簡易檢索 / 詳目顯示

研究生: 李振良
Chen-Liang Li
論文名稱: 微波燒結鋅鈮鋯鈦酸鉛陶瓷系統之特性及微觀研究
Electrical Properties and Microstructures for PZN-based Ceramic System Through Microwave Sintering
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 林諭男
I-Nan Lin
吳泰伯
Tai-Bor Wu
曾俊元
Tseung-Yuen Tseng
彭成鑑
Cheng-Jien Peng
蔡大翔
Dah-Shyang Tsai
洪儒生
Lu-San Hong
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 191
中文關鍵詞: 介電壓電鐵電微波燒結電子顯微鏡鋅鈮酸鉛
外文關鍵詞: PZN, microwave sintering, ferroelectric, dielectric, piezoelectric, electron microscopy
相關次數: 點閱:377下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是要解決Pb(Zn1/3Nb2/3)O3基陶瓷材料系統的製備方式,以達到完全鈣鈦礦結構的目的,並且瞭解不同製程對於試片特性的影響為何。試片燒結方式採用傳統燒結與微波燒結,除試圖利用微波燒結製程改善材料特性之外,還進一步探討微波燒結的機制與造成試片特性獲得改善的主因。
    本研究主要研究的成分為x(0.94Pb(Zn1/3Nb2/3)O3+0.06BaTiO3)+(1-x)PbZryTi1-yO3 ,簡稱PBZNZT。試片的製備方式以conventional columbite (CC)、B site precursor columbite (BSPC) 及 A-site sequential mixing columbite (ASMC)三種方式製備。試片燒結的方式有傳統燒結與微波燒結。試片特性量測包含:鐵電、介電與壓電特性。試片的微觀則以X-ray、掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、能量散佈光譜儀(EDS)、X光能量光譜術(XPS)等進行特徵檢測。實驗結果顯示,以CC製程無法達到穩定PZN鈣鈦礦結構的目的,BSPC製程雖然可以提高鈣鈦礦結構的含量,但因為鋇偏析出在晶界上,造成鋇的穩定效果降低,致使高PZN含量的成分仍殘留部分的焦綠石相。ASMC製程依熱力學的反應能力,順序性反應各化合物,可以完全穩定鈣鈦礦結構。但是鋇離子進入晶體內部,雖然達到穩定鈣鈦礦結構的效果,但是卻會使介電與壓電特性迅速受到破壞。
    微波燒結可以在比傳統燒結低的溫度下,就可以燒結完全緻密的試片,微波燒結在850℃兩小時之持溫下,就可達到95%的相對密度。經過計算微波燒結的活化能約為132 kJ/mol為傳統燒結的一半,傳統燒結活化能為238 kJ/mol。微波燒結除了有降低活化能的功效之外,還能提高PZN基材料電性。微波燒結雖然可以降低燒結溫度,但是低溫燒結緻密試片,特性只能與傳統燒結一樣。當提高微波燒結的溫度與時間,則特性會持續提高。微波燒結的試片在x=0.6 y=0.52時,介電常數最大為25,200,已經超越報導的PZN單晶最大介電常數22,000。機電耦合係數Kp可以由傳統燒結的0.58提高到0.68。微波燒結與傳統燒結試片微觀組織上有很大的差異,同樣燒結條件為1100℃2小時,微波燒結的晶粒尺寸可以成長到3.6 μm,但是傳統燒結試片晶粒卻只有2.4μm。除晶粒尺寸的差異之外,傳統燒結的試片在晶界處會產生非晶質之氧化鉛與氧化鋅的偏析,當試片成分開始發生偏析之時,計量比會產生偏差。並且造成試片裡電荷的不平衡,為達到整體電荷之平衡狀態,晶界上析出的氧化鉛被迫部分還原成金屬鉛。因此造成傳統燒結試片介電、壓電特性無法提升,還有很大的介電損失。微波燒結試片則沒有在晶界上成分的偏析現象。除試片成分得以保存,微波能量還有助於晶體的擴散,使成分均勻性提高,微波燒結的試片即使出現少量的焦綠石相,介電常數依然會隨燒結溫度之提高而增高。


    Complex x(0.94Pb(Zn1/3Nb2/3)O3+0.06BaTiO3)+(1-x)PbZryTi1-yO3 (PBZNZT) ceramics, prepared by three different columbite methods: conventional columbite (CC), B site precursor modified columbite (BSPC) and A-site sequential mixing columbite (ASMC), have been sintered and studied employing microwave (MS) and conventional sintering (CS). Material characteristics were investigated using electron microscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) as well as the measurement of electrical properties. The sintered ceramics via the CC method show that their pyrochlore ratios were always higher than those prepared from the other two methods. The addition of a perovskite phase, such as BaTiO3, PbTiO3 and PbZrO3, used to effectively reduce the pyrochlore content of PZN has been a criterion in evaluating various preparation methods. The perovskite/pyrochlore ratio was decreased effectively by BSPC process. However, the pyrochlore was not removed completely from BSPC process to PZN-rich compositions. The presence of a substantial amount of pyrochlore phase in PZN-base ceramics causes a drop in the dielectric properties. The transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) observation of the BSPC samples show that the BaO segregated at triple junctions, implying that stabilization of the perovskite structure of the specimens was not completely achieved due to elemental segregation. The full perovskite phase was obtained by ASMC method for all compositions. However, the paraelectrics phase of Ba(Zn1/3Nb2/3)O3 would be observed in samples for higher Ba doping, that resulted in reduction of electrical properties to be decreased.
    Experimental results reveal that the relative density of specimens reach 95% for microwave-sintered samples with sintering temperature at 850℃ for 2 h. However, the relative density of CS samples at the same sintering condition is only 84%. The electrical properties of MS samples sintered below 900℃ exhibit similar characteristics to those of CS samples with the same sintering temperature and periods, but the electrical properties were improved remarkably by the MS process at higher sintering temperatures. The piezoelectric coupling coefficient, Kp, is 68% for specimens sintered at 1050℃ for 2 h using the MS process, but the maximum value of Kp is only 58% for all CS samples. The microstructural investigations show that the grain size of MS samples were larger than those of CS samples at sintering temperatures higher than 900℃ for 2 h in this material system. The grain growth mechanism after densification was investigated in terms of the phenomenological kinetics expression: Gn-G0n=K0t exp(-Q/RT). The mean exponent n was determined to be 1.4 and 1 and the apparent activation energy is 132 kJ/mol and 238 kJ/mol for MS and CS samples respectively.
    TEM-EDS investigations show that the CS specimens exhibit pronounced elemental segregation of PbO and ZnO at the grain boundaries, but these are much less significant for MS samples. The PbO and ZnO segregation at grain boundaries, displaying intergranular fracture, could weaken the strength of grain boundaries. On the other hand, the PbO and ZnO segregation results in partial reduction of PbO to Pb in samples.

    第一章前言與文獻回顧……………………….………………....…………..1 1.1 前言………………………………………………………………….1 1.2 文獻回顧…………………………………………………………….3 1.2.1 複合式鐵電材料………………………………..…………………3 1.2.2 添加劑對形成鈣鈦礦的估算……………………………………..5 1.2.3 Bond Valence Approach…………………………..……….….…….…7 1.2.4鈳鐵礦法(Columbite method)…………………………………….…….9 1.2.5鋅鈮酸鉛材料系統….………………………………………….…12 1.2.6 合成方式對鋅鈮酸鉛特性的影響………………………………..13 1.2.7微波燒結………………………………………………………….15 1.2.8 微波與材料的作用[86-89]………………………………………18 1.2.9 熱崩潰(thermal runaway)之現象與機制……………….………..21 1.2.10 燒結理論………………………………………………….…….24 第二章 實驗方法及材料的特性分析……………………..….……….40 2-1實驗藥品規格……………………………………………..………..40 2-2實驗儀器規格……………………………………………..………..42 2-3實驗步驟……………………………………..……………………..44 2.3.1粉末製備……………………………………………..……………44 2.3.2造粒………………………………………………………………..45 2.3.3成型(forming)……………………………………………………..45 2.3.4 燒結(sintering)…………………………………………..……….45 2.3.5電極與極化處理製作……………………………..…….………..46 2.3.6基本性質量測與觀察…………………………………….………47 2.4電性量測……………………………..…………………….……….48 2.4.1 極化值與電場(P-E)曲線量測…………………….………….48 2.4.2 介電常數對溫度(D-T)曲線量測………….…….……………48 2.4.3 壓電特性量測………………………..…………………………..49 第三章不同的鈳鐵礦先驅物製備鋅鈮酸鉛基陶瓷系統對其特性之影響.……………………………………….………………………..…….57 3.1 不同製程對鈣鈦礦成相的影響………….………………………..58 3.2不同製程對相結構的差異……………………………….…………61 3.3不同製程對鐵電特性的影響………………………………………62 3.4不同製程對介電特性的影響……………………………………….63 3.5不同製程對壓電特性的影響……………….………………………66 3.6以ASMC製程製備不同PZN含量之特性………………………..66 3.7結論………………………………………………………………….71 第四章鋇離子的固溶方式對鋅鈮鋯鈦酸鉛鋇材料系統特性的影響………………………………………………………………………..84 4.1結果與討論…………………………………….……………………84 4-2結論……………………………………………………..…………..91 第五章微波燒結鋅鈮鋯鈦酸鉛鋇遲緩性鐵電陶瓷系統……………..…98 5.1微波燒結的機制……………………………………….………..…….…98 5.2微波燒結PZN-base陶瓷對電的特性之影響………….…………….106 5.2.1微波燒結PZN-base陶瓷對鐵電特性之影響……………………..…106 5.2.2微波燒結PZN-base陶瓷對介電特性之影響………………………..108 5.2.3微波燒結PZN-base陶瓷對壓電特性之影響…………………….….111 5.3結論………………………………………………….……………..114 第六章微波燒結控制鋅鈮鋯鈦酸鉛鋇陶瓷系統的成分均勻性對電性之影響……………………………………………….…………………………132 6.1微波燒結與傳統燒結之微觀結構……………….………………..133 6.2結論………………………………………………………..……………143 第七章燒結製程對鋅鈮鋯鈦酸鉛鋇陶瓷系統鉛離子價數的影響…156 7.1製程對Pb價數的影響……………………………………………….156 7.2結論……………………………………………………………………..166 第八章 結論……………………………………………………………..173 8.1 鋅鈮酸鉛PZN製備與鋇離子的影響…………………………....173 8.2 微波燒結與傳統燒結試片的特性……………….………………173 8.3微波燒結與微波的微觀組織……………………………………..174 參考文獻……………………………………..………………….…….176

    1. G. H. Haertling,” PLZT electrooptic materials and applications-A review,” Ferroelectric, Vol. 75, pp. 25-55(1987).
    2. L. H. Parker and A. F. Tasch,”Ferroelectric materials for 64 Mb and 256 Mb DRAMs,” IEEE circuits and devices magazine, pp. 17-26(1990).
    3. Y. Yamashita,” PZN-Based Relaxors for MLCCs,” American Ceramic Society Bulletin, Vol. 73, No. 8, pp. 74-80(1994).
    4. K. Yao, K. Uchino, Y. Xu, S. Dong and L. C. Lim,” Compact piezoelectric stacked actuators for high power applications,” IEEE transactions on ultrasonic, Ferroelectrics, and Frequency Control, Vol. 47, No. 4, pp. 819-825(2000).
    5. H. Kawai, Y. Sasaki, T. Inoue, T. Inoi and S. Takahashi,” High power transformer employing piezoelectric ceramics,” Jpn. J. Appl. Phys., Vol. 35 part 1. No. 9B, pp. 5015-5017(1996).
    6. W. Y. Pant, S Sunt and B. A. Tuttle,” Electromechanical and Dielectric instability induced by electric field cycling in ferroelectric ceramic actuators,” Smart mater. Struct, Vol. 1, pp. 286-293(1992).
    7. K. Uchino,” Piezoelectric ultrasonic motors: overview,” Smart mater. Struct, Vol. 7, pp. 273-285(1998).
    8. Y. Xu, Ferroelectric Materials and Their Application, North-Holland, New York (1991).
    9. Radosveta D. Klissurska, Keith G. Brooks, Ian M. Reancy, Czezlaw Pawlaczyk,” Effect of Nb Doping on the Microstructure of Sol-Gel-Derived PZT thin Films,” J. Am. Ceram. Soc., Vol. 78, No. 6, pp. 1513-20 (1995).
    10. D. Dimos, R. W. Schwartz and S. J. Lockwood,” Control of leakage Resistance in Pb(Zr,Ti)O3 Thin Films by Donor Doping,” J. Am. Ceram. Soc., Vol. 77, No. 11, pp.3000-3005(1994).
    11. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Kainik,” New Ferroelectrics of Complex Composition. IV,” Soviet Physics-Solid State, Vol. 2 No. 11, pp. 2651-2645(1961).
    12. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. B. Popov,” Ferroelectrics with Diffuse Phase Transitions”, Soviet Physics-Solid State, Vol. 2 No. 11, pp. 2584-2594(1961).
    13. Y. Sato, H. Kanai and Y. Yamashita,” Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramic,” J. Am. Ceram. Soc. Vol. 79, No. 1, pp. 261-265(1996).
    14. Y. Yamashita, Y. Hosono and T. Ichinose,” Phase Stability, Dielectric and Piezoelectric Properties of the Pb(Sc1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 Ternary Ceramic Materials,” Jpn. J. Appl. Phys. Vol. 36, Part 1, No. 3A, pp. 1141-1145(1997).
    15. S. K. Ang, J. Wang, Dongmei Wan and Junmin Xue,” Mechanical Activation-Assisted Synthesis of Pb(Fe2/3W1/3)O3,” J. Am. Ceram. Soc. Vol. 83, No. 7, pp. 1575-1580(2000).
    16. S. E. Park and T. R. Shrout,” Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystal,” J. Appl. Phys., Vol. 82, No. 4, pp.1804-1811(1997).
    17. J. Kuwata, K. Uchino and S. Nomura,” Diffude Phase Transition in Lead Zinc Niobate,” Ferroelectrics, Vol. 22, pp.863-867(1979).
    18. Y. Hosono, K. Harada, Y. Yamashita, M. Dong and Z. G. Ye,” Growth, Electric and Thermal Properties of Lead Scandium Niobate_Lead Magnesium Niobate-Lead Titanate Ternary Single Crystal,“ Jpn. J. Appl. Phys. Vol. 39, Part 1, No. 9B, pp. 5589-5592(2000).
    19. M. L. Mulvihill, S. E. Park, G. Risch, Z. Li and K. Uchino,” The Role of Processing Variables in the Flux Growth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric Single Crystals,” Jpn. J. Appl. Phys. Vol. 35, Part 1, No. 7, pp. 3984-3990(1996).
    20. Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru and M. Koizumi,” High-Pressure Synthesis of Perovskite-Type Pb(Zn1/3Nb2/3)O3,” J. Am. Ceram. Soc.-Discussions and Note, Vol. 52, No. 9, pp. 516-517(1969).
    21. A. Halliyal, U. Kumar, R. E. Newnham and L. E. Cross,” Dielectric and Ferroelectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3- BaTiO3-PbTiO3,” . Am. Ceram. Soc., Vol. 70, No. 2, pp. 119-124(1987).
    22. A. Halliyal, U. KuMar, R. E. Newnham and L. E. Cross,” Stabilization of the Perovskite Phase and Dielectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3-BaTiO3”, Am. Ceram. Soc. Bull., Vol. 66, No. 4, pp. 671-676(1987).
    23. J. R. Belsick, A. Halliyal, U. KuMar, R. E. Newnham,” Phase Relations and Dielectric Ptoperties of Ceramics in the System Pb(Zn1/3Nb2/3)O3- SrTiO3-PbTiO3,” Am. Ceram. Soc. Bull., Vol. 66, No. 4, pp. 664-667(1987).
    24. K. K. DEB, M. D. Hill, R. S. Roth and J. F. Kelly,” Dielectric and Pyroelectric Properties of Doped Lead Zinc Niobate (PZN) Ceramic Materials,” Ceramic Bulletin, Vol. 71, No. 3, pp.349-354(1992).
    25. T. Takenaka, A. S. Bhalla and L. E. Cross,” Dielectric, Piezoelectric, and pyroelectric Properties of Lead Zirconate-Lead Zinc Niobate Ceramics”, J. Am. Ceram. Soc.-Discussions and Note, Vol. 72, No. 6, pp. 1016-1023(1989).
    26. H. A. Megaw,” Crystal structure of double oxides of the perovskite type,” Proc. Phys. Soc. Vol. 58, pp. 133-152 (1946)
    27. R. D. Shannon and C. T. Prewitt, “Structural Crystallography and Crystal Chemistry,” Acta Cryst, Vol. 25, pp. 925-946 (1969).
    28. V. M. Goldschmidt, Shrifter Norske Videnskaps-Akad. Oslo 1: Matemot. Naturuid. Klasse, No. 2, 1926.
    29. L. Pauling, in The Nature of Chemical Bonds, Cornell University Press, Cornell, New York, 1960.
    30. N. Wakiya, K. Shinozaki, N. Mizutani and N. Ishizawa,” Estimation of Phase Stability in Pb(Mg1/3Nb2/3)O3and Pb(Zn1/3Nb2/3)O3 Using the Bond Valence Approach,” J. Am. Ceram. Soc., Vol. 80, No. 12, pp. 3217-3220(1997).
    31. S. Shinohara, J. G. Baek, T. Isobe and M. Senna,” Synthesis of Phase-Pure Pb(ZnxMg1-x)1/3Nb2/3O3 up to x=0.7 from a Single Mixture via a Soft_Mechanochemical Route,” J. Am. Ceram. Soc., Vol. 83, No. 12, pp. 3208-3210(2000).
    32. M. Inada,” Analysis of the Formation Process of the Piezoelectric PCM Ceramics,” Jpn. Natl. Tech. Rept., Vol. 27, No. 1, pp. 95-102(1997).
    33. H. M. Jang, K. M. Lee and M. H. Lee,” Stabilization of perovskite phase and dielectric properties of Pb(ZnxMg1-x)1/3Nb2/3O3-PbTiO3 ceramics prepared by excess constituent oxides,” J. Mater. Res., Vol. 9, No. 10. pp. 2634-2644(1994).
    34. M. Villegas, J. F. Fernandez and M. Kosec,” Effects of PbO excess in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics: part Ⅱ. Microstructure development,” J. Mater. Res., Vol. 14, No. 3. pp. 898-905(1999).
    35. S. L. Swartz and T. R. Shrout,” Fabrication of perovskite Lead Magnesium Niobate,” Mater. Res. Bull., Vol. 17, pp. 1245-1250(1982).
    36. S. Y. Chen, C. M. Wang and S. Y. Cheng,” Role of perovskite PMN in phase formation and electrical properties of high dielectric Pb[(Mgx,Zn1-x)1/3Nb2/3]O3 ceramics,” Materials Chemistry and physics, Vol. 52, 207-213(1998).
    37. A. Halliyal, U. Kumar, R. E. Newnham and L. E. Cross,” Stabilization of the perovskite phase and Dielectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3-BaTiO3 System”, Am. Ceram. Soc. Bull, Vol. 66, No. 4, pp. 671-676(1987).
    38. J. R. Belsick, A. Halliyal, U. Kumar and R. E. Newnham,” Phase Relations and Dielectric Properties of Ceramics in the System Pb(Zn1/3Nb2/3)O3-SrTiO3-PbTiO3,” Am. Ceram. Soc. Bull, Vol. 66, No. 4, pp. 664-667(1987).
    39. M. M. A. Sekar, A. Halliyal and K. C. Patil,” Synthesis characterization, and properties of lead-based relaxor ferroelectrics,” J. Mater. Res., Vol. 11, No. 5, pp. 1210-1218(1996).
    40. D. Wan, J. Xue and J. Wang,” Mechanochemical Synthesis of 0.9[0.6Pb(Zn1/3Nb2/3)O3.0.4Pb(Mg1/3Nb2/3)O3] .0.1PbTiO3,” J. Am. Ceram. Soc., Vol. 83, No. 1, pp.53-59(2000).
    41. S. Shinohara, J. G. Back, T. Isobe and M. Senna,” Synthesis of Phase-Pure Pb(ZnxMg1-x)1/3Nb2/3)O3 up to x=0.7 from a Single Mixture via a Soft-Mechanochemical Route,” J. Am. Ceram. Soc., Vol. 83, No. 12, pp. 3208-3210 (2000).
    42. M. Villegas, A. C. Caballero, C. Moure, P. Duran, J. F. Fernandez and R. E. Neweham,” Influence of processing parameters on the Sintering and Electrical Properties of Pb(Zn1/3Nb2/3)O3-based Ceramics”, J. Am. Ceram. Soc., Vol. 83, NO. 1, pp. 141-146 (2000).
    43. D. M. Pozar,” Microwave engineering”, second edition, John Wiley and Sons. Inc., pp.1-55(1998).
    44. K. E. Haque,” Microwave energy for minerial treatment processes –a brief review,” Int. J. Miner. Proc., Vol. 57, pp. 1-24 (1999).
    45. E. Siores and D. Do Rego,” Microwave applications in materials joining,” J. Mater. Proc. Tech., Vol. 48, pp. 619-625 (1995).
    46. P. Boch and N. Lequeux,” Do microwave increase the sinterability of ceramics?,” Solid State Ionics, Vol. 101-103, pp. 1229-1233 (1997).
    47. D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman and N. J. Miles,” Microwave heating application in environmental engineering –a review,” Resources, Conservation and Recycling, Vol. 34, pp. 75-90 (2002)
    48. V. Chandramouli, S. Anthonysamy, P. R. Vasudeva Rao, R. Divaker and D. Sundararaman,” Microwave synthesis of solid solutions of urania and thoria –a comparative study,” J. Nuclear Materials, Vol. 254, pp. 55-64 (1998).
    49. K. H. Brosnan, G. L. Messing and D. K. Agrawal,” Microwave sintering of Alumina at 2.45 GHz”, J. Am. Ceram. Soc., Vol. 86, pp. 1307-1312 (2003).
    50. R. Subasri, T. Mathews, O. M. Sreedharan and V. S. Raghunathan,” Microwave processing of sodium beta alumina”, Solid State Ionics, Vol. 158, pp.199-204 (2003).
    51. P. Piluso, L. Gaillard, N. Lequeux and P. Boch,” Mullitization and densification of (3Al2O3+2SiO2) powder compacts by microwave sintering,” J. Euro. Ceram. Soc., Vol. 16, pp. 121-125 (1996).
    52. A. Goldstein, N. Travitzky, A. Singurindy and M. Kravchik, “Direct microwave sintering of yttria-stabilized zirconia at 2.45 GHz”, J. Euro. Ceram. Soc., Vol. 19, pp. 2067-2071 (1999).
    53. D. D. Upadhyaya, A. Ghosh, K. R. Gurumurthy and Ram Prasad,”Microwave sintering of cubic zirconia”, Ceram. Inter., Vol. 27, pp. 415-418 (2001).
    54. F. T. Ciacchi, S. A. Nightingale and S. P. SBadwal,” Microwave sintering of zirconia-yttria electrolytes and measurement of their ionic conductivity,” Solid State Ionics, Vol. 86-88, pp. 1167-1172 (1996).
    55. N. A. Travitzky, A. Goldstein, O. Avsian and A. Singurindi,” Microwave sintering and mechanical properties of Y-TZP/20 wt.% Al2O3 composites,” Materials Science and Engineering, Vol. 286, pp. 225-229 (2000).
    56. S. A. Nightingale, H. K. Worner and D. P. Dunne,” Microstructural development during the microwave sintering of yttria-zirconia ceramics,”J. Am. Ceram. Soc., Vol. 80. No. 2, pp. 394-400 (1997).
    57. A. Goldstein, W. D. Kaplan and A. Singurindi,” Liquid assisted sintering of SiC powder by MW (2.45 GHz) heating”, J. Euro. Ceram. Soc., Vol. 22, pp. 1891-1896 (2002).
    58. G. Xu, H. Zhuang, W. Li and F. Wu,” Microwave Sintering of α/β-Si3N4”, J. Euro. Ceram. Soc., Vol. 17, pp. 977-981 (1997).
    59. G. F. Xu, H. R. Zhuang, F. Y. Wu and W. L. Li,” Microwave Reaction sintering of α-β-Sialon composite ceramics,” J. Euro. Ceram. Soc., Vol. 17, pp. 675-680 (1997).
    60. G. Xu, H. Zhuang, W. Li and F. Wu,” Microwave sintering of α/β-Si3N4,” J. Euro. Ceram. Soc., Vol. 17, pp. 977-981 (1997).
    61. S. S. Jida, T. Suemasu and T. MiKi,” Effect of microwave heating on BaTiO3:Nb ceramics with positive temperature coefficient of resistivity”, J. Appl. Phys., Vol. 86, pp. 2089-2094 (1999).
    62. A. Chang and J. Jian,” The orientational growth of grains in doped BaTiO3 PTCR materials by microwave sintering,” J. Mater. Proc. Tech., Vol. 137, pp. 100-101 (2003).
    63. S. Rhee, T. R. Shrout, G. Link and M. Thumm,” Investigation of high frequency (2.45 GHz, 30 GHz) sintering of Pb-Based ferroelectric”, J. Ceram. Soc. Jpn., Vol. 111, pp. 312-317 (2003).
    64. H. Takahashi, K. Kato, J. Qiu, J. Tani and K. Nagata,” Fabrication of high-performance lead zirconate titanate actuators using the microwave and hot-press hybrid sintering processes,” Jpn. J. Appl. Phys., Vol. 40, Part 1, No. 7, pp. 4611-4614 (2001).
    65. H. Takahashi, K. Kato and J. Qiu,” Property of lead zirconate titanate actuators manufactured with microwave sintering process,” Jpn. J. Appl. Phys., Vol. 40, Part 1, No. 2A, pp. 724-727 (2001).
    66. H. Takahashi, K. Kato, J. Qiu, J. Tani and K. Nagata,” Properties of lead zirconate titanate ceramics determined using microwave and hot-press hybrid sintering processes,” Jpn. J. Appl. Phys., Vol. 40, Part 1, No. 9B, pp. 5642-5646 (2001).
    67. S. Rhee, T. R. Shrout, G. Link and M. Thumm,” Investigation of high frequency (2.45 GHz, 30 GHz) sintering of Pb-based ferroelectrics,” J. Ceram. Soc. Jpn., Vol. 111, No. 5, pp. 312-317 (2003).
    68. A. Goldstein and M. Kravchik,” Sintering of PZT powders in MW furnace at 2.45 GHz,” J. Euro. Ceram. Soc., Vol. 19, pp. 989-992 (1999).
    69. W. B. Harrison, M. R. B. Hanson and B. G. Koepke,” Microwave processing and sintering of PZT and PLZT ceramics,” Mat. Res. Soc. Symp. Proc., Vol. 124, pp.279-286 (1988).
    70. Z. Xie, J. Yang, X. Huang and Y. Huang,” Microwave processing and properties of ceramics with different dielectric loss,” J. Euro. Ceram. Soc., Vol. 19, pp. 381-387 (1999).
    71. K. S. Liu and I. N. Lin,” Enhanced densification of SrTiO3 perovskite ceramics,” Applications of ferroelectrics, 1994, ISAF 94 Proceedings of the Ninth IEEE International Symposium on 7-10 Aug., pp.261-264 (1994).
    72. O. P. Thakur, C. Prakash and D. K. Agrawal,” Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave,” Mater. Sci. Eng., Vol. B96, pp. 221-225 (2002).
    73. C. C. Chou, H. Y. Chang, I. N. Lin, B. J. Shaw and J. T. Tan,” Microscopic examination of the microwave sintered (Pb0.6Sr0.4)TiO3 positive-temperature-coefficient resistor materials”, Jpn. J. Appl. Phys., Vol. 37, pp. 5269-5272 (1998).
    74. H. Y. Chang, K. S. Liu, H. W. Chen, C. T. Hu, L. N. Lin, B. J. Shaw and J. T. Tan,” V-shaped positive temperature coefficient of resistivity (PTCR) characteristics of microwave-sintering (Sr0.4Pb0.6)TiO3”, Mater. Chem. Phys., Vol. 42, pp. 258-263 (1995).
    75. P. H. Chen, H. C. Pan, C. C. Chou and I. N. Lin,” Microstructures and properties of semi-conductive (Pb0.6Sr0.4)TiO3 ceramics using PbTiO3-coated SrTiO3 powders”, J. Euro. Ceram. Soc., Vol. 21, pp.1905-1908 (2001).
    76. C. T. Hu, H. W. Chen, H. Y. Chang and I. N. Lin,” Effect od SiO2 sintering aids on high critical temperature positive temperature coefficient of resistivity properties of (Pb0.6Sr0.3Ba0.1)TiO3 Materials prepared by microwave sintering technology,” Jpn. J. Appl. Phys., Vol. 37, Part 1, No. 1 pp. 186-191 (1998).
    77. H. Y. Chang, K. S. Liu, H. W. Chen, C. T. Hu, I. N. Lin, B. J. Shaw and J. T. Tan,” V-shaped positive temperature coefficient of resistivity (PTCR) characteristics of microwave-sintered (Sr0.4Pb0.6)TiO3,” Mater. Chem. Phys., Vol. 42. pp. 258-263 (1995).
    78. Y. F. Liu, X. Q. Liu and G. Y. Meng,” A novel route of synthesizing La1-xSrxCoO3 by microwave irradiation,” Mater. Lett., Vol. 48, pp. 176-183 (2001).
    79. A. Cherradi, S. Marinel, G. Desgardin, J. Provost and B. Raveau,” Microwave sintering of the high-Tc superconductor Y-Ba-Cu–O,” Supercond. Sci. Technol., Vol. 10, pp. 475-483 (1997).
    80. A. Cherradi, G. Desgardin, L. Mazo and B. Raveau,”What is the contribution of electrical field to the microwave sintering of YBCO,” Supercond. Sci. Technol., Vol. 6, pp. 799-802 (1993).
    81. W. C. Lee, K. S. Liu and I. N. Lin,” Electrical properties of microwave-sintered ZnO Varistors,” Jpn. J. Appl. Phys., Vol. 38, Part 1, No. 9B pp. 5500-5504 (1999).
    82. C. S. Chen, C. T. Kuo, T. B. Wu and I. N. Lin,” Microstructures and electrical properties of V2O5-Based Muliticomponent ZnO varistors prepared by microwave sintering process,” Jpn. J. Appl. Phys., Vol. 36, Part 1, No. 3A pp. 1169-1175 (1997).
    83. C. Y. Tsay, K. S. Liu and I. N. Lin,” Co-firing process using conventional and microwave sintering technology for MnZn- and NiZn-ferrites,” J. Euro. Ceram. Soc., Vol. 21, pp.1937-1940 (2001).
    84. H. Saita, Y. Fang, A. Nakano, D. Agrawal, M. T. Lanagan, T. R. Shrout and C. A. Randall,” Microwave sintering study of NiCuZn ferrite ceramics and devices,” Jpn. J. Appl. Phys., Vol. 41, Part 1, No. 31 pp. 86-92 (2002).
    85. P. Yadoji, R. Peelamedu, D. Agrawal and R. Roy,” Microwave sintering of Ni-Zn ferrites: comparison with conventional sintering,” Mater. Sci. Eng., Vol. B98, pp. 269-278 (2003).
    86. D. E. Clark, D. C. Folz and J. K. West,” Processing materials with microwave energy,” Mater. Sci. Eng., Vol. A287, pp. 153-158 (2000).
    87. L. K. Kurihara, B. A. Bender, G. M. Chow and R. J. Rayne,” A study of Millimeter-Wave sintering of fine-grained alumina compacts,” IEEE Transactions on Plasma Science, Vol. 28. No. 3, pp. 924-935 (2000).
    88. E. T. Thostenson and T. W. Chou,” Microwave processing: fundamentals and applications,” Composites, Part A: Applied Science and Manufacturing, Vol. 30, pp. 1055-1071 (1999).
    89. W. H. Sutton,” Microwave processing of ceramic materials,” Ceram. Bull. Vol. 68. No. 2, pp. 376-386 (1989).
    90. V. M. Kenkre, L. Skala and M. W. Weiser,” Theory of microwave interactions in ceramic materials: the phenomenon of thermal runaway,” J. Mater. Sci., Vol. 26, pp. 2483-2489 (1991).
    91. M. A. Janney, H. D. Kimrey, M. A. Schmidt and J. O. Kiggans,” Grain growth in microwave-Annealed Alumina”, J. Amer. Ceram. Soc., Vol. 74, No. 7, pp. 1675-1681 (1991).
    92. T. Saji,” Densification behavior of microwave sintering, and effects of green body pore size on it,” Proceedings of the International symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, 3-4 February, 1997, Osaka, Japan, pp.9-19 (1997).
    93. R. M. German, Sintering theory and practice, John Wiley & Sons, INC., New York, 1996.
    94. J. S. Reed, Principles of ceramics processing Second Edition, John Wiley & Sons, INC., New York, 1994.
    95. Q. Jiang, W. CaO and L. E. Cross,” Electric Fatigue in Lead Zirconate Titanate Ceramics”, J. Am. Ceram. Soc., Vol. 77, No. 1, pp. 211-215 (1994).
    96. L. C. Lim and R. Liu,” Surface breakaway decomposition of perovskite 0.91PZN-0.09PT during high-temperature annealing,” J. Am. Ceram. Soc., Vol. 85, No. 11, pp. 2817-2826 (2002).
    97. X. Wang,” Effect of micro-region heterogeneity of phase structure and dielectric properties in Pb(Zn1/3Nb2/3)O3-PbTiO3-BaTiO3 ceramics,” J. Mater. Sci., Vol.34, pp. 6027-6033 (1999).
    98. A. J. Moulson and I. M. Herbert, Electroceramics materials, properties, applications, Chapman and Hall, New York, pp. 3-85 (1990).
    99. U. Kumar, L. E. Cross and A. Halliyal,” Pyroelectric and electrostrictive properties of (1-x-y)PZN.BT.yPT ceramics solid solutions,” J. Am. Ceram. Soc., Vol. 75, No. 8, pp. 2155-2164 (1992).
    100. Y. S. Cho, S. M. Pilgrim, H. Giesche and K. Bridger,” Dielectric and electromechanical properties of chemically modified PMN-PT-BT ceramics,” J. Am. Ceram. Soc., Vol. 83, No. 10, pp. 2473-2480 (2000).
    101. W. Zhu, A. L. Kholkin, P. Q. Mantas and J. L. Baptista,” Morphotropic phase boundary in the Pb(Zn1/3Nb2/3)O3-PbTiO3-BaTiO3 system,” J. Am. Ceram. Soc., Vol. 84, No. 8, pp. 1740-1744 (2001).
    102. F. Xia and X. Yao,” Postsintering annealing induced extrinsic dielectric and piezoelectric responses in lead-zinc-niobate-based ferroelectric ceramics,” J. Appl. Phys., Vol. 92, No.5 pp. 2709-2716 (2002).
    103. F. Xia and X. Yao,” Piezoelectric and dielectric properties of PZN-BT-PZT solid solutions,” J. Mat. Sci., Vol. 34, pp. 3341-3343 (1999).
    104. J. K. Lee, S. G. Kang and H. Kim,” Dielectric properties of Pb(Zn1/3Nb2/3)O3 ceramics modified by Ba(Zn1/3Nb2/3)O3 and BaTiO3,” J. Mat. Sci., Vol. 33, pp. 693-698 (1998).
    105. S. G. Kang, H. Kim and J. K. Lee,” Stabilization of the perovskite phase in Pb(Zn1/3Nb2/3)O3 ceramics modified by Ba(Zn1/3Nb2/3)O3 and BaTiO3,” J. Mat. Sci., Vol. 32, pp. 5377-5381 (1997).
    106. V. V. Kirillov and V. A. Isupov,” Relaxation Polarization of Pb(Mg1/3Nb2/3)O3 (PMN)-A Ferroelectric with Diffuse Phase Transition,” Ferroelectrics, Vol. 5, pp. 3-9 (1973).
    107. K. Uchino, S. Nomura, L. E. Cross, S. J. Jang and R. E. Newnham,” Electrostrictive effect in lead magnesium niobate single crystals,” J. Appl. Phys. Vol. 51, No. 2, pp. 1142-1145 (1980).
    108. S. M. Pilgrim, A. E. Sutherland and S. R. Winzer,” Diffuseness as a useful parameter for relaxor ceramics,” J. Am. Ceram. Soc., Vol. 73, No. 10, pp. 3122-3125 (1990).
    109. I. M. Reaney, J. Petzelt, V. V. Voitsekhovskii, F. Chu and N. Setter,” B-site order and infrared reflectivity in A(B’B”)O3 complex perovskite,” J. Appl. Phys., Vol. 76, No. 4, pp. 2087-2092 (1994).
    110. H. M. Jang and S. M. Cho,” Short-Range Ordering in Pb(B’B”)O3–Type Relaxor Ferroelectrics,” J. Am. Ceram. Soc., Vol. 83, No. 7, pp. 1699-1670 (2000).
    111. C. A. Randall, A. S. Bhalla, T. R. Shrout and L. E. Cross,” Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order,” J. Mater. Res., Vol. 5, No. 4, pp. 829-834 (1990).
    112. H. M. Jang and K. M. Lee,” Stabilization of Pb(ZnMg)1/3Nb2/3O3- 0.045PbTiO3 perovskite phase and dielectric properties of ceramics prepared by excess constituent oxides,” J. Mater. Res., Vol. 9, No. 10, pp.2634-2644 (1994).
    113. H. M. Jang and K. M. Lee,” Dielectric and piezoelectric properties of the thermally annealed Pb(Zn1/3Mg)Nb2/3O3-PbTiO3 system across the rhombohedral/tetragonal morphotropic phase boundary,” J. Mater. Res., Vol. 10, No. 12, pp. 3185-3193 (1995).
    114. M. Villegas, A. C. Caballero, M. Kosec, C. Moure, P. Duran and J. F. Fernandes,” Effects of PbO excess in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics: Part Ⅰ. Sintering and dielectric properties,” J. Mater. Res., Vol. 14, No. 3, pp. 891-897 (1999).
    115. D. Viehland, N. Kim, Z. Xu and D. A. Payne,” Structural studies of ordering in the (Pb1-xBax)(Zn1/3Nb2/3)O3 crystalline solution series,” J. Am. Ceram. Soc., Vol. 78, No. 9, pp. 2481-2489 (1995).
    116. C. A. Randall, N. Kim, J. P. Kucera, W. Cao and T. R. Shrout,” Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics,” J. Am. Ceram. Soc., Vol. 81, No. 3, pp. 677-88 (1998).
    117. M. S. Yoon and H. M. Jang,” Relaxor-normal ferroelectric transition in tetragonal-rich field of Pb(Ni1/3Nb2/3)O3-PbTiO3-PBZrO3 system,” J. Appl. Phy., Vol. 77, No. 8, pp. 3991-4001 (1995).
    118. S. F. Liu, S. E. Park, T. R. Shrout and L. E. Cross,” Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals,” J. Appl. Phys., Vol. 85, No. 5, pp. 2801-2814 (1999).
    119. H. Fan and H. E. Kim,” Effect of Lead Content on the Structure and Electrical Properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 Ceramics,” J. Amer. Ceram. Soc., Vol. 84, pp. 636-638 (2001).
    120. P. Goel, K. L. Yadav and A. R. James,” Double doping effect on the structural and dielectric properties of PZT ceramics,” J. Phys. D: Appl. Phys., Vol. 37, pp. 3174-3179(2004).
    121. S. R. Darvish and A. C. Rastogi,” Ferroelectric behaviour of PZT thin films with secondary TiO2 phase induced defects,” J. Phys. D: Appl. Phys., Vol. 33, pp. 2117-2124(2000).
    122. S. Iakovlev, C. H. Solterbeck, and M. E. Souni,” Doping and thickness effects on dielectric properties and subswitching behavior of lead titanate thin films,” Appl. Phys. Lett., Vol. 81, No. 10, pp. 1854-1856(2002).
    123. P. H. Xiang, N. Zhong, X. L. Dong, C. D. Feng and Y. L. Wang,” Single-Calcination Synthesis Mechanism of Pure-Perovskite Pb(Ni1/3Nb2/3)O3-PbTiO3 Using a Coating Method,” J. Amer. Ceram. Soc., Vol. 88, pp. 239-242 (2005).
    124. X. Zhang and F. Fang,” Study of the structure and dielectric relaxation behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric ceramics,” J. Mater. Res., Vol. 14, No. 12, pp. 4581-4586 (1999).
    125. J. D. Katz, R. D. Blake and V. M. Kenre,” Microwave enhanced Diffusion?,” Cera. Trans., Vol 21, pp.95-105 (1991).
    126. D. S. Paik, S. E. Park, S. Wada, S. F. Liu and T. R. Shrout,” E-field induced phase transition in <001>-oriented rhombohedral 0.92 Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 crystals,” J. Appl. Phys., Vol. 85, No. 2, pp. 1080-1083 (1999).
    127. S. F. Liu, S. E. Park, T. R. Shrout and L. E. Cross,” Electric field dependence of piezoelectric properties for rhombohedral 0.955 Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals,” J. Appl. Phys., Vol. 85, No. 5, pp. 2810-2814 (1999).
    128. G. Arlt,” Review Twinning in ferroelectric and ferroelastic ceramics: stress relief,” J. Mater. Sci., Vol. 25, pp. 2655-2666 (1990).
    129. M. Marvan, J. Erhart and J. Fousek,” Role of soft dielectric energy in poling crystals or ceramics and domain average engineering,” Appl. Phys. Lett., Vol. 84, No. 3, pp. 768-770 (2004).
    130. D. Bolten, U. Bottger, T. Schneller, M. Grossmann, O. Lohse and R. Waser,” Reversible and irreversible processes in donor-doped Pb(Zr,Ti)O3,” Appl. Phys. Lett., Vol. 77, No. 23, pp. 3830-3832 (2000).
    131. K. Fujimoto and Y. Cho,” High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3,” Appl. Phys. Lett., Vol. 83, No. 25, pp. 5265-5267 (2003).
    132. M. H. Lente, A. Picinin, J. P. Rino and J. A. Eiras,” 90˚ domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process,” J. Appl. Phys., Vol. 95, No. 5, pp. 2646-2653 (2004).
    133. D. C. Lupascu, E. Aulbach and J. Rodel,” Mixed electromechanical fatigue in lead zirconate titanate,” J. Appl. Phys., Vol. 93, No. 9, pp. 5561-5556 (2003).
    134. E. M. Bourim and H. Tanaka, M. Gabbay, G. Fantozzi and B. L. Cheng,” Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics,” J. Appl. Phys., Vol. 91, No. 10, pp. 6662-6669 (2002).
    135. S. K. Streiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster and G. R. Bai,” Domain patterns in epitaxial rhombohedral ferroelectric films. Ⅰ. Geometry and experiments,” J. Appl. Phys., Vol. 83, No. 5, pp. 2742-2753 (1998).
    136. A. E. Romanov, M. J. Lefevre, J. S. Speck, W. Pompe, S. K. Streiffer and C. M. Foster,” Domain patterns formation in epitaxial rhombohedral ferroelectric films. Ⅱ. Interfacial defects and energetics,” J. Appl. Phys., Vol. 83, No. 5, pp. 2754-2765 (1998).
    137. J. Yin and W. Cao,” Domain configurations in domain engineered 0.955 Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals,” J. Appl. Phys., Vol. 87, No. 10, pp. 7438-7441 (2000).
    138. N. J. Donnelly, G. Catalan, C. Morros, R. M. Bowman, and J. M. Gregg,” Dielectric and electromechanical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films grown by pulsed laser deposition,” J. Appl. Phys., Vol. 93, No. 12, pp. 9924-9929 (2003).
    139. M. C. Chae, N. K. Kim, J. J. Kim and S. H. Cho,” Preparation of Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3 ceramics by the B-site precursor method and dielectric characteristics,” J. Mater. Sci., Vol. 33, pp. 1343-1348 (1998).
    140. K. K. Deb, M. D. Hill, R. S. Roth and J. F. Kelly,” Dielectric and pyroelectric properties of doped lead zinc niobate (PZN) ceramic materials,” Ceramic Bulletin, Vol. 71, No. 3, pp. 349-354(1992).
    141. H. C. Wang and W. A. Schulze,” The role of excess magnesium oxide or lead oxide in determining the microstructure and properties of lead magnesium niobate,” J. Amer. Ceram. Soc., Vol. 73, No. 4, pp.825-832 (1990).
    142. R. M. V. Rao, A. Halliyal and A. M. Umarji,” Perovskite phase formation in the relaxor system [Pb(Fe1/2Nb1/2)O3]1-x-[Pb(Zn1/3Nb2/3) O3]x,” J. Amer. Ceram. Soc., Vol. 79, No. 1, pp.257-260 (1996).
    143. G. Arit, D. Hennings and G. de With,” Dielectric properties of fine-grained barium titanate,” J. Appl. Phys., Vol. 58, No. 4, pp. 1619-1625 (1985).
    144. C. A. Randall, N. Kim, J. P. Kucera, W. Gao and T. R. Shrout,” Intrinsic and extrinsic size effect in fine-grained morphotropic-phase- boundary lead zirconate titanate ceramics,” J. Amer. Ceram. Soc., Vol. 81, No. 3, pp.677-688 (1998).
    145. T. T. Fang, H. L. Hsieh and F. S. Shiau,” Effects of pore morphology and grain size on the dielectric properties and tetragonal-cubic phase transition of high-purity barium titanate,” J. Amer. Ceram. Soc., Vol. 76, No. 5, pp. 1205-1211 (1993).
    146. J. D. Cerro, M. Mundi, C. Gallardo, J. M. Criado, F. J. Gotor and A. Bhalla,” Sintering temperature influence on phase stability in barium titanate ceramics with very small grain size,” Ferroelectrics, Vol. 127, pp. 59-64 (1992).
    147. W. Cao and C. A. Randall,” Grain size and domain size relations in bulk ceramic ferroelectric materials,” J. Phys. Chem. Solids, Vol. 57, No. 10. pp. 1499-1505 (1996).
    148. K. Okazaki, H. Igarashi, K. Nagata and A. Hasegawa,” Effects of grain size on the electrical properties of PLZT ceramics,” Ferroelectrics, Vol. 7, pp. 153-155(1974).
    149. L. Mitoseriu, D. Ricinschi, C. Harnagea, M. Okuyama, T. Tsukamoto and V. Tura,” Grain size dependence of switching properties of ferroelectric BaTiO3 ceramics,” Jpn. J. Appl. Phys., Vol. 35, No. 9B, pp. 5210- 5216 (1996).
    150. H. M. Duiker and P. D. Beale,” Grain-size effects in ferroelectric switching,” Phy. Rev. B, Vol. 41, No. 1, pp.490-495 (1990).
    151. K. W. Gachigi, U. Kumar and J. P. Dougherty,” Grain size effects in barium titanate,” Ferroelectrics, Vol. 143, pp. 229-238(1993).
    152. J. Chen, H. M. Chan and M. P. Harmer,” Ordering structure and dielectric properties of undopred and La/Na-doped Pb(Mg1/3Nb2/3)O3,” J. Amer. Ceram. Soc., Vol. 72, NO. 4, pp. 593-598 (1989).
    153. X. Dai, Z. Xu and D. Viehland,” Long-Time Relaxation from Relaxor to Normal Ferroelectric States in Pb0.91La0.06(Zr0.65Ti0.35)O3,” J. Amer. Ceram. Soc., Vol. 79, No. 7, pp. 1957-1960 (1996).
    154. D. Viehland and J. F. Li,” Dependence of the glasslike characteristics of relaxor ferroelectrics on chemical ordering,” J. Appl. Phys., Vol. 75. No. 3, pp. 1705-1709 (1994).
    155. D. Viehland and J. F. Li,” Compositional instability and the resultant charge variations in mixed B-site cation relaxer ferroelectrics,” J. Appl. Phys., Vol. 74, No. 6, pp. 4121-4124 (1993).
    156. X. Dai, A. DiGiovanni and D. Viehland,” Dielectric properties of tetragonal lanthanum modified laed zirconate titanate ceramics,” J. Appl. Phys., Vol. 74, No. 5, pp. 3399-3405 (1993).
    157. D. Viehland, S. J. Jang, L. E. Cross, and M. Wutting,” Local polar configurations in lead magnesium niobate relaxors,” J. Appl. Phys., Vol. 69, No. 1, pp. 414-419 (1991).
    158. T. Mishima, K. Kamigaki and S. Nambu,” Core/shell structure in Pb(Mg1/3Nb2/3)O3-PbTiO3,” Jpn. J. Appl. Phys., Vol. 37, No. 9B, pp. 5253-5256 (1998).
    159. R. Ganesh and E. Goo,” Microstructure and Dielectric Characteristics of (PbxBa0.5-xSr0.5)TiO3 ceramics,” J. Amer. Ceram. Soc., Vol. 79, No. 1, pp. 225-232 (1993).
    160. Y. Park and H. G. Kim,” Dielectric temperature characteristics of ceramic-modified Barium Titanate Based ceramics with core-shell grain structure,” J. Amer. Ceram. Soc., Vol. 80, No. 1, pp. 106-112 (1997).
    161. P. Hansen, D. Hennings and H. Schreinemacher, High-K dielectric ceramics from donor/acceptor-codoped (Ba1-xCax)(Ti1-yZry)O3 (BCTZ),” J. Amer. Ceram. Soc., Vol. 81, No. 5, pp. 1369-1373 (1998).
    162. C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty and W. Huebner,” Structure property relationships in core-shell BaTiO3-LiF ceramics,” J. Mater. Res., Vol. 8, No. 4, pp. 871-879 (1993).
    163. J. S. Kim and S. J. L. Kang,” Formation of core-shell structure in the BaTiO3-SrTiO3 system,” J. Amer. Ceram. Soc., Vol. 82, No. 4, pp. 1085-1088 (1999).
    164. J. S. Kim, S. J. Kim, H. G. Kim, D. C. Lee and K. Uchino,” Piezoelectric and dielectric properties of Fe2O3-doped 0.57Pb(Sc1/2Nb1/2)O3-0.43PbTiO3 ceramic materials,” Jpn. J. Appl. Phys. Vol. 38, Part 1, No. 3A, pp. 1433-1437 (1999).
    165. Y. H. Chen, S. Hirose, D. Viehland, S. Takahashi and K. Uchino,” Mn-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics: improved mechanical quality factors for high-power transducer applications,” Jpn. J. Appl. Phys. Vol. 39, Part 1, No. 8, pp. 4843-4852 (2000).
    166. S. Priya, K. Uchino and D. Viehland,” Crystal growth and piezoelectric properties of Mn-substituted Pb(Zn1/3Nb2/3)O3 single crystal,” Jpn. J. Appl. Phys. Vol. 40, Part 2, No. 10A, pp. L1044-1047 (2001).
    167. Y. Gao, Y. H. Chen, J. Ryu, K. Uchino and D. Viehland,” Eu and Yb substituent effect on the properties of Pb(Zr0.52Ti0.48)O3-Pb(Mn1/3Sb2/3)O3 ceramics: development of a new high-power piezoelectric with enhanced vibrational velocity,” Jpn. J. Appl. Phys. Vol. 40, Part 1, No. 2A, pp. 687-693 (2001).
    168. S. Priya and K. Uchino,” Dielectric and peizoelectric properties of the Mn-substituted Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal,” J. Appl. Phys., Vol. 91, No. 7, pp. 4515-4520 (2002).
    169. R. Lal, N. M. Gokhale, R. Krishnan and P. Ramakrishnan,” Effect of sintering parameters on the microstructure and properties of strontium modified PZT ceramics prepared using spray-dried powders,” J. Mater. Sci., Vol. 24, pp. 2911-2916 (1989).
    170. S. Kim, G. S. Lee, T. R. Shrout and S. Venkataramani,” Fabrication of fine-grain peizoelectric ceramics using calcinations,” J. Mater. Sci., Vol. 26, pp. 4411-4415 (1991).
    171. S. Tashiro, T. Murata, K. Ishii and H. Igarashi,” Grain size dependence oh third nonlinear piezoelectric coefficient in lead zirconate titanate ceramics,” Jpn. J. Appl. Phys., Vol. 40, Part 1, No. 9B, pp. 5679-5682 (2001).
    172. L. C. Lim, R. Liu and F. J. Kumar,” Surface breakaway decomposition of perovskite 0.91PZN-0.09PT during high-temperature annealing,” J. Am. Ceram. Soc., Vol. 85, No. 11, pp. 2817-2826 (2002).
    173. H. M. Jang, S. H. Oh and J. H. Moon,” Thermodynamic stability and mechanisms of formation and decomposition of perovskite Pb(Zn1/3Nb2/3)O3 prepared by the PbO flux method,” J. Am. Ceram. Soc., Vol. 75, No. 1, pp. 82-88 (1992).
    174. M. Villegas, J. F. Fernandez, A. C. Caballero, Z. Samardila, G. Drazic and M. Kosec,” Effect PbO excess on Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics: Part II. Microstrusture development,” J. Master. Res., Vol. 14, No. 3, pp. 898-905 (1999).
    175. P. Papet, J. P. Dougherty and T. R. Shrout,” Particle and grain size effects on the dielectric behavior of the relaxor ferroelectric lead magnesium niobate,” J. Mater. Res., Vol. 5, No. 12, pp. 2902-2909 (1990).
    176. F. Xia and X. Yao,” Effect of thermal annealing on the dielectric properties of Pb(Zn1/3Nb2/3)O3-based ceramics,” J. Master. Res., Vol. 14, No. 5, pp. 1683-1685 (1999).
    177. P. Veluchamy and H. Minoura,” Surface analysis of anodic lead oxide films prepared in hot alkaline solutions,” Appl. Surface. Sci., Vol. 126, pp. 241-245 (1998).
    178. H. S. Liu, T. S. Chin and S. W. Yung,” FTIR and XPS studies of low-melting PbO-ZnO-P2O5 glasses,” Mater. Chem. Phys., Vol. 50, pp. 1-10 (1997).
    179. M. Tong, G. Dai and D. Gao,” Plasma-enhanced chemical vapor deposition of PbTiO3 thin films,” Mater. Lett., Vol. 46, pp. 60-64 (2000).
    180. S. A. Nasser,” X-ray photoelectron spectroscopy study on composition and structure of BaTiO3 thin films deposited on silicon,” Appl. Surface. Sci., Vol. 157, pp. 14-22 (2000).
    181. M. G. Kang, K. T. Kim and C. I. Kim,” Recovery of plasma-induced damage in PZT thin film with O2 gas annealing,” Thin Solid Films, Vol. 398-399, pp. 448-453 (2001).
    182. C. H. Park, Y. G. Son and M. S. Won,” Microstructure and ferroelectric properties of r.f. magnetron sputtering derived PZT thin films deposited on interlayer (PbO/TiO2),” Microchemical J., Vol. 80, pp. 201-206 (2005).
    183. X. G. Tang, A. L. Ding and W. G. Luo,” Surface morphology and chemical stated of highly oriented PbZrO3 thin films prepared by sol-gel process,” Appl. Surface Sci., Vol. 174, pp. 148-154 (2001).
    184. S. T. Zhang, W. S. Tan, G. L. Yuan, X. J. Zhang, H. W. Cheng, Y. F. Chen, Z. G. Liu and N. B. Ming,” Fabrication and electrical properties of LaNiO3/Pb(Zr0.61Ti0.39)O3/LaNiO3/LaAlO3 all-perovskite heterostructures,” Microelectronic Engineering, Vol. 66, pp. 701-707 (2003).
    185. H. Y. Chen, J. Lin, K. L. Tan and Z. C. Feng,” Characterization of lead lanthanum titanate thin films grown on fused quartz using MOCVD,” Thin Solid Films, Vol. 289, pp. 59-64 (1996).
    186. J. N. Kim, K. S. Shin, D. H. Kin, B. O. Park, N. K. Kim and S. H. Cho,” Changes in chemical behavior of thin film lead zirconate titanate during Ar+-ion bombardment using XPS,” Appl. Surface Sci., Vol. 206, pp. 119-128 (2003)
    187. N. Wakiya, K. Kuroyanagi, Y. Xuan, K. Shinozaki and N. Mizutani,” An XPS study of nucleation and growth behavior of an epitaxial Pb(Zr,Ti)O3/MgO(100) thin film prepared by MOCVD,” Thin Solid Films, Vol. 372, pp. 156-162 (2000).
    188. David R. Gaskell, Introduction to the thermodynamics of materials,” Taylor & Francis, New York, pp. 337-382 (2003).
    189. D. Fanning, I. Robinson, S. Jung, E. Colla, D. Viehland, and D. Payne, “ Superstructure ordering in lanthanum doped lead magnesium niobate," J. Appl. Phys., Vol. 87, pp. 840-848 (2000).
    190. Z. Xu, S. Gupta, D. Viehland, Y. Yan, and S. Pennycook,” Direct imaging of atomic ordering in undoped and La-doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Society, Vol. 83, pp. 181-188 (2000).
    191. S. M. Gupta and D. Viehland,” Influence of non-stoichiometric ordering on the electrostriction coefficient of lead magnesium niobate lead titanate compositions close to the morphotropic phase boundary,” J. Mater. Sci., Vol. 34, pp. 5649-5659 (1999).
    192. S. Gupta, E. Furman, E. Colla, Z. Xu, and D. Viehland, "Relaxational polarization in polar dielectric barium magnesium niobate," J. Appl. Phys., Vol. 88, 2836-2842 (2000).
    193. E. Colla, S. Gupta, N. Yushin, E. Furman, and D. Viehland, "Dependence of dielectric relaxation on AC drive in the PMN-PT crystalline solution," J. App. Phys., Vol. 85, 1693-1697 (1999).
    194. E. Colla, S. Gupta, and D. Viehland, "Alternating current field effect on the freezing temperature of relaxor ferroelectrics," J. Appl. Phys., Vol. 85, 362-367 (1999).
    195. A. Zomorrodian, A. Mesarwi, N. J. Wu and A. Ignatiev,” XPS oxygen line broadening in lead zirconium titanate and related materials,” Appl. Surface Sci., Vol. 90, pp. 343-348 (1995).
    196. Y. C. Lai, J. C. Lin and C. Lee,” Nucleation and growth of highly oriented lead titanate thin films prepared by a sol-gel method,” Appl. Surface Sci., Vol. 125, pp. 51-57 (1998).
    197. W. Gong, J. F. Li, X. C. Chu, Z. Gui and L. Li,” Preparation and characterization of sol-gel derived (100)-textured Pb(Zr,Ti)O3 thin films: PbO seeding role in the formation of preferential orientation,” Acta Mater., Vol. 52, pp. 2787-2793 (2004).
    198. Y. Fujisaki, K. Torii, M. Hiratani and K. A. Keiko,” Analysis and control of surface degenerated layers grown on thin Pb(Zr,Ti)O3 films,” Appl. Surface Sci., Vol. 108, pp. 365-369 (1997).

    QR CODE