簡易檢索 / 詳目顯示

研究生: 林柏宏
Bo-Hong Lin
論文名稱: 可變運動軌跡之八連桿步行機構
The Eight-link Walking Mechanism with Variable Trajectory
指導教授: 陳羽薰
Yu-Hsun Chen
口試委員: 徐冠倫
Kuan-Lun Hsu
石伊蓓
Yi-Pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 137
中文關鍵詞: 步行機器創意性機構設計運動分析敏感度分析
外文關鍵詞: walking machine, Creative Mechanism Design, motion analysis, sensitivity analysis
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   現代主要的移動載具以車輪為主,然而輪式載具對於非平坦路面的適應性較差。因此,為提昇裝置對地形的適應性,本研究提出了一種可調整運動軌跡之步行機器的腿部機構,藉由可變拓樸機構之多自由度與可變化機構構造,產生運作穩定且地形適應性佳的裝置,依不同地面環境產生對應跨步寬度與高度的運動軌跡。
      本研究提出一套系統化的機構設計流程。首先透過創意性機構設計方法,系統化的合成符合設計需求的可行設計。藉由現有設計的檢索與分析,歸納其構造特性。其次,選擇其中一個具有八桿十接頭的現有設計,進行一般化,並由具有同樣桿件與接頭數的運動鏈中選取可行的一般化鏈,依序指定機架、大腿桿、小腿桿、及曲柄,得到七種特殊化鏈。再將所得之特殊化鏈透過特性編碼,去除不符合標準之結果,得到一種可行設計,並將其具體化。其次,將可行機構透過向量迴路法進行運動分析;接著建立新型機構的力量分析模式,並藉由幾何約束方法合成出步態軌跡之支撐段接近水平的機構尺寸。取得尺寸後即可透過數值運算與電腦模擬的方式進行運動分析,並比對兩者的分析結果,驗證新型設計可產生理想的足部運動軌跡曲線。將運動分析的結果代入求解力量分析與機械利益;最後透過機構之敏感度分析,分析每個桿件之尺寸容許變動範圍,及其足部軌跡對應的變化情形,進而找到最能改變步態軌跡之跨越高度的伸縮桿位置。再將新型設計實體化,並進行實驗與探討,比較其運動軌跡之模擬值與實際值。結果顯示,本研究所提出之創新設計可藉由操作伸縮桿,使運動軌跡之跨越高度變為原本的2.14倍,而同時運動軌跡之水平寬度僅減少18%,明顯地增加了步行機構跨越障礙的能力。


      Nowadays, wheeled vehicles are the main transportation, but they are not suitable for the uneven ground. The legged machines have better adaptability to move across the terrain although they are not as efficient as wheeled vehicles. In this study, for improving the adaptability to move across the terrain, a walking mechanism with an adjustable output trajectory is presented to generate the corresponding trajectory based on the environments. The purpose of this study is to generate an innovative design with stable operation and good terrain adaptability through the variable topology mechanisms, with the characteristics of multiple degrees of freedom and variable mechanism structures.
      A systematic design procedure is proposed. Firstly, feasible mechanism structures are synthesized through the Creative Mechanism Design Methodology. The existing designs are surveyed and classified based on their mechanism structures. One of the existing designs with eight links and ten joints linkage mechanism is chosen and analyzed. According to the concepts of generalization and specialization, one of the kinematic generalized chains with the same number of links and joints is selected, and seven feasible specialized chains are generated by assigning the frame, thigh rod, calf rod, and the crank, sequentially. Moreover, by applying the feature codes, one of the feasible designs is obtained by removing the results that cannot fit the motion characteristics, and the corresponding mechanism sketches are completed through particularization. Secondly, the ideal foot trajectory is a closure curve with a horizontal segment at the bottom. In order to match the ideal trajectory, dimensions of the mechanism are synthesized through the Geometry Constraint Programming. Thirdly, the kinematic and dynamic analyses are made through the vector loop method and free-body-diagram. The force analysis and mechanical advantage are figured out based on the results of the kinematic analysis. Fourthly, the influence of link dimension on foot trajectory can be analyzed through the Sensitivity Analysis, and one of the links is replaced with a telescopic link to adjust the height of the output trajectory. Finally, the performance of the innovative design is verified through computer-aid simulation and prototype testing. As a result, with the operation of the telescopic link, the height of the trajectory becomes 2.14 times with an 18% reduction in width. The ability of the innovative mechanism to hurdle obstacles is significantly improved.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 6 第二章 文獻探討 8 2.1 步行機構相關專利 8 2.1.1 中華民國專利 8 2.1.2 美國專利 15 2.2 步行機構相關研究 21 2.3 足部軌跡特性 23 2.4 可變拓樸 24 第三章 機構概念設計 28 3.1 現有設計 29 3.2 一般化運動鏈 32 3.3 特殊化運動鏈 33 第四章 運動分析 40 4.1 角位移分析 41 4.1.1 迴路一 41 4.1.2 迴路二 42 4.1.3 迴路三 43 4.2 角速度分析 44 4.2.1 迴路一 44 4.2.2 迴路二 44 4.2.3 迴路三 45 4.3 角加速度分析 46 4.3.1 迴路一 46 4.3.2 迴路二 46 4.3.3 迴路三 47 第五章 力量分析 48 5.1 力量分析 48 5.1.1 支撐段分析 50 5.1.2 跨越段分析 53 5.2 機械利益分析 56 第六章 機構尺寸 58 6.1 尺寸合成方法 58 6.2 腿部機構尺寸設計 59 第七章 敏感度分析 66 7.1 分析結果 67 7.2 結果與討論 84 第八章 結果與討論 89 8.1 運動分析結果 89 8.1.1 數值運算 89 8.1.2 電腦模擬 92 8.1.3 比對結果 92 8.2 力量分析結果 94 第九章 實體模型 97 9.1 模型設計 97 9.1.1 層排列設計 98 9.1.2 伸縮螺桿設計 99 9.1.3 桿件設計 101 9.2 實體軌跡實驗 104 9.2.1 實驗流程 104 9.2.2 結果與討論 107 第十章 結論與建議 110 10.1 結論 110 10.2 建議 112 參考文獻 114

    [1] 沈煥文,1999,八連桿型機器馬之機構設計,碩士論文,機械工程研究所,國立成功大學,台南市。
    [2] González de Santos, P., Garcia, E., Estremera, J., 2006, “Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots,” springer, London.
    [3] Rygg, L. A., 1893, “The Mechanical Horse,” US Patent No. 491927.
    [4] Shigley, J. E., 1960, “The Mechanics of Walking Vehicles: A Feasibility Study: final report,” University of Michigan.
    [5] Miller, J., Baldwin, W. C., Brodsky, 1966, Moonwalker; Available from: http://cyberneticzoo.com/walking-machines/1966-moonwalker-disability-walker-r-a-morrison-jack-miller-baldwin-brodsky-american/
    [6] McGhee, F., 1968, Phony Pony; Available from: http://cyberneticzoo.com/walking-machines/1968-phony-pony-frank-mcghee-american/
    [7] Hirose, Umetani, 1979, PV-II 4-Legged Walking Machine; Available from: http://cyberneticzoo.com/walking-machines/1978-9-pv-ii-4-legged-walking-machine-hirose-umetani-japanese/
    [8] 2005, 19th March, Boston Dynamics website; Available from: https://www.bostondynamics.com/bigdog
    [9] Kitano, S., Hirose, S., Horigome, A., Endo, G., 2016, "TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking," ROBOMECH Journal, December.
    [10] 林寬禮,1995,王湔木牛流馬之改進設計,碩士論文,機械工程研究所,國立成功大學,台南市。
    [11] 邱正平,1996,波浪型步態機器馬之設計,碩士論文,機械工程研究所,國立成功大學,台南市。
    [12] 黃凱,1997,最佳八連桿型機器馬之研究,碩士論文,機械工程研究所,國立成功大學,台南市。
    [13] 陳伯宏,1998,四連桿與六連桿木馬車之機構設計,碩士論文,機械工程研究所,國立成功大學,台南市。
    [14] 林冠宇,2013,具複接頭八連桿型機器馬,碩士論文,機械工程研究所,國立成功大學,台南市。
    [15] 陳宏明,2010, “可轉彎之機械馬車結構” ,中華民國專利,TWM375539。
    [16] 劉至行,2016, “多足爬梯機構及其設計方法” ,中華民國專利,TWI550428。
    [17] Jansen, T., Jansen's linkage; Available from: https://en.wikipedia.org/wiki/Jansen's_linkage
    [18] 顏鴻森,1996, “步行機器馬” ,中華民國專利,TW290468。
    [19] 陳玉崗,顏鴻森,2005, “可獨立行進之四足步行機構” ,中華民國專利,TWI245661。
    [20] 江金隆,2006, “可控制方向的機械馬” ,中華民國專利,TWM289078。
    [21] 陳福成,2011, “具有提昇穩定性之驅動步行機構” ,中華民國專利,TWM406507。
    [22] 陳玉崗,2007, “具有六連桿組腿步之獨立步行機構” ,中華民國專利,TWI287467。
    [23] 陳玉崗,2006, “具有四連桿組腿部之獨立步行機構” ,中華民國專利,TW200635653。
    [24] 余志成,2009, “可變步長的步行裝置” ,中華民國專利,TWI305508。
    [25] Klann, J. C., 2001, “Walking device,” US Patent No. US6260862B1.
    [26] Xu, B. Q., 2012, “Multi-legged walking device,” US Patent No. US8157031B2.
    [27] Bartholet, S. J., Sivaslian, A. H., 1985, “HORIZONTAL ACTUATOR MECHANISM FOR THE LEGS OF A WALKING MACHINE,” US Patent No. US4503924A.
    [28] Danko, J. M.,Kasarda, J., 1931, “WALKING TOY ANIMAL,” US Patent No. US1807391A.
    [29] Shkolnik, N., 1984, “Walking apparatus,” US Patent No. US4462476A.
    [30] Joseph, S., 1925, “Walking vehicle,” US Patent No. US1567684A.
    [31] Takanishi, A., Takamoto, Y., Baba, K., Nishizawa, H., 2009, “QUADRUPED WALKING ROBOT,” US Patent No. US7598695B2.
    [32] 洪芝青,2002,混合八連桿型步行機器馬之機構設計,碩士論文,機械工程研究所,國立成功大學,台南市。
    [33] 張峯禎,2015,雙史蒂芬森III六連桿機構尺寸與相位角分析,碩士論文,機械工程研究所,國立雲林科技大學,雲林縣。
    [34] Nansai, S., Mohan, R. E., Rojas, N., Sosa, R., 2013, "Exploration of adaptive gait patterns with a reconfigurable linkage mechanism," IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 4661-4668.
    [35] Nansai, S., Rojas, N., Mohan, R. E., Sosa, R., Iwase, M., 2015, "On a Jansen leg with multiple gait patterns for reconfigurable walking platforms," Advances in Mechanical Engineering, vol. 7, pp. 1-18.
    [36] 林詵漢,2010,創新步行輔助機構之設計與應用,碩士論文,機械工程研究所,國立交通大學,新竹市。
    [37] Alexander, R. M., 1984, "The Gaits of Bipedal and Quadrupedal Animals," SAGE journals, pp. 49-59.
    [38] Dai, J. S., Jones, J. R., 1998, "Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds," Proceedings of ASME Design Engineering Technical Conferences, Atlanta, Georgia, DETC98/MECH-5902.
    [39] Dai, J. S., Jones, J. R., 1999, "Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds," ASME Transactions, Journal of Mechanical Design, Vol. 121, No. 3, pp. 375-382.
    [40] Liu, H., Dai, J. S., 2002, "Carton Manipulation Analysis Using Configuration Transformation," Proc. Journal of Mechanical Engineering Science, Instn Mech. Engrs, Vol. 126(C), pp. 543-555.
    [41] Liu, H., Dai, J. S., 2002, "An Approach to Sequence Analysis of Carton Manipulation," proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, DETC2002/MECH-34352.
    [42] Dai, J. S., Jones, J. R., 2005, "Matrix Representation of Topological Changes in Metamorphic Mechanisms," ASME Transactions, Journal of Mechanical Design, Vol.127, No 4, pp. 837-840.
    [43] Dai, J. S., Ding, X. L., Zou, H. J., 2005, "Fundamentals and Categorization of Metamorphic Mechanisms (in Chinese)," Chinese Journal of Mechanical Engineering, Beijing, Vol. 41, No. 6, pp. 7-12.
    [44] Wang, D. L., Dai, J. S., 2007, "Theoretical Foundation of Metamorphic Mechanisms and its Synthesis (in chinese)," Chinese Journal of Mechanical Engineering, Beijing, Vol. 43, No. 8, pp. 32-42.
    [45] Daivagna, U. M., Balli, S. S., 2015, "Synthesis of Five-Bar Slider Mechanism with Variable Topology for Finitely Separated Positions," Advances in Mechanical Engineering, vol. 3, pp. 1-10.
    [46] 顏鴻森,2013,機械裝置的創意性設計,東華書局。
    [47] Yan, H. S., Chiu, Y. T., 2013, "An algorithm for the construction of generalized kinematic chains," Mechanism and Machine Theory, pp. 75-98.
    [48] 顏鴻森,吳隆庸,2014,機構學(四版),東華書局。
    [49] Hall, A. S., 1986, “Notes on Mechanism Analysis,” University of Michigan, Waveland press.
    [50] Paul, B., 1979, “Kinematics and Dynamics of Planar Machinery,” University of Michigan, Prentice Hall.
    [51] Chen, S. S., Hsu, F. L., Huang, Y. S., 2005, "Frictional Properties of Wood Flooring Materials," Vol. 20, pp. 95-104.
    [52] Erdman, A. G., Kota, S., Sandor, G. N., 2001, “Mechanism Design: Analysis and Synthesis,” Prentice Hall.
    [53] Kinzel, E. C., Schmiedeler, J. P., Pennock, G. R., 2006, "Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming," ASME Journal of Mechanical Design, vol. 128, pp. 1070-1079.
    [54] Waldron, K. J., Kinzel, G. L., Agrawal, S. K., 2016 " Kinematics, Dynamics, and Design of Machinery," 3rd edition, Wiley publisher, pp. 59-91.
    [55] Liu, C. H., 2015, "A Multi-legged Biomimetic Stair Climbing Robot with Human Foot Trajectory," IEEE International Conference on Robotics and Biomimetics, Zhuhai, pp. 559-563.

    無法下載圖示 全文公開日期 2025/07/31 (校內網路)
    全文公開日期 2025/07/31 (校外網路)
    全文公開日期 2025/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE