with Submicrometer Crains,” J.Am. Ceram. Soc., 82 [10] 2861-2864 (1999).
    [49]M. Hirano, M. Inagaki, Y. Mizutani, K. Nomura, M. Kawai, and Y. Nakamura, “Improvement of Mechanical and Electrical Properties of Scandia-Doped Zirconia Ceramics by Postsintering with Hot Isostatic Pressing,” J. Am. Ceram. Soc., 83 [10] 2619-2621. (2000).
    [50]M. Hirano, M. Inagaki, Y. Mizutani, K. Nomura, M. Kawai, and Y. Nakamura, “Mechanical and Electrical properties of Scandia-Doped zirconia Ceramics Improved by Postsintering with HIP,” Solid State Ionics, 133, 1-9 (2000).
    [51]Y. Mizutani, M. Tamura, M. Kawai and O. Yamamamoto, “Development of High-Performance Electrolyte in SOFC,” Solid State Ionics, 72, 271-275 (1994).
    [52]O. Yamamoto, T. Kawahara, Y. Takeda, N. Imanishi, and Y. Sakaki, “Zirconia-Based Oxide Ion Conductors in Solid Oxide Fuel Cells”: pp. 733-741 in Science and Technology of zirconia V. Edited by S. P. S. Badwai, M. J. Bannister, and R. H. Hannink, Technomic, Lancaster, PA, 1993.
    [53]R. Ruh, H. J. Garrent, R. F. Domagala, and V. A. Patel, “The system Zirconia-Scandia,” J. Am. Ceram. Soc., 60 [9-10] 399-403 (1977).
    [54]F. K. Moghadam, T. Yamashita, R. Sinclair and D. A. Stevenson, “Transmission Electron Microscopy of Annealed ZrO2 + 8mol% Sc2O3,” J. Am. Ceram. Soc., 66 [3] 213-216 (1983).
    [55]O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, and Y. Nakamura, “Electrical Conductivity of Stabilized Zirconia with Ytterbia and Scandia,” Solid State Ionics, 79, 137-142 (1995).
    [56]T. Ishii, T. Iwata, Y. Tajima, and A. Yamaji, “Structural Phase Transition and Ion Conductivity in 0.88ZrO2•0.12Sc2O3,” Solid State Ionics, 57, 153-157 (1992).
    [57]K. Keizer, M. J. Verkerk, and A. J. Burggraaf, “Preparation and Properties of New Oxygen Ion Conductors for Use at Low Temperatures,” Energy Ceram., 981-992 (1980).
    [58]K. Keizer, A. J. Burggraaf, and G. De With, “The Effect of Bi2O3 on the Electrical and Mechanical Properties of ZrO2-Y2O3 Ceramics,” J. Mater. Sci., 17, 1095-1102 (1982).
    [59]M. J. Verker, A. J. A. Winnubst, and A. J. Burggraaf, “Effect of Impurities on Sintering and Conductivity of Yttria-Stabilized Zirconia,” J. Mater. Sci., 17, 3113-3122 (1982).
    [60]A. J. A. Winnubst and A. J. Burggraaf, “Preparation and Electrical Properties of a Monophasic ZrO2-Y2O3-Bi2O3 Solid Electrolyte,” Mater. Res. Bull, 19, 613-619 (1984).
    [61]M. M. R. Boutz, A. J. A. Winnubst, F. Hartgers, and A. J. Burggraaf, “Effect of Additives on Densification and Deformation of Tetragonal Zirconia,” J. Mater. Sci., 29, 5374-5382 (1994).
    [62]Masanori Hirano, Takayuki Oda, Kenji Ukai and Yasunobu Mizutam, “Suppression of Rhombohedral-Phase Appearance and Low-Temperature Sintering of Scandia-Doped Cubic Zirconia,”J. Am. Ceram. Soc., 85 [5] 1336- 1338.
    [63]Masanori Hirano, Takayuki Oda, Kenji Ukai and Yasunobu Mizutam, “Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on stability of crystal phase and electrolyte properties,”Solid State Ionics 158 (2003) 215-223.
    [64]S.H. Chan, K.A. Khor, Z.T. Xia, J. Power Sources 93 (2001)130.
    [65]K. Hayashi, O. Yamamoto, Y. Nishigaki, H. Minoura, Solid State Ionics 98 (1997) 49.
    [66]A. Notomi, N. Hisatome, Proceedings of ITSC’95, Kobe, 1997, p. 79.
    [67]F.J. Gardner, M.J. Day, N.P. Brandom, M.N. Pashley, M. Cassidy, J. Power Sources 86 (2000) 122.
    [68]X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Mater. Sci. Eng., A (2002), in press.
    [69]I.K. Naik, T.Y. Tien, J. Electrochem. Soc. 126 (1979) 562.
    [70]H. Yahiro, K. Eguchi, H. Arai, Solid State Ionics 21 (1986) 37.
    [71]K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics 52 (1992) 165.
    [72]D.L. Maricle, T.E. Swarr, S. Karavolis, Solid State Ionics 52 (1992) 173.
    [73]A.V. Virkar, J. Electrochem. Soc. 138 (1991) 1481.
    [74]F.M.B. Marques, L.M. Navarro, Solid State Ionics 90 (1996) 183.
    [75]F.M.B. Marques, L.M. Navarro, Solid State Ionics 100 (1997) 29.
    [76]T. Tsai, L. Perry, S. Barnett, J. Electrochem. Soc. 144 (5) (1997) 35.
    [77]P. Soral, U. Pal, W.L. Worrell, J. Electrochem. Soc. 145 (1) (1998) 99.
    [78]Y. Mishima, H. Mitsuyasu, M. Ohtaki, K. Eguchi, J. Electrochem. Soc. 145 (3) (1998) 1004.
    [79]L.B. Pankratz, Thermodynamic Properties of Elements and Oxides, U.S. Bur. of Mines, Bull. B, 1983, p. 672.
    [80]H. Yahiro, Y. Baba, K. Eguchi, H. Arai, U.S. Bur. Mines, Bull. B 135 (1988) 2077.
    [81]H. Mitsuyasu, Y. Nonaka, K. Eguchi, H. Arai, J. Solid State Chem. 129 (1997) 74.
    [82]N.M. Sammes, Z.H. Cai, Solid State Ionics 100 (1997) 39.
    [83]G.A. Tompsett, N.M. Sammes, J. Am. Ceram. Soc. 80 (1997) 3181.
    [84]H. Mitsuyasu, Y. Nonaka, K. Eguchi, Solid State Ionics 113–115 (1998) 279. 42 S.H. Chan et al. / Solid State Ionics 158 (2003) 29–43
    [85]N.M. Sammes, G.A. Tompsett, Z.H. Cai, Solid State Ionics 121 (1999) 121.
    [86]A. Tsoga, A. Gupta, A. Naoumidis, P. Nikolopoulos, Acta Mater. 48 (2000) 4709.
    [87]K.Z. Fung, H.D. Baek, A.V. Virkar, Solid State Ionics 52 (1992) 199.
    [88]K.Q. Huang, M. Feng, J.B. Goodenough, Solid State Ionics 89 (1996) 17.
    [89]E.N. Naumovich, V.V. Kharton, V.V. Samokhval, A.V. Kovalevsky, Solid State Ionics 93 (1997) 95.
    [90]S. H. Chan, X. J. Chen and K. A. Khor, “A simple bilayer electrolyte model for solid oxide fuel cells,”Solid State Ionics 158 (2003) 29-43.
    [91]P. Shuk, H. –D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ionics 89 (1996) 179-196.
    [92]J. C. Boivin, G. Mairese, Chem. Mater. 10 (1998) 2870-2888.
    [93]A. Gulino, S. La Delfa, I. Fragala, R.G. Egdell, Chem. Mater. 8 (1996) 1287-1291, and references contained within.
    [94]E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase Diagrams for Ceramists, in: M. K. Reser (Ed.), American Ceramic Society, Westerville, Ohio, 1994, p. 128.
    [95]F. Hund, Z. Anorg, Allg, Chem. 333 (1964) 248-255.
    [96]S.L. Sorokina, A.W. Sleight, Mater. Res. Bull. 333 (1964) 248-255.
    [97]I. Abrahams, A. J. Bush, S. C. M. Chan, F. Krok, W. Wrobel, J. Mater. Chem. 11 (2001) 1715-1721.
    [98]Iratxe de Meatza, Jon P. Chapman, Fabrice Mauvy, Jose I. Ruiz de Larramendi, Maria I. Arriortua and Teofilo Rojo , “Novel composition above the limit of Bi:Zr solid solution; synthesis and physical properties of Bi1.84Zr0.16O3.08,”Materials Research Bulletin 39 (2004) 1841-1847.
    [99]O. Yamamoto, “Solid Oxide Fuel Cell: fundamental aspects and prospects,” Electrochim Acta 45 (15/16) (2000) 2423-2435.
    [100]D. Lee, I. Lee, Y. Jeon, R. Song, “Characterization of Scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC,” Solid State Ionics 176 (11/12) (2005) 1021-1025.
    [101]C. Varanasi, C. Juneja, C. Chen, B. Kumar, “Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia,” J. Power Sources 147 (1/2) (2005) 128-135.
    [102]Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura, O. Yamamoto, “From rare earth doped zirconia to 1kW solid oxide fuel cell system,” J. Alloys Compd. (2005).
    [103]O.Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, Y. Nakamura, “Electrical conductivity of stabilised zirconia with ytteria and scandia,” Solid State Ionics 79 (1995) 137-142.
    [104]C. Haering, A. Roose, H. Schichl, M. Schnoller, “Degradation of the electrical conductivity in stabilized zirconia system. Part II. Scandia-stabilized zirconia,” Solid State Ionics 176 (3/4) (2005) 261-268.
    [105]C. Haering, A. Roose, H. Schichl, M. Schnoller, “Degradation of the electrical conductivity in stabilized zirconia system. Part I. Yttria-stabilized zirconia,” Solid State Ionics 176 (3/4) (2005) 253-259.
    [106]S. J. Skinner, J. A. Kilner, “Oxygen ion conductors,” Mater. Today 6 (3) (2003) 30-37.
    [107]S. Sarat, N. Sammes and A. Smirnova, “Bismuth oxide doped Scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells,”Journal of Power Sources 160 (2006) 892-896.
    [108]S.C. Singhal, Solid State Ionics 152/153 (2002) 405.
    [109] M. Mogensen, S. Skaarup, Solid State Ionics 86–88 (1996) 1151.
    [110] F. Tietz, F.J. Dias, B. Dubiel, H.J. Penkalla, Mater. Sci. Eng. B68 (1999) 35.
    [111]J.P. Ouweltjes, F.P.F. van Berkel, P. Nammensma, G.M. Christie, in: S.C. Singhal, M. Dokiya (Eds.), Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells, PV 99-19, The Electrochemical Society, Pennington, NJ, 1999, p. 803.
    [112]J. Mizusaki, H. Tagawa, T. Saito, T. Yamamura, K. Kamitani, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippomatsu, S. Nakagawa, K. Hashimoto, Solid State Ionics 70/71 (1994) 52.
    [113]J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippomatsu, S. Nakagawa, K. Hashimoto, J. Electrochem. Soc. 141 (1994) 2129.
    [114]A. Bieberle, L.J. Gauckler, Solid State Ionics 135 (2000) 337.
    [115]M. Brown, S. Primdahl, M. Mogensen, J. Electrochem. Soc. 147 (2000) 475.
    [116]A. Bieberle, L.P. Meier, L.J. Gauckler, J. Electrochem. Soc. 148 (2001) 646.
    [117]N. Nakagawa, K. Nakajima, M. Sato, K. Kato, J. Electrochem. Soc. 146 (2001) 1290.
    [118]X. Wang, N. Nakagawa, K. Kato, J. Electrochem. Soc. 148 (2001) 565.
    [119]T. Norby, Solid State Ionics 125 (1999) 1.
    [120]H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Solid State Ionics 61 (1993) 65.
    [121]T. Yajima, H. Kazeoka, T. Yogo, H. Iwahara, Solid State Ionics 47 (1991) 271.
    [122]T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, Solid State Ionics 51 (1992) 101.
    [123]G.C. Mather, F.M. Figueiredo, J.R. Jurado, J.R. Frade, “Electrochemical behaviour of Ni-cermet anodes containing a proton-conducting ceramic phase on YSZ substrate,”Electrochimica Acta 49 (2004) 2601-2612.
    [124]N.Q. Minh, J. Am. Ceram. Soc. 76 (3) (1993) 563.
    [125]J. Liu, Z. Lu¨,W. Liu, L. Pei, X. Zhao, L. Jia,Y. Song, X. Liu, L. He, W. Su, Sci. China (A) 41 (5) (1998) 521.
    [126]S. Park, J.M. Vohs, R.J. Gorte, Nature 404 (2000) 265.
    [127]S.Wang, Y. Jiang, Y. Zhang,W. Li, J. Yan, Z. Lu, Solid State Ionics 120 (1999) 75.
    [128]F.Z. Mogamedi-Bolenouar, J. Guindet, A. Hammou, in: Proc. 5th Int. Symp. SOFC, Julich, 1997, p. 441.
    [129]X. Huang, Z. Lu¨,W. Liu, Z. Liu, L. Pei, T. He, J. Liu,W. Su, Chem. J. Chin. Univer. 21 (6) (2000) 947.
    [130]Zhe Lu¨, Li Pei, Tian-min He, Xi-qiang Huang, Zhi-guo Liu, Yuan Ji, Xing-hai Zhao, and Wen-hui Su, “Study on new copper-containing SOFC anode materials,” Journal of Alloys and Compounds 334 (2002) 299-303.
    [131]A. Ringuede, D. Bronine and J. R. Frade, “Ni1-xCox/YSZ cermet anodes for solid oxide fuel cells,” Electrochimica Acta 48 (2002) 437-442.
    [132]A. Ringuede, D. P. Fagg and J. R. Frade, “Electrochemical Behavior and degradation of (Ni, M)/YSZ cermet electrodes (M=Co, Cu, Fe) for high temperature applications of solid electrolyte,” Journal of the European Ceramic Society 24 (2004) 1355-1358.
    [133]Villarreal, C. Jacobson, A. Leming, Y. Matus, S. Visco and L. De Jonghe, “Metal-Supported Solid Oxide Fuel Cells,” Electrochemical and Solid State Letters 6 (9) A178-A179 (2003).
    [134]R. Maric, T. Fukui, S. Ohara, T. Inagaki, and J. Fujita, Electrochem. Solid-State Lett. 1, 201 (1998).
    [135]LI Yun, LUO Zhong-Yang, YU Chum-jiang, LUO Dan, XU Zhu-an and CEN Ke-fa, “The impact of NiO on Microstructure and electrical property of solid oxide fuel cell anode,” Journal of Zhejiang University SCIENCE 6B (11) 1124-1129 (2005).
    [136]Radenka Maric, Satoshi Ohara, Takehisa Fukui, Hiroyuki Yoshida, Masayoshi Nishimura, Toru Inagaki, and Kazuhiro Miura, “Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-Doped Ceria Cermet Anode,” Journal of The Electrochemical Society, 146 (6) 2006-2010 (1999)
    [137]A.C. Mu¨ ller, A. Weber, H.-J. Beie, A. Kru¨gel, D. Gerthsen, E. Ivers-Tiffe´e, Proc. of 3rd European SOFC Forum, European Fuel Cell Forum, Oberrohrdorf, Switzerland, 1998, pp. 353– 362.
    [138]T. Iwata, J. Electrochem. Soc. 143 (1996) 1521.
    [139]H. Itoh, T. Yamamoto, M. Mori, T. Abe, Proc. of 4th Int. Symp. on SOFC, The Electrochemical Society, Pennington, NJ, 1995, pp. 639– 648.
    [140]A.C. Mu¨ ller, A. Weber, A. Kru¨gel, D. Gerthsen, E. Ivers-Tiffe ´e, Proc. of IEKC, vol. 6, Advanced Ceramics and Composites, Stuttgart, 1998.
    [141]T. Weber, Solid State Ionics 42 (1990) 205– 221.
    [142]M. Cassidy, G. Lindsay, K. Kendall, Proc. 1st Eur. SOFC Forum, 1994, pp. 205– 221.
    [143]A.C. Muller, Dirk Herbstritt, Ellen Ivers-Tiffe´e, “Development of a multilayer anode for solid oxide fuel cells,” Solid State Ionics 152–153 (2002) 537–542
    [144]Yong Jun Leng, Siew Hwa Chan, Khiam Aik Khor, San Ping Jiang and Philip Cheang, “Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cell,” Journal of Power Sources 117 (2003) 26-34.
    [145]Steele, B. C. H. Running on natural gas. Nature 400, 620–621 (1999).
    [146]Seungdoo Park, John M. Vohs and Raymond J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Journal of the Electrochemical Society 146 (10) (1999) 3603-3605.
    [147]Craciun, R. et al. A novel method for preparing anode cermets for solid oxide fuel cells. J. Electrochem.Soc. 146, 4019–4022 (1999).
    [148]Perry Murray, E., Tsai, T. & Barnett, S. A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999).
    [149]Service, R. F. Bringing fuel cells down to earth. Science 285, 682–685 (1999).
    [150]Putna, E. S., Stubenrauch, J., Vohs, J. M. & Gorte, R. J. Ceria-based anodes for the direct oxidation of methane in solid oxide fuel cells. Langmuir 11, 4832–4837 (1995).
    [151]Park, S., Craciun, R., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. methane oxidation. J. Electrochem. Soc. 146, 3603–3605 (1999).
    [152]Trovarelli, A. Catalytic properties of ceria and CeO2 -containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).
    [153]Marina, O. A. & Mogensen, M. High-temperature conversion of methane on a composite gadoliniadoped ceria-gold electrode. Appl. Catal. A 189, 117–126 (1999).
    [154]Christensen, H., Dinesen, J., Engel, H. H. & Hansen, K. K. Electrochemical Reactor For Exhaust Gas Purification 1–5 (Society of Automotive Engineers paper no. 1999-01-0472,Warrendale, Philadelphia, (1999).
    [155]Yamanaka, I. & Otsuka, K. Catalysis of Sm+3 for the oxidation of alkanes with O2 in the liquid phase. J. Mol. Catal. A 95, 115–120 (1995).
    [156]R. Craciun, S. Park, R. J. Gorte, J. M. Vohs, C. Wang and W. L. Worrell, “A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells,” 146 (11) (1999) 4019-4022.
    [157]Trine Klemenso and Mogens Mogensen, “Solid oxide fuel cell anode behavior or upon redox cycling” Material Science and Technology (MS&T) 2006, Materials and System-volume I, Organized by P. Singh, D. Collins, G. Yang, P. N. Kumta, C. F. Legzdins, S. K. Sundaram and A. Manthiram, 257-268.
    [158]Li. Jia, Zhe Lu, Jipeng Miao, Zhiguo Liu, Guoqing Li and Wenhi Su, “Effects of pre-calcined YSZ powders at different temperatures on Ni-YSZ anodes for SOFC,” Journal of Alloys and Compound 414 (2006) 152-157.
    [159]Jae-Dong Kim, Goo-Dae Kim, Ji-Woong Moon, Yong-il Park, Weon-Hae Lee, Koichi Kobayashi, Masayuki Nagai and Chang-Eun Kim, “Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy,” Solid State Ionics 143 (2001) 379-389.
    [160]A. Barbucci, R. Bozzo, G. Cerisola and P. Costamagna, “Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes,” Electrochimica Acta 47 (2002) 2183-2188.
    [161]Akifusa Hagiwara, Natsuro Hobara, Koichi Takizawa, Kazuyoshi Sato, Hiroya Abe and Makio Naito, “Preparation and evaluation of mechanochemically fabricated LSM/ScSZ composite material for SOFC cathodes,” Solid State Ionics 177 (2006) 2967-2977.
    [162]Narottam P. Bansal and Zhimin Zhong, “Combustion synthesis of Sm0.5Sr0.5CoO3-δ and La0.6Sr0.4CoO3-x nanopowders for solid oxide fuel cell cathodes,” Journal of Power Sources 158 (2006) 148-153.
    [163]Steven P. Simner, Michael D. Anderson, James E. Coleman and Jeffry W. Stevenson, “Performace of a noval La(Sr)Fe(Co)O3-Ag SOFC cathodes,” Journal of Power Sources 161 (2006) 115-122.
    [164]V. A. C. Haanappel, D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H. Wesemeyer, B. Rekamp, C. Tropartz and F. Tietz, “The influence of noble-metal-containing cathdoes on the electrochemical performance of anode-supposed SOFCs,” Journal of Power Sources 130 (2004) 119-128.
    [165]S. Bebelis, N. Kotsionopoulos, A. Mai, D. Rutenbeck and F. Tietz, “Electrochemical characterization of mixed conducting and composite SOFC cathodes,” Soild State Ionics (2006) 1843-1848.
    [166]Shaorong Wang, Tohru Katom Susumu Nagata, Takeo Honda, Toshimi Kaneko, Nobuharu Iwashita, Masayuki Dokiya, “Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria
    [167]Jidong Zhang, Yuan Ji, Hongbo Gao, Tianmin He and Jiang Liu, “Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-δ- Sm0.1Ce0.9O1.95 -Ag for intermediate-temperature solid oxide fuel cells,” Journal of Alloys and Compounds 395 (2005) 322-325.
    [168]Hong-Ki Lee, “Electrochemical characteristics of La1-xSrxMnO3 for solid oxide fuel cell,” Materials Chemistry and Physics 77 (2002) 639-646.
    [169]G. Ch. Kostogloudis, Ch. Ftikos, A. Ahmad-Khanlou, A. Naoumidis and D. Stover, “Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte,” Solid State Ionics 134 (2000) 127-138.
    [170]Takeshi Yao, Yoshiharu Uchimoto, Takuya Sugiyama and Yusuke Nagai, “Synthesis of (La, Sr)MeO3 (Me=Cr, Mn, Fe, Co) solid solutions from aqueous solutions,” Solid State Ionics 35 (2000) 359-364.
    [171]Hee Y. Lee and Seung M. Oh, “Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface,” Solid State Ionics 90 (1996) 133-140.
    [172]Helmut Ullmann and Nikolai Trofimenko, “Composition, structure and transport properties of perovskite-type oxides,” Solid State Ionics 119 (1999) 1-8.
    [173] [2] G. Ch. Kostogloudis and Ch. Ftikos, “Properties of A-site-dificient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides,” Solid State Ionics 126 (1999) 143-151.
    [174][3] D. Waller, J. A. Lane, J. A. Kilner and B. C. H. Steele, “The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes,” Solid State Ionics 86-88 (1996) 767-772.
    [175]H. Ullmann, N. Trofimenko, F. Tietz, D. Stover and A. Ahmad-Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes,” Solid State Ionics 138 (2000) 79-90.
    [176]R. Chiba, F. Yoshimura, Y. Sakurai, “Properties of La1-ySryNi1-xFexO3 as a cathode material for a low-temperature operating SOFC,” Solid State Ionics 152-153 (2002) 575-582.
    [177]Han Jin Hwang, Ji-Woong Moon, Seunghun Lee and Eun A Lee, “Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs,” Journal of Power Sources 145 (2005) 243-248.
    [178]J. Ross Macdonald, “Impedance Spectroscopy: Emphasizing Solid Materials and System,”John Wiley & Sons, Inc., (1987).
    [179]黃鼎漢,”以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究”,台灣科技大學材料科技研究所碩士論文,民國93年6月。
    [180]謝孟儒,” 摻雜之鑭鉬氧化物作為固態氧化物燃料電池電解質的製備與材料性質”, 台灣科技大學材料科技研究所碩士論文,民國93年6月。
    [181]J. E. Bauerle,” Study of solid electrolyte polarization by a complex admittance method,” J. Phys. Chem. Solids, 30, 2657-2670 (1969).
    [182]田福助編著,“電化學—理論與應用”,高立圖書,171-193。
    [183]K. Z. Fung and A. V. Virkar, Proceeding of the 4th International Symposium on Solid Oxide Fuel Cells, M. Dokiya, O. Yamamoto H. Tagawa and S. C. Singhal, Eds., 1105 (1995).
    [184]T. Kenjo and Y. Yamakoshi, “Relaxation Phenomena of the Concentration Polarization in High Temperature Air Cathodes,” Bull. Chem. Soc. Jpn., 65, 995 (1992).
    [185]J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, and S. C. Singhal, “Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron,” J. Electrochem. Soc., 146, 69 (1999).
    [186]D. Herbstritt, A. Weber, and E. Ivers-Tiff’ee, “Modelling and DC-polarisation of a three dimensional electrode/electrolyte interface,” J. Europ. Ceram. Soc., 21, 1813 (2001).
    [187]T. Tsai and S. A. Barnett,”Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance,” Solid State Ionics, 93, 207 (1997).
    [188]J. A. Lane and B. C. H. Steele, “Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes,” J. Electrochem. Soc., 143, 3554(1996).
    [189]T. Kenjo, S. Osawa, and K. Fujikawa, “High Temperature Air Cathodes Containing Ion Conductive Oxides,” J. Electrochem. Soc., 138,349 (1991).
    [190]T. Kenjo and M. Nishiya “LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells,” Solid State Ionics, 57, 295 (1992).
    [191]H. Deng, M. Zhou, and B. Abeles, “Diffusion-reaction in mixed ionic-electronic solid oxide membranes with porous electrodes,” Solid State Ionics, 74, 75 (1994).
    [192]C. W. Tanner, K. Z. Fung, and A. V. Virkar, “The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance,” J. Electrochem. Soc., 144, 21 (1997).
    [193]A. V. Virkar, J. Chen, C. W. Tanner, and J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells,” Solid State Ionics, 131, 189 (2000).
    [194]H. Kamata, A. Hosaks, J. Mizusaki, and H. Tagawa, “High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ,” Solid State Ionics, 106, 237 (1998).
    [195]S. P. Jaing, J. P. Zhang, L. Apateanu, and K. Foger, “Deposition of Chromium Species at Sr-Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells II. Effect on O2 Reduction Reaction,” J. Electrochem. Soc., 147, 3195 (2000).
    [196]S. P. Jaing, J. P. Zhang, L. Apateanu, and K. Foger, “Deposition of Chromium Species at Sr-Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics,” J. Electrochem. Soc., 147, 4013 (2000).
    [197]S. P. S. Badwal, S. P. Jiang, J. Love, J. Nowotny, M. Rekas, and E. R.Vance, “Chemical diffusion in perovskite cathodes of solid oxide fuel cells: the Sr doped LaMn1−xMxO3 (M=Co, Fe) systems,” Ceram. Int., 27, 419 (2001).
    [198]E. A. Mason, A. P. Malinauskas, Gas Transport in Porous Media:The Dusty Gas Model, Elsevier, Amsterdam, (1983).
    [199]R. Jackson, Transport in Porous Catalyst, Elsevier, Amsterdam,(1977).
    [200]EXAFS and near edge structure :proceedings of the international conference, Frascati, Italy, September 13-17, 1982 /editors, A. Bianconi, L. Incoccia, S. Stipcich. Berlin ;Springer-Verglag,1983.New York
    [201]X-ray absorption fine structure /editor S. Samar Hasnain. New York :Ellis Horwood, 1991.
    [202]X-ray absorption principles, applications, techniques of EXAFS, SEXAFS, and XANES /edited by D.C. Koningsberger and R. Prins. New York :Wiley,c1988.
    [203]蔡英文, “以臨場X光吸收光譜及繞射光譜研究鋰離子電池正極材料充放電之現象:In-situ investigation of X-ray absorption and X-ray diffraction on charging-discharging behavior of positive electrode materials for Li-ion batteries”, 台灣科技大學材料科技研究所博士論文,民國93年6月。
    [204]Ravel, B. ATOMS document (1995).
    [205]Ankoudinov, A. FEFF6 document (1996).
    [206]Newville, M. FEFFIT document (1996).
    [207]喻盛地, “氧化鋯添加鈮酸釔之韌化機制研究:Toughening Mechanism of Yttrium Niobium Oxide-Modified Zirconia”, 台灣科技大學材料科技研究所博士論文,民國90年6月。
    [208]游文獻, “二氧化鋯添加鈮酸釔之燒結行為與韌化機構探討”, 台灣科技大學材料科技研究所碩士論文,民國86年6月。
    [209]R. M. McMeeking and A. G. Evans, “Mechanics of transformation -toughening in brittle materials,” J. Am. Ceram. Soc. 65 [5] (1982) 242-246.
    [210]A. G. Evans and R. M. Cannon, “Toughening of brittle solids by martensitic transformations,” Acta metall. 34 [5] (1986) 761-800.
    [211]R. C. Garvie, R. J. H. Hannink and R. T. Pascoe, “Ceramic steel?” Nature (London) 258 [5537] (1975) 703-704.
    [212]J. D. McCullough and K. N. Trueblood, “The crystal structure of baddeleyite (monoclinic ZrO2),” Acta Crystallogr. 12 (1959) 507-511.
    [213]D. K. Smith and H. W. Newkirk, “The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2, ”Acta Crystallogr. 18 (1965) 983-991.
    [214]G. Teufer, “The crystal structure of tetragonal ZrO2,” Acta Crystallogr. 15 (1962) 1187.
    [215]D. K. Smith and C. F. Cline, “Verification of existence of cubic zirconia at high temperature,” J. Am. Ceram. Soc. 45 (1962) 249-250.
    [216]T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff and B. R. Rossing, “Stabilization of tetragonal phase in polycrystalline zirconia,” J. Mater. Sci. 12 [12] (1977) 2421-2426.
    [217]D. L. Porter and A. H. Heuer, “Mechanisms of toughening partially stabilized zirconia (PSZ),” J. Am. Ceram. Soc. 60 [3-4] (1977) 183-184.
    [218]R. J. H. Hannink, “Growth morphology of the tetragonal phase in partially-stabilized zirconia,” J. Mater. Sci. 13 [11] (1978) 2487-2496.
    [219]T. K. Gupta, F. F. Lange and J. H. Bechtold, “Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase,” J. Mater. Sci. 13 [7] (1978) 1464-1470.
    [220]D. L. Porter, A. G. Evans and A. H. Heuer, “Transformation-toughening in partially stabilized zirconia (PSZ),” Acta Metall. 27 [2] (1979) 1649.
    [221]D. L. Porter and A. H. Heuer, “Microstructural development in MgO-partialy stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62 [5-6] (1979) 298-305.
    [222]Advances in ceramics, Vol. 3, Science and technology of zirconia I. Edited by A. H. Heuer and L. W. Hobbs. American ceramic society, Clumbus, OH. (1981).
    [223]R. J. H. Hannink, K. A. Johnston, R. T. Pascoe and R. C. Gravie, Adv. Ceram. 3 (1981) 116.
    [224]W. M. Kriven W. L. Fraser and S. W. Kennedy, “The Martensite crystallography of tetragonal zirconia,” in Advances in ceramics, Vol. 3, Science and technology of zirconia I. Edited by A. H. Heuer and L. W. Hobbs. American ceramic society, Clumbus, OH. (1981) 82-97.
    [225]N. Claussen and M. Ruhle, “Design of transformation toughened ceramics,” Adv. Ceram. 3 (1981) 137.
    [226]F. F. Lange, “Transformation toughening: Part 4, Fabrication, fracture toughness and strength of Al2O3-ZrO2 composites,” J. Mater. Sci. 17 (1982) 247-254.
    [227]F. F. Lange, “Transformation toughening: Part 5, Effect of temperature and alloy on fracture toughness,” J. Mater. Sci. 17 (1982) 255-262.
    [228]A. H. Heuer, N. Claussen, W. M. Kriven, and M. Ruhle, “Stability of tetragonal ZrO2 particles in ceramic matrices,” J. Am. Ceram. Soc. 65 [12] (1982) 642-650.
    [229]M. V. Swain, R. J. H. Hannink and R. C. Garvie, Fract. Mech. Ceram. 6 (1983) 339.
    [230]A. H. Heuer and M. Ruhle, “Phase transformations in ZrO2-containing ceramics : I, The instability of c-ZrO2 and the resulting diffusion controlled reactions,” in Advances in ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH. (1984) 1-13.
    [231]A. G. Evans, “Toughening mechanisms in zirconia alloys,” in Advances in ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH. (1984) 193-212.
    [232]D. B. Marshall, A. G. Evans and M. Drory, “Transformation toughening in ceramics,” in Fracture mechanics of Ceramics, Vol. 6. Edited by R. C. Bradt, A. G. Evans, F. F. Lang and D. P. H. Hasselman. Plenum Press, New York. (1983) 289-307.
    [233]B. Budiansky, J. Hutchinson and J. Lambroupolos, “Continuum theory of dilatant transformation toughening in ceramics,” Int. J. Solids Struct. 19 (1983) 337.
    [234]N. Claussen, J. Steeb and R. F. Pabst, Am. Ceram. Soc. Bull. 56 (1977) 559.
    [235]A. G. Evans and K. T. Faber, J. Am. Ceram. Soc. 67 (1984) 255-258.
    [236]K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 565.
    [237]M. V. Swain, Fract. Mech. Ceram. 6 (1983) 355.
    [238]J. W. Christian, The theory of transformations in metals and alloys, 2nd ed. Vol. I. Pergamon, Elmsford, N.Y. (1975).
    [239]E. C. Sabbarao, H. S. Maiti and K. K. Srivastava, Phys. Stat. 21 (1974) 9.
    [240]A. Heuer and G. L. Nord, Jr., Electron microscopy in mineralogy, edited by H. R. Weuk, Springer-Verlag, Berlin, Heideberg and New York. (1976) 274.
    [241]A. G. Evans and A. H. Heuer, “Review-Transformation toughening in ceramics: Matensitic transformation in crack-tip stress fields,” J. Am. Ceram. Soc. 63 [5-6] (1980) 241-248.
    [242]G. K. Bansal and A. H. Heuer, “Martensitic Phase transformation in zirconia (ZrO2): I,” Acta Metall. 20 [11] (1972) 1281-1289.
    [243]G. K. Bansal and A. H. Heuer, “Martensitic Phase transformation in zirconia (ZrO2): II,” Acta Metall. 22 [4] (1974) 409-417.
    [244]M. V. Swain and R. J. H. Hannink, Adv. Ceram. 11 (1984).
    [245]M. Ruhle, N. Claussen and A. H. Heuer, Adv. Ceram. 3 (1984) 352.
    [246]T. D. Ketcham: U. S. Patent 5,008,221 (1991).
    [247]V. S. Stubican, “High-temperature transitions in rare-earth niobates and tantalates,” J. Am. Ceram. Soc. 47 [2] (1964) 55-58.
    [248]Y. Sugitani and K. Nagashima, “Flux growth of YNbO4,” Mineralogical Journal 8 [1] (1975) 66-71.
    [249]M. J. Buerger, “Role of temperature in minerals,” Am. Mineral. 33 [3-4], (1948) 101-121.
    [250]C. Quinn and R. Wusirika, “Twinning in YNbO4,” J. Am. Ceram. Soc. 74 [2] (1991) 431-432.
    [251]N. A. Bander, L. N. Koroleva, “Phase equilibria in the system Y2O3-Nb2O5,” Izv. Akad. Nau. SSSR, Neorg. Mater. (Engl. Transl.) 5 [10] (1969) 1465-1468.
    [252]E. C. Subbarao, Adv. Ceram. 3 (1981) 1.
    [253]R. P. Engel, D. Lewis, B. A. Bender, and R. W. Rice, “Temperature dependence of strength and fracture toughness of ZrO2 single crystals,” J. Am. Ceram. Soc. 65 [9] (1982) C-150-C-152.
    [254]F. F. Lange, “Transformation toughening: Part 5, Effect of temperature and alloy on fracture toughness,” J. Mater. Sci. 17 (1982) 255-62.
    [255]D. Michel, L. Mazerolles, and M. Perezy Jorba, “Fracture of metastable tetragonal zirconia crystals,” J. Mater. Sci. 18 (1983) 2618-2628.
    [256]D. Michel, L. Mazerolles, and M. Perez y Jorba, “Polydomain crystal of single phase tetragonal ZrO2: Structure, microstructure and fracture toughness,” in Advances in ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH. (1984) 131-138.
    [257]T. Tsukuma, Y. Kubota and T. Tsukidate, “Thermal and mechanical properties of Y2O3-stabilized tetragonal zirconia polycrystals,” in Advances in ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH. (1984) 382-390.
    [258]R. P. Engel, D. Lewis, B. A. Bender, and R. W. Rice, “Physical, microstructural, and thermomechanical properties of ZrO2 single crystals,” in Advances in ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH. (1984) 408-414.
    [259]A. V. Virkar, and R. L. K. Matsumoto, “Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia,” J. Am. Ceram. Soc. 69 [10] (1986) C-224-C-226.
    [260]T. Lankford, R. A. Page and L. Rabenberg, “Deformation mechanisms in yttria-stabilized zirconia,” J. Mater. Sci. 23 (1988) 4144-4156.
    [261]B. S. Li, J.-S. Chenng, K. J. Bowman and I-W. Chen, “Domain switching as a toughening mechanism in tetragonal zirconia,” J. Am. Ceram. Soc. 71 [7] (1988) C-361-C-364.
    [262]A. V. Virkar and R. L. K. Matsumoto, “Toughening mechanism in tetragonal zirconia polycrystalline (TZP) ceramics,” in Advances in ceramics, Vol. 24, Science and Technology of Zirconia III. Edited by S. Somiya, N. Yamamoto, and H. Yanagida. American ceramic society, Westerville, OH. (1988) 653-662.
    [263]G. V. Srinivasan, J. F. Jue, S. Y. Kuo, and A. V. Virkar, “Ferroelastic domain switching in polydomain tetragonal zirconia single crystals,” J. Am. Ceram. Soc. 72 [11] (1989) 2098-2103.
    [264]C. Schmid and S. Meriani, “Self toughening ceramic materials,” Mater. Eng. 1 [1] (1989) 253-257.
    [265]K. Mehta and A. V. Virkar, “Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zr:Ti=0.54:0.46) ceramics,” J. Am. Ceram. Soc. 73 [3] (1990) 567-574.
    [266]K. Mehta, J. F. Jue and A. V. Virkar, “Grinding-induced texture in ferroelastic tetragonal zirconia,” J. Am. Ceram. Soc. 73 [6] (1990) 1777-1779.
    [267]J. F. Jue and A. V. Virkar, “Fabrication, microstructural characterization, and mechanical properties of polycrystalline t’-zirconia,” J. Am. Ceram. Soc. 73 [12] (1990) 3650-3657.
    [268]M. G. Cain and M. H. Lewis, “Evidence of ferroelasticity in Y-tetragonal zirconia polystals,” Mater. Lett. 9 [9] (1990) 309-312.
    [269]C. J. Chan, F. F. Lange, M. Ruhle, J. F. Jue and A. V. Vikar, “Ferroelastic domain switching in tetragonal zirconia single crystals - Microstructural aspects,” J. Am. Ceram. Soc. 74 [4] (1991) 807-813.
    [270]A. Saiki and N. Mizutani, “Crystallographic orientation in zirconia single crystals at high temperature by applied stress or residual stress,” Trans. Mat. Soc. Jpn. 14A (1994) 451-454.
    [271]E. H. Kisi, S. J. Kennedy and C. J. Howard, “Neutron diffraction obser- vation of ferroelastic domain switching and tetragonal-to-monoclinic transformation in Ce-TZP,” J. Am. Ceram. Soc. 80 [3] (1997) 621-628.
    [272]K. Aizu, J. Phys. Soc. Japan 27 (1969) 387.
    [273]V. K. Wadhawan, “Ferroelasticity and related properties of crystals,” Phase Transitions 3 (1982) 3-103.
    [274]M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford. (1977).
    [275]H. J. Rossell and R. H. J. Hannink, “The phase Mg2Zr5O12 in MgO partially Stabilized Zirconia,” in “Advances in Ceramics,” Vol. 12, Science and Technology of Zirconia II. Edited by N. claussen, R. Ruhle and A. H. Heuer. American Ceramic Society, Columbus, OH. (1984) 139.
    [276]陳清煒, “氧化鋯添加氧化鋅韌化機制之研究”, 台灣科技大學材料科技研究所碩士論文,民國91年6月。
    [277]Tsung-Her Yeh, Chih-Ming Chiang, Wen-Chih Lo and Chen-Chia Chou, “Co-doping effect of divalent (Mg2+, Ca2+, Sr2+) and trivalent (Y3+) cations with different ionic radii on ionic conductivity of zirconia electrolytes, ” Journal of the Chinese Society of Mechanical Engineers, accepted.
    [278]R. H. J. Hannink, “Microstructural Development of the Sub-eutectoid Aged MgO-ZrO2 Alloys,” J. Mater. Sci. 18 (1983) 457-470.
    [279]R. H. J. Hannink, C. J. Howard, E. H. Kisi and M. V. Swain, “Relationship between fracture toughness and phase assemblage in Mg-PSZ,” J. Am. Ceram. Soc. 77 [2] (1994) 571-579.
    [280]D. J. Kim, “Effect of Ta2O5, Nb2O5 and HfO2 Alloying on the transformability of Y2O3-Stabilized Tetragonal ZrO2,” J. Am. Ceram. Soc., 73, 115-120 (1990).
    [281]G. Gritzner, and C. Puchner, “V2O5, Nb2O5 and Ta2O5 Doped Zirconia Ceramics,” J. Europ. Ceram. Soc., 13 (1994) 387-394.
    [282]D. E. Garcia, C. S. Ove, E. Longo, and J. A. Varela., “Preparation and Sintering of Niobia-Doped Zirconia, ” In Ceramics Today-Tomorrow’s Ceramics, part B, Edited by P. Vincenzi, Elsevier Science Publihers 1999 PP. 915-924.
    [283]P. Li, L. W. Chen, and J. E. Penner-Hahn, “Effect of Dopants on Zirconia Stabilization-An X-ray Absorption Study: III, Charge-Compensating Dopants,” J. Am. Ceram. Soc., 77 [5] 1289-95 (1994).
    [284] M. Yashima, T. Hirose, M. Kakihana, Y. Suzuki, and M. Yoshimura, “Size and Charge Effect of Dopant M on the Unit-Cell. Parameters of Monoclinic Zirconia Solid Solution Zr0.98M0.02O2-δ (M=Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca),” J. Am. Ceram. Soc., 80 [1] 171-175 (1997).
    [285]D. J. Green, R. H. J. Hannink, and M. V. Swain, “Transformation Toughness of ceramics” CRC Press, Boca Raton, FL, (1989).
    [286]H. Hasegawa, T. Hioki and O. Kamigaito, J. Mater. Sci. Lett. 4 (1985) 1092R. H. J. Hannink, C. J. Howard, E. H. Kisi and M. V. Swain, J. Am. Ceram. Soc. 77 [2] (1994) 571-579.
    [287]H. Hasegawa, J. Mater. Sci. Letter 2 (1983) 91.
    [288]D. J. Kim, H. J. Jung and H. J. Kim, J. Mater. Sci. 14 [4] (1995) 285.
    [289]R. A. Miller and J. C. Smielek, in “Advances in Ceramics,” Vol. 3. “Science and Technology of Zirconia II.” Edited by A. H. Heuer and L. W. Hobbs. American Ceramic Society, Columbus, Ohio. (1981) 241.
    [290]H. G. Scott, J. Mater. Sci. 10 (1975) 1527
    [291]M. Sugiyama and H. Kubo, “Microstructural of the Cubic and Tetragonal Phases in a ZrO2-Y2O3 Ceramic System”; pp. 965-973 in “Advances in Ceramics,” Vol. 24. “Science and Technology of Zirconia III.” Edited by S. Sōmiya, N. Yamamoto and H. Yanagida. American Ceramic Society, Westerville, OH., (1988).
    [292]F. Sanchez-Bajo, I. Cachadina, J. de D. Solier, F. Guiberteau and F. L. Cumbrera, J. Am. Ceram. Soc. 80 [1] (1997) 232-236.
    [293]D. B. Marshall, M. R. James and J. R. Porter, J. Am. Ceram. Soc. 72 [2] (1989) 218-227.
    [294]M. Yashima, T. Nagatome, T. Noma, N. Ishizawa, Y. Suzuki and M. Yoshimura, “Effect of Dopant Species on Tetragonal (t’)-to-Monclinic Phase Transformation of Arc-Melting ZrO2-RO1.5 (R=Sm, Y, Er, and Sc) in Water at 200℃ and 100 MPa Pressure,” J. Am. Ceram. Soc., 78 [8] (1995) 2229-2232.
    [295]P. Tulier, J. A. Dalmon and G. A. Martin, P. Vergnon, Appl. Catal. 29 (1987) 305.
    [296]E. Crucean and B. Rand, Trans. Br. Ceram. Soc. 78 (1979) 28.
    [297]D. Casellas, F. L. Cumbrera, F. S. Bajo, W. Forsling, L. Llanes and M. Anglada, “On the Transformation of Y-ZrO2 Ceramics with Mixed Y-TZP/PSZ microstructures,” J. Eur. Ceram. Soc. 21 (2001) pp. 765-777.
    [298]D. L. Poster and A. H. Heuer, “Mechanism of toughening partially stabilized zirconia (PSZ),” J. Am. Ceram. Soc., 60 [3-4] (1977) 183-184.
    [299]I. W. Chen and Y. H. Chiao, “Martensitic Nucleation in Zirconia,” Acta Matell., 31 [10] (1983) 1627-1638.
    [300]M. L. Mecartney and M. Ruhle, “In-Situ Transformation Microscopy Observations of the Monoclinic to Tetragonal Phase Transformation in Tetragonal ZrO2,” Acta Matell. 37 [7] (1989) 1859-1863.
    [301]T. Sakuma, Y. I. Yoshizawa and H. Suto, “The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arc-melting” J. Mater. Sci., 20 (1985) 2399-2407.
    [302]A. Heuer, R. Chaim and V. Lanteri, “The Displacive Cubic Tetragonal Transformation in ZrO2 Alloys” Acta Metall., 35 [3] (1987) 661-666.
    [303]R. Chaim, M. Ruhle and A. H. Heuer, “Microstructural Evolution in a ZrO2-12wt%Y2O3 Ceramic,” J. Am.Ceram. Soc., 68 [8] (1985) 427-431.
    [304]T. Sakuma, “Development of Domain Structure Associated with the Diffusionless Cubic-to-Tetragonal Transition in ZrO2-Y2O3 Alloys,” J. Mater. Sci., 22 (1987) 4470-4475.
    [305]V. Lanteri, A. H. Heuer, and T. E. Mitchell, “Tetragonal Phase in the System ZrO2-Y2O3”; pp. 118-130 in “Advances in Ceramics,” Vol. 12. “Science and Technology of Zirconia II.” Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American Ceramic Society, Westerville, OH. (1984).
    [306]A. H. Heuer, R. Chaim and V. Lanteri, “Review Article: Phase transformations and Microstructural Characterization of Alloys in the System Y2O3-ZrO2”; pp. 3-20 in “Advances in Ceramics,” Vol. 12. “Science and Technology of Zirconia III.” Edited by S. Sōmiya, N. Yamamoto and H. Yanagida. American Ceramic Society, Westerville, OH., (1988).
    [307]D. Michel, L. Mazerolles and R. Portier, “Electron Microscopy Observation of the Domain Boundarues Generated by the CubicTetragonal Transition of Stabilized Zirconia,” Stud. Inorg. Chem., 3 (1982) 809-812.
    [308]J. F. Jue, J. Chen and A. V. Virkar, “Low-Temperature Aging of t’-Zirconia: The Role of Microstructure on Phase Stability,” J. Am. Ceram. Soc., 74 [8] (1991) 1181-1201.
    [309]T. Log, R. A. Cutler, J. F. Jue and A. V. Virkar, “Polycrystalline t’-ZrO2(Ln2O3) formed by displacive transformations,” J. Mater. Sci., 28 (1993) 4503-4509.
    [310]R. A. Cutler, J. R. Reynolds and A. Jones, “Sintering and Characterization of Polycrystalline Monoclinic, Tetragonal and Cubic Zirconia,” J. Am. Ceram. Soc., 75 [8] (1992) 2173-2183.
    [311]D. Baither, B. Baufeld, U. Messerschmidt, A. H. Foitzik and M. Ruhle, “Ferroelasticity of t’-Zirconia: I, High-Voltage Electron Microscopy Studies of the Microstructure in Polydomain Tetragonal Zirconia,” J. Am. Ceram. Soc., 80 [7] (1997) 1691-1698.
    [312]B. Baufeld, D. Baither, U. Messerschmidt, M. Bartsch, A. H. Foitzik and M. Ruhle, “Ferroelasticity of t’-Zirconia: II, In situ Straining in a High-Voltage Electron Microscope,” J. Am. Ceram. Soc., 80 [7] (1997) 1699-1705.
    [313]D. Baither, M. Bartsch, B. Baufeld, A. Tikhonovsky, A. Foitzik, M. Ruhle and U. Messerschmidt, “Ferroelastic and Plastic Deformation of t’-Zirconia Single Crystals,” J. Am. Ceram. Soc., 84 [8] (2001) 1755-1762.
    [314]I. R. Gibson and J. T. S. Irvine, “Qualitative X-ray Diffraction Analysis of Metastable Tetragonal (t’) Zirconia,” J. Am. Ceram. Soc., 84 [3] (2001) 615-618.
    [315]S. D. Yuh and C. C. Chou, “Domain switching in monoclinic YNbO4-modified ZrO2(3Y),” Scripta Materialia., 41 [10] (1999) 1097-1102.
    [316]S. D. Yuh, Y. C. Lai, C. C. Chou, and Hsin-Yi Lee, “YNbO4-addition on the fracture toughness of ZrO2 (3Y) ceramic,” Journal of Materials Science., 36 [9] (2001) 2303-2311.
    [317]S. D. Yuh and C. C. Chou, “In situ X-ray diffraction investigation on elastic behavior of YNbO4-modified ZrO2 (3Y) using synchrotron radiation,” Japanese Journal of Applied Physics., part 2 40 [5A] (2001) L456-L459.
    [318]S. D. Yuh and C. C. Chou, “A novel investigation method on YNbO4-modified ZrO2 (3Y) using Synchrotron Radiation,” Materials Letter., 52 (2002) 69-74.
    [319]T. H. Yeh, W. C. Hsu, C. C. Chou, “Mechanical and electrical properties of ZrO2 (3Y) doped with RENbO4,” J. DE. Phys. IV., 128 (2005) 213-219.
    [320]N. Ishizawa, A. Saiki, T. Yagi and Mizutani, “Twin-related tetragonal variants in yttria partially stabilized zirconia” J. Am. Ceram. Soc., 69 (1986) 262.
    [321]S. J. Lin, H. Y. Lu and P. Shen, “Formation of metastable t’-phase in solute-redistributed Y-PSZ,” J. Mater. Sci., 26 (1991) 112-116.
    [322]M. A. Choudhry and A. G. Crocker, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. Amer. Ceram. Soc. Clumbus, OH., (1984) 46.
    [323]E. Bischoff and M. Ruhle, “Twin Boundaries in Monoclinic ZrO2 Particles Confined in a Mullite Matrix”, J. Am. Ceram. Soc., 66 (1983) 123.
    [324]V. Lanteri, T. E. Mitchell and A. H. Heuer, in “Advances in Ceramics,” Vol. 12. Edited by N. Claussen, M. Ruhle and A. H. Heuer. American Ceramic Society, Columbus, Ohio., (1984) 118.
    [325]Reed-Hill, Robert E,“Physical metallurgy principles,”2d. ed, New York,Van Nostrand [1972, c1973].
    [326]Julian Martinez-Fernandez, M. Jiminez-Melendo, A. Dominguez-Rodriguez and Arthur H. Heuer, Proceedings of the international conference on Martenstic Transformations., (1992) 689-694.
    [327]R. W. Cahn, “Plastic deformation of alpha-uranium twinning and slip”, Acta Metall., 1 (1953) 49
    [328]X. Guo and Z. Wang, “Effect of Niobia on the Defect Structure of Yttria-stabilized Zirconia,”J. Eur. Ceram. Soc., 18, 237-240 (1998).
    [329]A. Trovarelli, “Structural Properties and Nonstoichiometric Behavior of CeO2,” Catalysis by Ceria and Related Materials, 15-50 (2002).
    [330]Lide and David, “CRC Handbook of Chemistry and Physics: Ed. 71”, Boca Raton: CRC Press, (1990).
    [331]R. D. Shannon, “Effective ionic radii in oxides and fluorides,” Acta Cryst., B25, (1969) 925-946.
    [332]B. C. H. Steele, in High Conductivity Solid Ionic Conductor, Recent Trends and Applications, T. Takahashi (ed.), World Scientific, Singapore, (1989) 402.
    [333]Y. Suzuki and T. Takahashi, J. Chem. Soc. Jpn, (1997) 1610.
    [334]N. H. Anderson, K. Claussen, M. A. Hackett, W. Hayes, M. T. Hutchings, J. E. Macdonald, and R. Osborn, in Transport-Structure Relations in Fast Ion and Mixed Conductor, F. W. Poulsen, N. H. Anderson, K. Clausen, S. Skaarup, and O. T. Sørensen (eds.), Risø National Laboratory, Roskilde, Denmark, (1985) 279.
    [335]A. Nakamura and J. B. Wagner, Jr.,” Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure,” J. Electrochem. Soc., 133 (1986) 1542-48.
    [336]H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, “Oxygen Ion Conductivity of the Ceria-Samarium Oxide System with Fluorite Structure,” J. Appl. Electrochem., 18 (1988) 527.
    [337]D. J. Kim, “Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions,” J. Am. Ceram. Soc., 72 (1989) 1415.
    [338]H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, “Electrical Properties and microstructure in the System Ceria-alkaline Earth Oxide,” J. Mater. Sci., 23 (1988) 1036.
    [339]H. Yahiro, K. Eguchi and H. Arai, “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics., 36 (1989) 71.
    [340]V. Butler, C. R. A. Catlow, B. E. F. Fender and J. H. Harding,” Dopant ion radius and ionic conductivity in cerium dioxide,” Solid State Ionics., 8 (1983) 109-113.
    [341]J.V. Herle, D. Seneviratne, A.J. McEvoy, “Lanthanide co-doping of solid electrolytes: AC conductivity behaviour,” J. Eur. Ceram. Soc., 19 (1999) 837-841.
    [342]S. Prietzel, L. J. Gauckler and G. Peztow, “Stabilizing of cubic ZrO2 in the system ZrO2-MgO-Ta2O5 and its electrical conductivity,” Science of Ceramics edited by H. Hausner., 9 725-730.
    [343]D. J. Kim and T. Y. Tien, “Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2-Y2O3-Ta2O5,”J. Am. Ceram Soc., 74 [12] (1991) 3601-3665.
    [344]P. Li, I. W. Chen and J. E. Penner-Hahn, “Effect of dopants on zirconia stabilization-an x-ray absorption study: I, trivalent dopants,” J. Am. Ceram. Soc., 77 [1] (1994) 118-128.
    [345]R. Ramamoorthy, D. Sundararaman, S. Ramasamy, “Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs,” Solid State Ionics., 123 (1999) 271-278.
    [346]J. Kondoh, T. Kawashima, S. Kikuchi, Y. Tomii and Y. Ito, “Effect of aging on yttria-stabilized zirconia,” J. Electrochem Soc., 145 [5] (1998) 1527-1536.
    [347]C. H. Lee and G. M. Choi, “Electrical conductivity of CeO2-doped YSZ,” Solid state Ionics. 135 (2000) 653-661.
    [348]G. Chiodelli, G. Flor, M. Scagliotti, “Electrical properties of the ZrO2-CeO2 system,” Solid State Ionics. 91 (1996) 109-121.
    [349]N.M. Sammes, Z. Cai, G. Tompsett, “Phase Stability and Ionic Conductivity of Doped CeO2/YSZ electrolytes,” Solid Oxide Fuel Cells V, Edited by U. Stimming, S.C. Singhal, H. Tagawa and W. Lehnert, (1997) 1105 – 1113.
    [350]R. L. Cook and A. F. Sammells, “On the systematic selection of perovskite solid electrolyte for intermediate temperature fuel cell,” Solid State Ionics., 45 (1991) 311-321.
    [351]X. J. Chen, K. A. Khor, S. H. Chan and L. G. Yu, “Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering,” Mater. Sci. and Eng. A.., 341 (2003) 43-48.
    [352]H. Kaneko, F. Jin and H. Taimarsu, “Electrical conductivity of zirconia stabilized with scandia and yttria,” J. Am. Ceram. Soc., 76 [3] 793-795 (1993).
    [353]H. Yamamura, N. Utsunomiya, T. Mori, T. Atake, “Electrical conductivity in the system ZrO2-Y2O3-Sc2O3,” Solid State Ionics., 107 185-189 (1998).
    [354]J. H. Lee, S. M. Yoon, B. K. Kim, H. W. Lee and H. S. Song, “Electrical conductivity and defect structure of yttria-doped ceria-stabilized zirconia,” Solid State Ionics., 144 175-184 (2001).
    [355]J. Kimpton, T. H. Randle and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the system Zr0.75Ce0.08M0.17O1.92 (M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics., 149 89-98 (2002).
    [356]Y. Shiratori, F. Tietz, H. P. Buchkremer, D. StÖver, “YSZ-MgO composite electrolyte with adjusted thermal expansion coefficient to other SOFC components,” Solid State Ionics., 164 27-33 (2003).
    [357]M. M. Bućko, “Ionic conductivity of CaO-Y2O3-ZrO2 materials with constant oxygen vacancy concentration,” J. Europ. Ceram. Soc., 24 1305-1308 (2004).
    [358]S. Selvasekarapandian, M. S. Bhuvaneswari, M. Vijayakumar, C. S. Ramya, P. C. Angelo, “A comparative study on ionic conductivity of Sr and Mg stabilized zirconia by impedance spectroscopy,” J. Europ. Ceram. Soc., 25 2573-2575 (2005).
    [359]Y. Shiratori, F. Tietz, H. J. Penkalla, J. Q. He, Y. Shiratori, D. StÖver, “Influence of composites in the system (3YSZ)1-X-(MgO)X,” Journal of Power Sources., 148 (2005) 32-42.
    [360]H. Naito, H. Yugami, H. Arashi, “Electrical properties of ZrO2-In2O3-Y2O3 and its application to a membrane for gas separation,” Solid State Ionics., 90 173-176 (1996).
    [361]A. Tsoga, A. Naoumidis, W. Jungen and D. StÖver, “Processing and characterisation of fine crystalline ceria gadolinia – yttria stabilized zirconia powders,” J. Europ. Ceram. Soc., 19 907-912 (1999).
    [362]C. H. Lee and G. M. Choi, “Electrical conductivity of CeO2-doped YSZ,” Solid State Ionics., 135 653-661 (2000).
    [363]F. C. Fonseca, R. Muccillo, “Impedance spectroscopy of (yttria-stabilized zirconia)-magnesia ceramic composites,” Solid State Ionics., 131 301-309 (2000).
    [364]C. R. Foschini, D. P. F. Souza, P. I. Paulin Filho and J. A. Varela, “AC impedance study of Ni, Fe, Cu, Mn doped ceria stabilized zirconia ceramics,” J. Europ. Ceram. Soc., 21 1143-1150 (2001).
    [365]Y. Li, J. Gong, Y. Xie, Z. Tang and Z. Zhang, “Low-temperature ionic conductivity of the solid solution in the system ZrO2-Y2O3-Yb2O3,” Mater. Sci. and Eng., B92 287-290 (2002).
    [366]E. N. S. Muccillo and M. Kleitz, “Ionic conductivity of Fully Stabilized ZrO2: MgO and blocking effects,” J. Europ. Ceram. Soc., 15 51-55 (1995).
    [367]D. W. Strickler and W. G. Carlson, “Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems,” J. Am. Ceram. Soc. 48 (1965) 286-289.
    [368]Y. Li, Z. Tang, Z. Zhang, and J. Gong, “Electrical conductivity of zirconia stabilized with yttria and calcia,” J. Mat. Sci. Lett. 6 (1999) 443-444.
    [369]J. Gong, Y. Li, Z. Tang and Z. Zhang, “Microstructure dependence of electrical conductivity of (ZrO2)0.90-(Y2O3)0.04-(CaO)0.06 solid electrolyte,” Mat. Sci. and Eng. B56 (2000) 140-144.
    [370]D. P. F. De Souza, A. L. Chinelatto, and M. F. De Souaz, “Impure zirconia electrical conductivity enhancement by rare-earth minority ions in the Y2O3-RE2O3-ZrO2 system,” J. Mater. Sci. 30 (1995) 4355-4362.
    [371]S. J. Hong and A. V. Virkar, “Lattice paremeters and densities of rare-earth oxide doped ceria electrolytes,” J. Am. Ceram. Soc. 78 (1995) 433-439.
    [372]M.Yashima, N.Ishizawa, M.Yoshimura, “ Application of an Ion Packing Model Based on Defect Clusters to Zirconia Solid Solution:I, Modeling and Local Structure of Solid Solution”, J. Am. Ceram. Soc., 75[5] (1992)1541-49.
    [373]M.Yashima, N.Ishizawa, M.Yoshimura, “ Application of an Ion Packing Model Based on Defect Clusters to Zirconia Solid Solution:II, Modeling and Local Structure of Solid Solution”, J. Am. Ceram. Soc., 75[5] (1992)1550-57.
    [374]H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi and T. Inagaki, Solid State Ionics 191 (2001).
    [375]H. Deguchi, H. Yoshida, T. Inagaki and M. Horiuchi, Solid State Ionics 176, 1817 (2005).
    [376]Y. Wang, H. Kageyama, T. Mori, H. Yoshikawa and J. Drennan, Solid State Ionics 177, 1681 (2006).
    [377]Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, Catalysis Today 74, 225 (2002).
    [378]T Tsung-Her Yeh, Chih-Ming Chiang, Wen-Chih Lo and Chen-Chia Chou, “Solid Oxide Fuel Cell Anode Development Using Ionic Materials with high Conductivity,” Solid State Ionics, submitted.
    [379]James T. Richardson, Robert Scates, Martyn V. Twigg, “X-ray diffraction study of Nickel oxides reduction by hydrogen,” Applied Catalysis A: General 246, 137-150 (2003).
    [380]A. Kuzjukevics, S. Linderose, “Interaction of NiO with yttria stabilized zirconia,” Solid State ionics, 93, 255-261 (1997).

    無法下載圖示 全文公開日期 2009/10/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE